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Abstract Galectins, a family of soluble b-galactoside-
binding proteins, serve as mediators of fundamental bio-

logical processes, such as cell growth, differentiation,

adhesion, migration, survival, and death. The purpose of

this review is to summarize the current knowledge

regarding the ways in which the expression of individual

galectins differs in normal and transformed human cells

exposed to various stimuli mimicking physiological and

pathological microenvironmental stress conditions. A

conceptual point is being made and grounded that the

modulation of galectin expression profiles is a key aspect

of cellular stress responses. Moreover, this modulation

might be precisely regulated at transcriptional and post-

transcriptional levels in the context of non-overlapping

transcription factors and miRNAs specific to galectins.
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Introduction

Animal and human cells respond to exogenous stressors of a

chemical and physical nature through a number of specific

adaptive stress response pathways that attempt to mitigate

damage and maintain or re-establish homeostasis [1]. These

pathways are highly conserved inmost metazoans, including

mammals, highlighting the central and obligatory roles

played by such pathways in organisms’ responses to envi-

ronmental insults. At the molecular level, cells use stress-

specific sensors that signal through individual transcriptional

factors such as Nrf2 (oxidative stress), HSF-1 (heat shock

response), p53 (DNA damage), HIF-1 (hypoxia), MTF-1

(metal stress), NFAT5 (osmotic stress), and NF-jB (in-

flammation stress). These factors may crosstalk with XBP-1/

ATF6/ATF4, controlling unfolded protein response (UPR)

due to the accumulation of damaged, aggregated, or mis-

folded proteins [2]. Although different stress stimuli engage

on default own primary sensors, a global remodeling of

stressed cells might include a common molecular signature

due to the ultimate selection between only two choices: cell

death or cell survival. Recent findings indicate that specific

glycosylation patterns of cellular proteins, aswell as changes

in the expression of glycan-binding proteins (lectins), may

accompany the stress responses, suggesting the glycobio-

logical mechanisms of such regulation. Animal lectins are

central to these mechanisms and consist of at least 15 diverse

families of proteins, each with characteristic structural

motifs represented by one or several carbohydrate-recogni-

tion domains (CRDs) specific to different glycans [3].

Galectins, a family of soluble b-galactoside-binding
proteins, have attracted special attention over the last

decade due to the role they play in the regulation of fun-

damental biological processes, such as cell growth,

differentiation, adhesion, migration, survival, and death [4,

5]. The conventional classification of galectins was origi-

nally proposed by Hirabayashi and Kasai [6]. This

classification considers the structural features of these

proteins, distinguishing three subfamilies: proto-type

galectins (galectin-1, -2, -5, -7, -10,-11, -13, -14, -15, and -

16) with one carbohydrate-recognizing domain (CRD),

tandem-repeat galectins (galectin-4, -6, -8, -9, and -12)

with two homologous CRDs, and a chimeric galectin-3
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with one CRD linked to a non-lectin N-terminal domain

(Fig. 1). Human cells are known to express 12 of these

galectins, missing murine galectin-5 and -6 and ruminant

galectin-11 and -15. Proto-type galectins are smaller pro-

teins (14–16 kDa) than chimeric (26 kDa) and tandem-

repeat galectins (*40 kDa). However, they can form

homodimers and multimers and cross-link structures that

contain the sugar galactose on the cell surface and within

the extracellular matrix, resulting in a variety of specific

cellular responses, which regulate cell survival and pro-

grammed cell death (apoptosis). For instance, extracellular

galectins can stimulate signaling systems, leading to the

generation of reactive oxygen species (ROS), the mobi-

lization of intracellular calcium, and the secretion of

vascular endothelial growth factors (VEGFs) [7–9].

Galectins can also function intracellularly, controlling

apoptosis and mRNA splicing processes in a glycan-inde-

pendent manner [10, 11]. Most galectins possess multiple

cellular stress-related functions, which are associated with

stimulatory and inhibitory response mechanisms depending

on the cell type and galectin localization (Table 1) [3, 12–

15]. Of interest, apoptotic sensitivity of immune cells to

tumor-derived galectins has been proposed as a potential

mechanism assisting tumor cells to survive and escape

from immune surveillance in the body [12].

Galectin expression profiles differ in normal and

tumorous tissues [16, 17] and between different cell lines

[18–20]; they can undergo a variety of changes under the

stress conditions encountered in tumor microenvironments

or those associated with inflammation, fibrosis, or cardio-

vascular and other diseases [21]. For instance, a specific

and readily detectable 5- to 30-fold increase in the

circulating levels of several galectins has been reported in

the bloodstream of patients with various types of cancers,

including breast [22], head and neck [23], bladder [24],

melanoma [25], pancreatic [26, 27], and colorectal [28–30]

carcinomas. These observations have prompted the devel-

opment of galectin-targeting drugs, some of which have

been tested in clinical trials [31]. In fact, other studies have

demonstrated that stress stimuli can induce non-uniform

changes in the expression of various galectin genes, which

can be tentatively classified as upregulated, downregulated,

and constitutive galectins [32]. For instance, the monocytic

differentiation of HL-60 cells was accompanied by the

upregulation of galectin-3 and the down-regulation of

galectin-9 mRNA expression, while no changes or

expression were detected with galectins -1, -2, -4, -7, and -

8 [33]. This conceptual point has also readily been

demonstrated in studies with prostate carcinoma tissues,

showing that, as the cancer progressed toward more

aggressive stages, the level of galectin-1 increased, the

levels of galectins -3, -4, -9, and -12 gradually decreased,

and galectin-8 remained stably expressed [34]. As such,

many fundamental questions about the cell stress biology

of galectin proteins remain insufficiently answered, leaving

a number of unresolved issues and limiting the practical

application of galectin-based therapies. First, we do not

know why cells express as many as 16 different galectins

and how/whether these galectins interact with each other.

Second, we do not know how a global network of galectins

is remodeled in cells under stress conditions and whether

these changes can provide a biomarker code or molecular

signature of cellular stress responses. Third, we do not

know what signaling mechanisms regulate the differential

expression of galectin genes in cells and whether a col-

laboration between common and diverse stress-sensitive

signaling pathways is required. Considering recent com-

prehensive reviews and books on galectins [3, 5, 12–17,

35–37], the main goal of this short review is to focus

specifically on the stress-induced changes in the expression

of individual galectins in human cells including cancer cell

lines and to point out some potential regulatory mecha-

nisms likely deserving of attention in elucidating the

crosstalk between various members of the galectin network

at the transcriptional and post-transcriptional levels.

Proto-type galectins

The expression of many human proto-type galectins (-1, -2,

-7, -10, and -13), with the exception of the relatively less

studied galectins 14 and 16, has been reported to be readily

sensitive to a variety of stress stimuli, including hypoxia,

redox stress, ER stress, and DNA damage, as well as to

stimuli inducing cell differentiation.

Fig. 1 Basic structure and molecular characteristics of human

galectins. Carbohydrate-recognizing domains (CRDs) are schemati-

cally presented as pacman-like symbols (purple and red) linked to

non-lectin domains (showed as yellow/orange bars). Proto-type

galectins can form noncovalent homodimers (not shown), while

tandem-repeat galectins contain two covalently linked homologous

CRDs. CRD of chimera-type galectin-3 is linked to a collagen-a-like
sequence (orange) followed by a small N-terminal end (green circle)

mediating the formation of oligomers. Sizes of human galectin

molecules were derived from the GeneCards Database at www.

genecards.org
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Table 1 Selected cellular stress-related responses and biological functions, which are regulated by galectins (based on reviews [3, 12–15])

Human galectin Stimulatory effects Inhibitory effects

LGALS1 Apoptosis of activated T cells

Survival of naı̈ve T cells

Tumor cells apoptosis (extracellular mechanism)

Muscle repair and cell differentiation

Tumor cell growth and migration

Proliferation of neural stem cells

Regeneration of axons

Respiratory burst in neutrophils

Plasma cell survival and differentiation

Angiogenesis

Mitogenesis of spleen or lymph node cells, vascular cells,

and Hepatic stellate cells

T cell viability

B cell proliferation

Acute inflammation

Nitric oxide release from macrophages

Growth of neuroblastoma and stromal bone marrow cells

LGALS2 T cell apoptosis T cell viability

Pro-inflammatory cytokine secretion

LGALS3 T cell and monocyte apoptosis (extracellular mechanism)

Tumor growth

Re-epithelization of wounded corneas

Growth and differentiation of lymphocytes

Respiratory burst in macrophages and neutrophils

Eosinophil death

Angiogenesis

Inflammation

T cell apoptosis (intracellular mechanism)

T cell viability

Inflammation

Survival of activated B cells

Apoptosis in B cell lymphoma

LGALS4 T cell apoptosis

Axon growth

Intestinal inflammation

LGALS7 Tumor cell apoptosis (intracellular mechanism)

Keratinocyte differentiation

p53-mediated apoptosis of keratinocyte

Cell growth

Cell proliferation

LGALS8 Apoptosis of lung carcinoma and synovial fluid cells

Respiratory burst of neutrophils

Plasma cell differentiation

Angiogenesis

Autophagy

Cell growth arrest

Autoimmune inflammation

LGALS9 Apoptosis of Th1 cells, T cells, thymocytes and NK cells

Dendritic cell maturation

Tumor cells apoptosis (extracellular mechanism)

Respiratory burst in must cells

T cell viability

LGALS10 (CLC) CD4? T cells apoptosis

Differentiation of promyelocytic cells

Proliferation of T regulatory cells

LGALS12 Tumor cell apoptosis (intracellular mechanism)

Adipocyte apoptosis and differentiation

Tumor cell growth

LGALS13 T cell apoptosis

Apoptosis promotion in U-937 macrophage cell line

nd

LGALS14 T cell apoptosis nd

LGALS16 T cell apoptosis nd

nd no data
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Galectin-1

Since the seminal findings by Le et al. [38], galectin-1 has

been recognized as a strong biomarker of hypoxia-induced

cellular stress responses with respect to several cell lines

(FaDu, SCC4, SQB20, Panc1, and V2P3) associated with

head and neck squamous cell carcinoma (HNSCC). It was

shown that galectin-1 was upregulated by hypoxia (0.2 and

2 % O2), which mimicked the local microenvironmental

conditions of tumorous tissues, at both transcriptional and

post-translational levels, although global mRNA accumu-

lation surprisingly lagged behind the protein accumulation/

secretion [38]. In line with this finding, the level of cir-

culating galectin-1 was found to be elevated in tumor-

bearing mice, whereas the expression of galectin-1 in

HNSCC tissues was inversely correlated with the T cell

marker CD3. Since galectin-1 was originally shown to

promote T cell apoptosis [39], as well as to inhibit various

aspects of T cell effector functions [40, 41], it was sug-

gested that the hypoxia-induced upregulation of galectin-1

is essential for tumor cells to escape from cellular immune

surveillance [38]. Subsequent testing of other cancer cell

lines associated with human and mouse melanoma (A375

and B16-F0), mouse breast carcinoma (4T1), and human

prostate carcinoma (LNCaP) confirmed the hypoxia-in-

duced expression of galectin-1 at both mRNA and protein

levels [42]. In renal cell carcinoma cell line CAK-1, the

mimicking of hypoxia stress with CoCl2, which inhibits

prolyl hydroxylase and HIF-1a ubiquitination, also resulted

in an almost 14-fold, dose-dependent increase in galectin-1

protein expression [43]. Interestingly, the transcriptional

control of galectin-1 upregulation under hypoxic condi-

tions seems to be specific to the type of responsive cells

and not always dependent on classical hypoxia-induced

transcription factors. For example, galectin-1 expression

was found to be controlled by HIF-1a in colorectal carci-

noma [44], by C/EBPa in acute myeloid leukemia [45], by

AP-1 in classical Hodgkin lymphoma [46], and by ROS

and NF-kB in Kaposi’s sarcoma [42] cells. Other lines of

evidence supporting the hypoxia-induced upregulation of

galectin-1 have recently been reported in a model of acute

myocardial infarction considering the hypoxic microenvi-

ronment in infarcted hearts [47]. In particular, the exposure

of HL-1 cardiomyocytes in a cell culture to hypoxia (1 %

O2, 18 h) or pro-inflammatory cytokines (IL-17, TNF-a,
IFN-c) increased the respective levels of galectin-1 in total

cell lysates or cell culture media. Moreover, exogenous and

endogenous galectin-1 did not affect the viability of car-

diomyocytes, eliminating an apoptotic aspect of its activity.

Since galectin-1 is a part of the contractile apparatus of

cardiac striated muscles colocalizing with sarcomeric actin

on I bands [48], a positive outcome of galectin-1 activity

under hypoxic stress has been suggested and considered as

a possible therapeutic mode for preventing heart failure

[47].

In addition to hypoxia, the elevation of galectin-1 levels

was reported under metabolic stress (glutamine deprivation

or ammonia accumulation) in the serum-free cell culture

medium of CHO cells [49]. At the organismal level, a rapid

(within 1 h) increase of galectin-1 was observed in the

serum of rats under restrain stress, which coincided with the

increase of corticosterone and was controlled by the sym-

pathetic nervous system [50]. Immunoblot analysis revealed

a strong increase of galectin-1 protein in the human glioma

cell lines A172 and U118 after a 4-h treatment with a single

dose of *6 Gy ionizing radiation [51]. It is likely that

galectin-1 protects glioma cells through its direct role in the

UPR, as the siRNA-mediated knockdown of galectin-1

coincided with diminished IRE1 expression and ultimately

impaired the ability of human hs683 glioblastoma cells to

respond to ER stress [52]. Moreover, decreased galectin-1

expression has been associated with the decreased mRNA

level of the hypoxia-related genes implicated in angiogen-

esis, which confirms a galectin-1-integrated relationship

between ER stress and hypoxia [52].

Galectin-2

A tandem-repeat galectin-2 is a paralog of galectin-1 with a

wide range of biological activity. It performs an anti-in-

flammatory function in the intestine, inducing the apoptosis

of specific populations of T cells [53, 54]. This lectin has

been shown to move to the nucleus of fibroblastic cells

exposed to physical (UV light), chemical (mitomycin C,

serum withdrawal), or cell biological (coculture with

stromal cells) treatment modalities [55]. These results

suggest that changes in the compartmentalization and

localization of galectin-2 in cells might be important for

regulating stress-induced cellular responses—a mechanism

that can also be considered for other galectins. Similar to

galectin-4 and galectin-8, the circulating levels of galectin-

2 increased in the serum of patients with colon and breast

cancer [29], correlating with the ability of these galectins to

induce the secretion of cancer-promoting cytokines (G-

CSF, IL-6, MCP-1/CCL2, and GROa/CXCL1) from the

vascular endothelium both in vitro and in mice [56]. In

gastric cancer, however, an inverse correlation was noticed

between the tissue level of galectin-2 and lymph node

metastasis [57].

Galectin-7

Galectin-7 is a proto-type galectin, the expression ofwhich is

readily activated by p53 in an association with the apoptotic

process, as was initially shown in a model of colorectal

cancer cell line DLD-1 [58]. There are several lines of
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evidence confirming the pro-apoptotic activity of galectin-7

and its role in genotoxic and oxidative stress responses. For

instance, UVB radiation has been found to induce galectin-7

expression in human epidermal keratinocytes, particularly in

sunburned apoptotic cells [59] and NHEK neonatal foreskin

cells [60]. More specifically, galectin-7 was found to be

paired with the anti-apoptotic Bcl-2 protein in mitochondria,

but this interaction was disrupted by UVB radiation, which

sensitized the apoptotic response of cells [61]. Furthermore,

galectin-7 transfectants of HeLa and DLD-1 cells showed

enhanced sensitivity to apoptosis induced by UV radiation,

actinomycin D, TNF-a plus cycloheximide, etoposide, or

camptothecin [62]. The expression of galectin-7 is sensitive

to the availability of an antioxidant enzyme Cu/Zn-con-

taining extracellular superoxide dismutase (EC-SOD). In

particular, both skin cells fromEC-SOD transgenicmice and

EC-SOD-transfected keratinocyte cell line HaCaT exhibited

a significant upregulation of galectin-7 expression based on

the western blotting analysis [63]. Interestingly, Lee et al.

[63] claimed that the upregulation of galectin-7 expression

occurs in a PGE2-dependent manner as a result of the EC-

SOD-mediated activation of COX-2, which leads ultimately

to the accumulation of pro-apoptotic molecules, such as

caspase-3, caspase-9, Bax, and Bcl-Xs. As to the patholog-

ical stress conditions, including cancer, it has been suggested

that galectin-7 plays a dual role as a result of its ability to

mediate apoptosis and cancer suppression via a p53-depen-

dent pathway and to promote cancer progression via NF-jB-
dependent pathway [64]. Since both p53 and NF-jB belong

to stress-induced transcription factors, the corresponding

upregulation of galectin-7 should be considered in the con-

text of specific cellular stress responses with differential

outcomes, which fits perfectly with the conceptual paradigm

of stress-induced selection between cell death or cell sur-

vival. Indeed, the biological role of galectin-7 cannot be

solely related to its pro-apoptotic functions due to the

crosstalk between both p53 and NF-jB, as recently demon-

strated in MCF7 breast cancer cells [65]. In addition, recent

studies have revealed that the upregulation of galectin-7 in

breast cancer cell lines MCF7 and MDA-MB-231 is driven

byC/EBPb-2, which can explain the paradox of concomitant

galectin-7 overexpression in cancer cells and p53 mutation

[66]. It should be noted that the role of C/EBP transcription

factors in cellular responses to stresses, including inflam-

matory and ER stresses, is well known [67]. As such, the

possibility of regulating the galectin-7 gene via the signaling

pathway under stress is a very attractive proposition.

Galectin-10

Galectin-10 belongs to the subfamily of proto-type

galectins and has been recognized as a main protein

component of the Charcot–Leyden crystals in human

eosinophils [68–70]. The overexpression of this protein

has also been detected in regulatory T cells [71] and in

differentiated HL-60 cells (a human promyelocytic cell

line) [33]. Galectin-10 binds not only b-galactoside
sugars [68] but also mannose [69], a feature not found in

other galectins. The upregulation of galectin-10 has been

reported in several models of physiological and patho-

logical stresses. Bronchial and nasal inflammation is

accompanied by the activation and recruitment of eosi-

nophils, and a corresponding accumulation of galectin-10

in peripheral blood [72], samples of sputum [73], and

nasal lavage [74]. Elevated levels of galectin-10 have

also been reported in gut biopsies of patients with celiac

disease, an autoimmune disorder of the intestine caused

by an allergy to gluten [75]. Lastly, a drastic time-de-

pendent increase in the expression of galectin-10 at the

mRNA and protein levels was reported in the process of

the myeloid differentiation of HL-60 cells into neu-

trophilic or eosinophilic lineages, as induced by DMSO

or sodium butyrate, respectively [33]. Since no expres-

sion of galectin-10 has been observed in undifferentiated

HL-60 cells, this galectin deserves attention as a poten-

tial biomarker of cellular stress responses in other

models. In particular, the presence of binding sites for

redox-sensitive transcription factors Sp1 and Oct1 in the

promoter region of the galectin-10 gene [76] may

explain its high expression in ROS-producing

granulocytes.

Galectin-13

Galectin-13 (placenta tissue protein 13, PP13) is a proto-

type galectin, which forms stable homodimers through

disulfide bonds [77–79]. These dimers were not observed

in a Laemmli solution containing 10 % 2-mercaptoethanol,

and the galactoside-binding activity and haemagglutination

were impaired in the presence of 1 mM dithiothreitol [79].

These properties of galectin-13 might be important for the

redox regulation of its biological activity. What is inter-

esting in this context is that the 48-h treatment of a

choriocarcinoma cell line BeWo with vitamin C, a reduc-

ing agent, was found to increase the PP13 protein

expression at protein level in a dose-dependent manner

[80]. The available information about galectin-13 expres-

sion has been limited largely to placental tissue and more

specifically to syncytiotrophoblasts, although initial find-

ings have detected the protein in a few other normal

(spleen, fetal kidney, and adult bladder) and tumorous

tissues [81]. In terms of reproductive biology, galectin-13/

PP13 is specifically known and recognized to be one of

biomarkers of preeclampsia [82, 83], as it shows different

expression dynamics compared to control subjects [84, 85].
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Galectin-14 and galectin-16

Human galectin-14 and galectin-16 genes are expressed

predominantly in placental tissues, together with galectin-

13 in the Chr19 cluster. These three galectins have been

proposed to contribute to immunosuppression at the

maternal–fetal interface mostly by inducing T cell apop-

tosis [86]. Ovine galectin-14 has been studied in more

detail and detected primarily in eosinophils [87]. Eosino-

phils likely serve as a source of secreted galectin-14, which

has been detected in bronchoalveolar lavage fluid, mam-

mary gland lavage, and gastrointestinal tract mucus

following allergen or parasite challenge [88, 89], indicating

a relationship to inflammatory stress response.

Chimeric type galectin-3

The overexpression of galectin-3 has been well docu-

mented in different cancer cell models and tumorous

tissues under hypoxic conditions. Indeed, the promoter

region of chimeric type galectin-3 gene contains binding

sites for the transcription factor HIF-1, which drives

hypoxia-induced galectin-3 mRNA and protein expression,

as observed in HeLa cells and mouse embryonic fibroblasts

from HIF-1a wild-type, but not HIF-1a null mice [90]. The

expression of galectin-3 gene was also strongly upregulated

by hypoxia in the murine melanoma cell line BF-F10 [91];

however, this effect could be cell-specific because subse-

quent studies revealed no significant changes in five out of

six human melanoma cell lines [92]. It is interesting to note

that the combined hypoxia-induced upregulation of galec-

tin-3 and epidermal growth factor receptor has been

proposed to enhance the invasive potential of tumor cells

that are exposed to stressed microenvironmental conditions

[93]. Proteomic analysis also revealed the upregulation of

galectin-3 in human placental cell line BeWo, which was

associated with trophoblast syncytialization [94]. This

species- or cell-specific variability needs further examina-

tion considering complex galectin networks in cells.

Nevertheless, the weak but significant hypoxia-induced

upregulation of galectin-3 gene in the WM278 human

melanoma cell line [92] and the strong immunostaining for

galectin-3 in hypoxic regions of cancer tissue biopsies from

patients diagnosed with breast DCIS [95] suggest a

potential application for this molecule with anti-apoptotic

activity [96] in protecting cancer cells from hypoxia stress.

The accumulation of cancer cells with high levels of

galectin-3 protein has also been confirmed in a xeno-

transplant model of glioblastoma multiformes in specific

hypoxic areas, which histochemically appeared as so-called

pseudopalisades representing hypercellular zones around

the necrotic tissues [97]. In cell culture, the NG97ht hybrid

glioblastoma cells showed a very strong upregulation of

galectin-3 in a HIF-1a and NF-jB-dependent manner

under conditions mimicking the tumor’s microenviron-

ment, i.e., combined hypoxia and nutrient deprivation. This

galectin-3 upregulation was essential for cell survival

because the siRNA-mediated galectin-3 knockdown sen-

sitized transfected cells to the cell death [97]. However, the

role of galectin-3 in hypoxia-mediated responses can be

more complex and tissue-specific, because it can serve as a

multifunctional inflammatory mediator. For instance, in a

mice neonate model, hypoxia–ischemia treatment led to the

upregulation of galectin-3 in microglia/macrophages asso-

ciated with specific brain injuries in the deep gray matter

areas [98]. As such, the ability of galectin-3 to contribute to

various inflammatory responses (chemotaxis, phagocytosis,

stimulation of cytokines, and ROS) [99–103] may explain

the extent of tissue damage.

Hyperthermic and hypothermic conditions were found

to have opposite effects, stimulation vs inhibition, on the

expression of galectin-3 in the microglial cells of hip-

pocampal brain tissues from gerbils following

experimental ischemia [104, 105]. Interestingly, the

increased levels of galectin-3 at a high temperature (39 �C)
were associated with less severe apoptotic damage in brain

tissues, suggesting that galectin-3 plays a protective role. In

a different context, interaction between galectin-3 and IL-

10 was required to protect human breast carcinoma BT549

cells against liver ischemia–reperfusion-induced cytotoxi-

city [106]. Oxidative stress induced by ozone exposure was

also associated with the rapid (within 3 h) and prolonged

(up to 72 h) accumulation of galectin-3 in the bronchiolar

epithelium and alveolar macrophages of rats [107, 108].

Since galectin-3 has been found to have a positive effect on

the re-epithelialization of wounds [109], it is anticipated

that this effect may be involved in both the protection

against the oxidative damage of lungs and wound repair

[107]. Galectin-3 upregulation has also been found to be a

feature of different types of acute and chronic inflamma-

tory responses associated with microbial infection, asthma,

liver injuries, and fibrosis [110]. The increased level of

circulating galectin-3 has also been recognized as one of

the biomarkers of chronic and acute heart failure [111–

113]. Since heart failure as a clinical syndrome deals lar-

gely with oxidative stress [114], a related mechanism could

be responsible for the upregulation of galectin-3.

Silencing galectin-3 in HeLa cells has resulted in the

increased resistance of transfected cells to DNA-damaging

agents, such as ionizing radiation (10–40 Gy), etoposide,

carboplatin, and mitomycin C [115]. Galectin-3 protein

levels in glioblastoma cells increased in response to UV-C

radiation and treatments with alkylating reagents, and

required the involvement of such transcription factors as

NF-jB and Jun [116]. However, it should be noted that
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under certain stress conditions, e.g., immobilization stress

in mice, the levels of galectin-3 in alveolar macrophages

and spleen and liver tissues decreased. The same trend was

observed in human glioblastoma A1235 cells under

hyperthermic conditions, the mechanisms of which are still

uncertain [117]. Such non-uniform changes in the expres-

sion of galectin-3 under stress conditions underscore the

need for a more comprehensive analysis of galectin protein

networks in cells and the interactions between different

galectin members.

Tandem-repeat type galectins

Human tandem-repeat galectins (4-, -8, -9, and -12) have

been relatively less studied with respect to their partici-

pation in cellular stress responses. However, the alterations

in the expression of these galectins have been reported in

relation to inflammation and cancer.

Galectin-4

Tandem-repeat galectin-4 is expressed chiefly in the

intestine tissue and contributes substantially to the regula-

tion of inflammation, the activation of immune cells, the

expansion of memory T cells in mucosal tissue [118–121],

and the stabilization of lipid rafts in cells [122, 123].

Although no data are available on the effects of environ-

mental stress on the expression of galectin-4 in mammalian

cells, the level of this galectin is known to be drastically

elevated (11–25 folds) in the sera of patients with col-

orectal and breast cancer in comparison with healthy

subjects. This elevation occurs concurrently with galectin-

2, galectin-3 and galectin-8 [29], all enhancing the pro-

duction of cytokines and chemokines by endothelial cells,

which are involved in processes of angiogenesis and

metastasis [56]. The upstream regulatory elements of the

galectin-4 gene include the binding sites for HNF-4,

MyoD, c-Rel, HNF-3b, C/EBP, and HFH-2 [124], which

might be indirectly involved in a variety of cellular stress

responses.

Galectin-8

Galectin-8 is a tandem-repeat galectin with one of the

longest 30UTR regions among mRNA transcripts, which

indicates the complex mechanisms of its expression regu-

lation [125]. Therefore, it is not surprising that, despite the

massive amount of information regarding the expression of

galectin-8 in tumors and its up- and down-regulation

compared to healthy tissues [126], the details of galectin-

80s transcriptional and translational machinery remain

unexplored and in need of in-depth study based on stress-

induced cellular models. The ability of galectin-8 to induce

strong superoxide production in human neutrophils [127]

indicates the potential significance of oxidative stress in

this context. In addition, the fact that several splicing

variants of galectin-8 with different biological activity exist

[128, 129] provides an exciting direction of research in the

context of the stress-dependent regulation of alternative

pre-mRNA splicing in cells [130].

Galectin-9

Galectin-9 is a tandem-repeat galectin that serves as a

distinctive regulator of adaptive and innate immunity,

which is able to weaken the immune system in hyper-im-

mune conditions (autoimmune disease, asthma, infection,

allograft rejection) and enhance it in immune-compromised

conditions (e.g., cancer) [131]. These immunomodulatory

effects of galectin-9 result from the elimination or activa-

tion of specific subpopulations of immune cells, which

shifts the immune response in the required direction. It is

not surprising that, with respect to pathological stress

conditions, tumors and especially metastatic sites have

mostly shown lower levels of galectin-9 than normal tis-

sues [132]. At the same time, the exposure of host cells to

bacterial or viral infections has been found to induce

galectin-9 expression [131]. Moreover, individual factors

mimicking or associated with inflammatory stress, such as

LPS, IFN-c, TNF, and IL-1b, are powerful stimuli for

galectin-9 expression in a variety of cells, including vas-

cular endothelial cells [133, 134], monocytes [135],

macrophages [136], fibroblasts [137], multipotent mes-

enchymal stromal cells [138], and astrocytes [139, 140]. A

variety of transcription factors and related signaling path-

ways have been reported to be essential for the

upregulation of galectin-9, including a redox-sensitive

JNK/c-Jun signaling pathway in astrocytes [140], the

phosphorylation of STAT-1 in HUVEC cells [141], and

Smad3 in regulatory T cells [142]. Although it remains

unclear how galectin-9 collaborates with other galectins,

the administration of the recombinant galectin-9 seems to

be a very promising strategy for treating immune and

cancer diseases [131].

Galectin-12

Galectin-12 is a tandem-repeat galectin that is expressed

variably in different tissues, but relatively strongly in

peripheral blood leukocytes, myeloid cell lines [143], and

adipocytes [144]. The intracellular level of galectin-12

mRNA is upregulated by reagents that synchronize cells at

the G1 phase (theophylline plus dibutyryl-cAMP) or G1/S

boundary (hydroxyurea or thymidine) of the cell cycle

[143]. The time-dependent increase of the galectin-12
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mRNA transcripts over a 7-day period was found to

accompany the differentiation of preadipocyte mouse 3T3-

L1 cells into mature adipocytes [145]. A detectable amount

of galectin-12 has also been associated with lipid droplets

in cells and involved in the regulation of lipid metabolism

and energy homeostasis [146]—an interesting aspect with

important consequences for cell stress biology.

The complexity of the transcriptional and post-
transcriptional regulation of galectin networks,
and suggestions for future studies

Galectins represent a complex family of glycan-binding

proteins with defining specificity to b-galactoside sugars

due to the quite similar structural and dynamic properties

of carbohydrate-recognizing domains [147]. By compar-

ison, the promoter regions of the genes encoding galectins

and the 30 untranslated regions of galectin mRNAs are very

different, explaining the variety of patterns of galectin

expression in cells treated with stress. Indeed, a robust

bioinformatics analysis of human galectin genes demon-

strates very few overlaps between tentative transcription

factors and between miRNAs targeting mRNA transcripts

(Table 2). A detailed systems biology approach is required

to establish galectin regulatory networks that integrate

stimulatory and inhibitory pathways. The role of different

transcription factors has been addressed in many studies, as

highlighted in the previous sections. However, the details

of how signaling mechanisms control the expression of

stress-sensitive galectins still need elaboration. Further-

more, the role of galectin-specific miRNAs cannot be

overlooked because of the very well-known upregulation of

non-protein coding genes in cells under stress [148]. The

current experimental findings related to the miRNA-me-

diated regulation of galectin expression have been limited

to few studies. In particular, the transfection of a renal

carcinoma cell line CAK-1 miR-22 was found to be very

efficient in inhibiting both galectin-1 and HIF-1a [43]. A

sequence called miR-322 was claimed to recognize human

galectin-3 30UTR, and the silencing of miR-322 with

antisense oligo was found to upregulate galectin-3 mRNA

transcripts in several cancer cell lines [149]. The list of

potential galectin-specific miRNAs (Table 1), which has

been retrieved using a DIANA microT algorithm for

microRNA target prediction [150, 151], makes it evident

that this regulation can vary dramatically between the

various galectins, utilizing multiple miRNAs (galectins -3,

-8, -9, -12, -13), very few (galectins -1, -4, -7, -10), or none

(galectin-2). Remarkably, galectin-8 stands out against

other galectins by overwhelming number of potential target

miRNAs (*120), which is due to the longest 30-UTR

among all galectins. The biological significance of this

diversity remains obscure and awaits further studies with

different cell stress models.

The network of galectins in cells represents a well-bal-

anced system that is sensitive to a variety of stress stimuli

mimicking, for instance, the physiological cues for cell

differentiation or the pathological microenvironment of

tumorous tissues. The alteration of galectin expression

profiles seems to be a very delicate mechanism that con-

tributes to cell survival or cell death in the context of

cellular stress responses. It is evident that the exposure of

cells to stress remodels the galectin expression profiles,

including the up- and down-regulation of certain galectins

[27]. However, we are still far from gaining an ultimate

understanding of the biological significance of galectin

networks in cells, especially since some galectins, e.g.,

galectins -1, -3, and -8, are abundantly expressed in a

variety of cell lines, while others are either tissue-specific

or silent [18, 152]. Although the activation of stress-

specific transcription factors can explain some aspects of

the remodeling of galectin networks, additional global

molecular mechanisms must be taken into account,

including the epigenetic regulation of galectin gene

expression and the destabilizing effects of miRNAs tar-

geting galectin mRNAs. For instance, it has been reported

that, in cancerous tissues, the promoter regions of all

galectin genes contain multiple CpG sites available for the

methylation and DNA methylation/demethylation of

galectin genes [153]. Accordingly, an efficient way to

activate the expression of silent galectins is by inhibiting

DNA methylation. This approach has been demonstrated to

be efficient in the case of galectin-1 [154] and was recently

confirmed in the case of the low expressing galectin-7 in

various cell lines, using a specific DNA methylation inhi-

bitor 5-aza-20-deoxycytidine [155]. The application of this

strategy to examining cellular stress responses deserves

more attention in the context of galectin expression in cells

and tissues with different DNA methylation statuses.

In sum, the differential expression of galectins in tissues

and individual cell lines requires the thorough examination

of galectin expression profiles and galectin networking in

the context of cellular stress responses. Knowledge of the

galectin signatures of stressed cells can provide a platform

for understanding the functional differences between

upregulated and downregulated galectins and the potential

value of these galectins as biomarkers or new molecular

targets for stress-associated cellular disorders. As such, a

comprehensive profiling of galectin expression and subse-

quent combined inhibition of multiple stress-inducible

galectins rather than individual galectins might be a

promising strategy for developing new anti-cancer

therapies.
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116. Dumic J, Lauc G, Flögel M (2000) Expression of galectin-3 in

cells exposed to stress-roles of jun and NF-jB. Cell Physiol

Biochem 10:149–158
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