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stem cell plasticity, cell fate determination, and mainte-
nance of the correct cell identity at different developmen-
tal stages. Gene repression, which seems to be a dynamic 
process during differentiation, is achieved via PcG recruit-
ment to target genes. That process involves several differ-
ent transcription factors (TFs), long non-coding RNAs 
(lncRNAs), and fusion oncoproteins like PML/RARα and 
PLZF/RARα. PcGs are closely associated with DNA meth-
ylation by recruiting DNA methyltransferases (DNMTs) 
to target genes [1–6]. Recent findings suggest that XCI 
spreading seems to be governed by a hierarchy of two 
types of PcG target sites; the ‘canonical’ sites, which typi-
cally contain CpG islands and the ‘non-canonical’ sites that 
lack H3K4me3 or CpG islands. XCI requires a network 
involving the lncRNA XIST linked to the proteins HBiX 
and SMCHD1 [7, 8]. However, previously published data 
supported that PcG are not required for initiating or main-
taining random XCI in mouse embryonic cells [9]. PcG 
have important regulatory functions during the cell cycle 
phases repressing cyclins, cyclin-dependent kinase (CDK) 
inhibitors, the pRB–E2F complex, while they can control 
DNA synthesis during S phase. PcG affect DNA damage 
pathways and repair mechanisms. They also regulate apop-
tosis and prevent the onset of senescence as PcG are down-
regulated during replicative senescence [10]. For instance, 
PcG proteins confer the hematopoietic stem cell (HSCs) 
the ability to act as progenitors and protects them from 
apoptosis through regulation of the Ink4α/Arf locus. Com-
positional changes of PcG proteins induces differentiation 
blockade, leading to malignant hematopoietic phenotypes 
[11, 12].

PcGs have the ability to re-establish the histone code on 
newly assembled unmethylated histones, at least in Dros-
ophila [13]. They remain associated with mitotic chromatin 
in Drosophila S2 cells in order to ensure equal segregation 
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Polycomb group proteins

Polycomb group proteins (PcGs) represent transcriptional 
repressors of protein-coding gene promoters required for 
genomic imprinting, chromosome X inactivation (XCI), 
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to both new cells, or to keep local concentration of PcG 
proteins near the DNA at high levels, facilitating rebinding 
after mitosis [14].

PcG form multiprotein complexes called polycomb 
repressive complex 1 and 2 (PRC1/2) responsible for gene 
silencing through post-translational histone modifications. 
They are involved in monoubiquitylation of lysine 119 of 
histone H2A (H2AK119ub) and di- and tri-methylation of 
lysine 27 of histone H3 (H3K27me3), respectively. Mul-
tiple forms of the PRC1 exist containing combinations of 
different PcG proteins (CBX2/4/6/7/8), posterior sex combs 
proteins PCGF1 (NSPC1), PCGF2 (MEL18), PCGF3, 
PCGF4 (BMI1), PCGF5, PCGF6 (MBLR), the RING1 and 
RNF2 (RING2) proteins, three PH proteins (PHC1/2/3 or 
HPH1/2/3), two Sex combs on midleg (SMCL1/2), and 
RYBP/YAF2 [1, 15]. PRC2 consists of the core subu-
nits enhancer of zeste 1/2 (EZH1/2), embryonic ectoderm 
development (EED), the RBBP7/4 (RbAp46/48) protein, 
and the suppressor of zeste 12 (SUZ12) [16]. Although 
EZH2 and EZH1 seem to be the catalytic subunit of PRC2, 
EED specifically recognizes and binds to the repressive 
trimethylated lysine marks contributing to the affinity of 
PRC2 for the nucleosomes [17]. PRC2 contains other pro-
teins like AEBP2, PHF1 (PCL1), MTF2 (PCL2), PHF19 
(PCL3), and JARID2, which regulate the enzymatic activ-
ity of PRC2 and co-localize with PRC2 on target genes. 
PRC2 is inhibited by H3K4me3 and H3K36me2/3, pre-
venting H3K27me3 occupancy on transcriptionally active 
genes [18]. On the other hand, PRC1 might affect the abil-
ity of TF-IID to remain attached to gene promoters, sug-
gesting a putative transcriptional silencing mechanism. In 
this way, target genes stay in a poised state to be expressed 
later during the developmental process [19]. Mounting evi-
dence suggests that both PRC1 and PRC2 complexes can 
be recruited by lncRNAs on target genes promoting gene 
silencing [20].

The role of other histone modifications in PRC2 regu-
lation is only now becoming apparent, and very recent 
data made evident that the member of the PCL family 
Phf19 regulates PRC2 occupancy. Phf19 recruits specific 
demethylases to mouse embryonic stem cells (mESCs) 
during differentiation leading to H3K27me3 and tran-
scriptional silencing [21, 22]. PRC2 subunits might act 
either as a tumor suppressor (TS) or as an oncogene, 
suggesting that H3K27me3 may possess dual functions 
in different cell types [23]. Recent findings demon-
strated that the PRC2 complex is allosterically activated 
by neighboring nucleosomes. Active genes are resistant 
to PRC2 activity, not only because of active epigenetic 
marks that antagonize PRC2 activity but also because 
the chromatin of transcribing genes is less compact, 
with lower nucleosome density. Therefore, the ability of 
PRC2 to distinguish active chromatin and dense inactive 

chromatin highlights the efficiency of PRC2 in maintain-
ing the inactive states of target genes [24]. PHF1 has also 
been recently found to protect p53 from MDM2 degrada-
tion n vitro and in vivo [25].

BMI11 is probably the most studied subunit of PRC1, 
and is involved in normal stem cell proliferation affecting 
self-renewal and maintenance of HSCs and neuronal stem 
cells. It also has an important role in the malignant trans-
formation of normal stem or differentiated cells in cancer 
stem cells. It is associated with metastasis and chemoresist-
ence to agents routinely used in the battle against cancer. 
On the contrary, BMI1 silencing enhances the antitumor 
activity of chemotherapeutic agents [26, 27].

In physiological conditions, Ezh2 is essential for fetal 
hematopoiesis affecting erythroid differentiation in the fetal 
liver, while it does not seem to affect self-renewal in adult 
bone marrow. It might also epigenetically regulate tran-
scriptional programs controlling migration and connectiv-
ity of neurons in the cortico–ponto–cerebellar pathway in 
mice [28, 29]. Ezh2 is closely associated with DNMTs as it 
is capable of recruiting DNMTs to gene promoters promot-
ing gene silencing through DNA methylation [30].

Deregulated expression of PcG proteins has been iden-
tified in several types of hematologic malignancies and 
solid cancers via modulation of Notch, Hedgehog, and Wnt 
pathways [31–36]. Intriguingly, EZH2 oncogenic function 
has been demonstrated not to depend on gene silencing but 
rather on the co-activation of the transcriptional induction 
of its target genes in castration-resistant prostate cancer due 
to EZH2-phosphorylation in a PRC2-independent pattern 
[37].

An MYC overview

MYC proto-oncogene belongs to a family that includes the 
c-MYC, the MYCL, and the MYCN homologues, which 
share general topography. In normal cells, MYC expres-
sion is regulated at the transcriptional, post-transcriptional, 
translational, and post-translational levels. In order to acti-
vate gene transcription, MYC forms heterodimers and acts 
in conjunction with the MYC-associated protein X (MAX), 
required for regulation of gene transcription, proliferation, 
apoptosis, and malignant transformation. MYC deregula-
tion has tumor initiating and tumor maintenance proper-
ties in both solid and blood cancers. The oncogenic activ-
ity is attributed to gene amplification, translocations, and 
to deregulation of its cofactors such as MAX. MYC acts 
downstream of receptor signaling pathways, including 
Wnt, Notch, phosphoinositide 3-kinase (PI3K), and Ras, 
and interacts with microRNAs (miRNAs), regulating tran-
scription of genes involved in cell growth and proliferation 
[38–40].
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C-MYC expression is high during early embryonic 
development and persists in the cell cycle phases, whereas 
it is low or even undetectable in differentiated tissues [41]. 
A rather unusual feature of MYC is that it can regulate all 
three RNA polymerases (RNA pol) for a subset of their 
respective targets. Thus, besides protein-coding genes and 
many non-coding RNAs, including miRNA and lncRNA 
genes that are controlled by Pol II, MYC regulates rRNA 
and tRNA genes that are transcribed by Pol I and Pol III, 
respectively [42]. MYC exhibit antisenescence func-
tions through its interaction with CDK2 or by repressing 
cell-cycle inhibitors like p15ink4b, p21cip1, activates genes 
involved in cell cycle progression (CDK4, cyclin D1),  
and possesses immunomodulatory potential by  preventing 
T-cells from recognizing tumor cells [43, 44].

Lin et al. [45] have recently demonstrated that, in dif-
ferent tumor cells bearing high c-MYC levels, it occupies 
sites at both promoters and enhancers of the actively tran-
scribed genes across the cancer cell genome. The increase 
in c-MYC occupancy leads to increased transcription 
elongation by RNA Pol II and increased levels of tran-
scripts per cell. In that way, c-MYC causes transcriptional 
amplification, producing elevated levels of transcripts 
from the existing gene-expression program of tumor cells 
potentiating the already deregulated transcriptional pro-
gram of cancer cells. Another intriguing MYC character-
istic is that aside from inducing cell proliferation, it can 
also enhance programmed cell death and paradoxically 
might induce carcinogenesis by enhancing compensatory 
proliferation [46]. Myc causes malignant transforma-
tion of the cell but it can also induce apoptotic cell death 
through still unclear mechanisms. It seems that the TS 
Arf mediates such a switch via inhibition of the ubiquity-
lation of the c-Myc transcriptional domain. In turn, such 
inhibition induces the Egr1 gene essential for the c-Myc-
induced p53-independent apoptosis observed in double 
knock out experiments in mouse embryonic fibroblasts 
(MEFs). That interaction is deregulated in cancer, through 
the overexpression of Skp2, which inhibits the recruit-
ment of Arf to Egr1 [47].

Myc regulates global chromatin structure contributing 
to oncogenesis through histone modifications targeting 
the epigenetic machinery [48]. In mouse naïve cells, Myc 
binding sites are characterized by active chromatin marks 
while they are excluded from regions with repressive 
marks [49]. Target gene repression may be indirect since 
transcriptional repressors activated by Myc are recruited to 
Myc target genes as in the case of Ezh2. Ezh2 upregulation 
during B-cell activation mediates transcriptional repres-
sion across the genome via H3K27me3. Overall, the find-
ings of that elegant study determine that Myc is a universal 
amplifier of gene activation affecting multiple alternative 
pathways [50].

Here, we summarize data relating to the ongoing pro-
gress of the interaction between PcG proteins and MYC 
oncogene in cancer, based on recent evidence. We report 
the associations with upstream and downstream effectors, 
and the networks that arise. Moreover, we describe the 
putative involvement of miRNAs as an intermediate link 
between the two afore-mentioned factors.

PcG protein interaction with MYC

PRC1 and MYC

Several years ago, Bmi1 was found to be a partner of Myc 
within the cell nucleus, leading to lymphomagenesis in a 
transgenic mice model, suggesting at that time that both 
factors are members of a transcription regulation com-
plex [51, 52]. Sometime later, it was established that Bmi1 
overexpression was able to inhibit Myc-induced apopto-
sis in MEFs through the negative regulation of Ink4a–Arf 
in transgenic mice [53]. Since then, several studies have 
confirmed the positive association between Bmi1 and Myc 
overexpression. Their interaction led to the formation of 
circuitries, and repression of TS genes in different sub-
types of cancer, and it was also suggested that they may 
be involved in the generation of cancer stem cells (CSCs) 
[54–57].

BMI1 gene was found to be a direct transcriptional tar-
get of c-MYC in human diploid fibroblasts, and their co-
regulation negatively regulated p16 mRNA and protein 
levels. However, physiological c-MYC levels did not affect 
p16, while hypoactive c-MYC altered p16 via BMI1. On 
the other hand, hyperactive c-MYC had a direct effect on 
CDKN2A (p16) promoter by direct binding to its promoter 
E-box [58]. These findings suggested that, in part, the com-
bined action of BMI1 and MYC is necessary to modulate 
apoptosis through modification of cell cycle regulator 
expression.

Duss and colleagues [59] studied an estrogen-depend-
ent transformation model of human mammary epithelial 
cells (HMECs) through lentiviral transduction of HMECs 
with estrogen receptor α (ERα), Myc, Bmi1, and Tert 
in mice. However, the ERα/Bmi1/Myc/Tert-transduced 
HMECs failed to survive in normal estrogen level condi-
tions, while estrogen administration promoted tumorigen-
esis. Cells expressing Bmi1/ERα were biologically active 
and proliferating when exposed to estrogens. The addi-
tion of Myc accelerated tumor growth compared withthe 
Bmi1/ERα only cells. Given that only Myc cells failed to 
proliferate and that Bmi1/ERα proliferated slower than the 
Bmi1/ERα/Myc cells, it can be deduced that these factors 
are interconnected and increase each other’s activity. In 
breast cancer cell lines, it was shown that the overexpressed 
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BMI1 positively correlated with Wnt1 and c-MYC expres-
sion. On the other hand, it negatively regulated the expres-
sion of Wnt inhibitors such as Dickkof (DKK), with the 
final result being the upregulation of Wnt target such as 
c-MYC. The specific TF participates in a positive feedback 
loop activating the transcription of BMI1. In turn, BMI1 
itself is a target of Wnt pathway, and DKK1 expression 
downregulates both c-MYC and BMI1. DKK1 and BMI1 
regulate the expression of each other in a negative feedback 
loop. Thus, the oncogenic activity of Wnt signaling path-
way and BMI1 is interconnected in a positive feedback loop 
via c-MYC [60].

Bmi1 is overexpressed in the granule cell lineage, which 
can give origin to medulloblastomas as observed in trans-
genic and knock out mouse models. Upregulated Bmi1 cor-
responded to the expression of Myc and its upstream regu-
lator Lef1, and a Bmi1–Lef1–Myc axis has been proposed 
[61]. BMI1 was overexpressed in primary glioma samples 
and correlated with adverse prognosis and resistance to 
radio-chemotherapy. Interestingly, BMI1 enhanced the 
transcriptional activity of the nuclear factor (NF)-κB TF by 
promoting its nuclear translocation and, most interestingly, 
MYC expression was induced among other NF-κB tar-
gets, suggesting a BMI1–NF-κB–MYC axis in glioma [62]. 
MYCN and c-MYC overexpression induced proliferation 
and tumor growth in human neuroblastoma samples and 
xenografts in a Bmi1-dependent pattern, exhibiting a posi-
tive correlation. Knockdown of MycN/c-Myc and BMI1 led 
to decreased mitosis and karyorrhexis [63]. No correlation 
between BMI1 and MYCN/c-MYC in gliomas or medul-
loblastomas was observed, in contrast to the previous study 
[62], suggesting that the interaction is cell-type specific. 
Interestingly, in cases of MYCN amplification there was a 
positive correlation between BMI1 expression and MYCN. 
Nevertheless, in the non-amplificated MYCN cases, BMI1 
expression correlated with c-MYC expression [63]. MycN 
was found able to protect neuroblastoma precursor cells 
from death stimuli through p53 repression, whereas Bmi1 
overexpression induced the polyubiquitination and protea-
somal degradation of p53 in a Ring1a/b-mediated p53 pol-
yubiquitination as observed in a transgenic mice model of 
neuroblastoma [64].

PcG proteins promote ESCs and adult leukemic stem 
cell self-renewal maintenance by blocking cell fate deci-
sions, contributing to oncogenesis. Akt phosphorylates 
Bmi1 at Ser316, both in vitro and in vivo, impairing its 
chromatin-modifying function. Moreover, phospho-
rylated Bmi1 exhibits a suppressed growth-promoting 
potential, and effects on senescence and cellular trans-
formation. Akt-mediated phosphorylation also pro-
motes the dissociation from chromatin and the dere-
pression of the Ink4a–Arf locus, while phosphorylated 
Bmi1 loses its ability to cooperate with MYC in cellular 

transformation. Such interaction inhibits self-renewal of 
hematopoetic progenitor cells and inhibits ubiquitina-
tion of H2A. Thus, the PI3K–Akt pathway indirectly 
fine tunes cell growth by inhibiting Bmi1 through Ser316 
phosphorylation [65].

The FoxM1 TF, with known tumor-promoting properties 
in diverse cancer subtypes, is required for proper mitosis 
in MEFs, and its overexpression protects cells from oxida-
tive stress-induced senescence. That action is achieved via 
upregulation of c-Myc, subsequent activation of its down-
stream target Bmi1, and final suppression of the p19Arf–
p53 pathway, resulting in MEFs protection from senes-
cence [66]. These findings shed light into the molecular 
mechanisms of senescence and oncogenesis at the early 
transforming stages.

ID1 is an oncogene affecting cell proliferation, cell 
cycle progression, apoptosis, differentiation, invasion, and 
angiogenesis. ID1 exclusively affects PRC1 and regulates 
the expression of MEL-18 and BMI1 in human breast can-
cer cell lines. It enhances the E3 ligase activity of RING1b 
through the PI3K/AKT pathway, accumulating H2Aub 
and proteosomal degradation of geminin, which is a PRC1 
target. ID1 induces downregulation of MEL-18 via AKT 
ser473 phosphorylation and activation of the AKT sign-
aling pathway, and BMI1 activation. ID1 also enhances  
c-MYC transcription through inhibition of MEL-18. Small 
interfering RNA (siRNA)-mediated MYC downregulation 
abolishes ID1-mediated BMI1 upregulation, while ID1 
regulated BMI1 transcrition through c-MYC. It can also be 
suggested that the oncogenic function of c-MYC is attrib-
uted/enhanced by the oncogenic power of ID1. It can also 
be assumed that it affects CSCs biology via BMI1, c-MYC, 
and geminin, which regulates cell proliferation, differentia-
tion, and genomic stability [67].

Other than Bmi1, PRC1 subunits were also observed 
to interact with Myc. In fact, Cbx7 is overexpressed, and 
exhibits tumor-initiating and disease-accelerating proper-
ties in contrast to other PcG proteins in transgenic mice. 
Cbx7 acts independently of Bmi1, repressing Ink4a/Arf TS 
locus in cooperation with Myc, promoting follicular lym-
phoma pathogenesis [68]. Members of the posterior sex 
combs proteins interact and regulate each other at the mes-
senger RNA (mRNA) level. MEL-18 downregulates BMI1 
in fibroblasts and accelerates the entry of cells into senes-
cence by upregulating p16 and increasing the growth inhib-
itory form of phosphorylated Rb. C-MYC binds to BMI1 
while MEL-18 is not able to bind directly on BMI1. MEL-
18 regulation on BMI1 is achieved by repressing c-MYC 
and by downregulating AKT. Interestingly, c-MYC over-
expression rescued MEL-18 mediated repression of BMI1 
expression. MELl-18 expression was reduced in prostate 
cancer samples and breast cancer, and inversely correlated 
with BMI1 and c-MYC levels. MEL-18 forced expression 
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also attenuated cancer cell growth through G1 arrest via 
modulation of AKT signaling [69–73]. Therefore, the exist-
ence of a MEL-18–c-MYC–BMI1–p16–pRb pathway reg-
ulates cell senescence.

PRC2 and MYC

Less work has been done regarding PRC2 members and 
MYCc interaction, but the findings are most interesting. 
All three PRC2 core components were upregulated con-
comitantly to MYC in cell lines bearing 20q amplification, 
a chromosomal modification that occurs early in the malig-
nant transformation process [74]. The interaction between 
EZH2 and c-MYC has been detected in the tumorigenic 
process as early as the CSC level. EZH2 was overexpressed 
in primary glioblastoma CSC, promoting aberrant self-
renewal by modulating the expression of direct downstream 
genes such as c-MYC. C-MYC was also capable of rescuing 
in part the effects of the EZH2 inhibitor 3-deazaneplanocin 
A (DZNep) treatment on CSC [75]. EZH2 was found to 
activate c-Myc in breast cancer cells through the ERα and 
the Wnt pathways, in a Wnt/b-catenin–EZH2–ERα–MYC 
axis [76].

In MLL-AF9 acute myeloid leukemia (AML), the genes 
of the MYC module were negatively enriched in EZH2-
inactivated leukemic cells. These data suggest a functional 
link between gene expression programs that are under the 
control of PRC2 and MYC. These findings could also have 
therapeutic implications, since modulation of EZH2 might 
decrease the expression of MYC transcriptional targets at 
least in specific subtypes of AML [77].

H3K27me3 levels were decreased in prostatic intraepi-
thelial neoplasia and prostatic adenocarcinoma and were 
independent from the high EZH2 levels. An Myc-express-
ing mouse model was studied in order to obtain better 
insight into decreased H3K27me3 levels. The findings 
supported the hypothesis that in vivo Myc overexpression 
results in a global decrease of H3K27me3 levels. These 
data suggested that Myc has the ability to influence epi-
genetic marks chromatin structure in cancer in a histone 
methyltransferase-independent pattern [78].

HOXB3 increases expression of DNMT3B, which 
is recruited and directly bound to RASSF1A promoter, 
repressing its expression via hypermethylation. DNMT3B 
recruitment is achieved through interactions with EZH2 
and MYC, which is also bound to RASSF1A promoter. 
In fact, MYC knockdown results in decreased EZH2 
expression and DNMT3B recruitment. Epigenetic silenc-
ing of RASSF1A through HOXB3 induction of DNMT3B 
expression is commonly observed in lung adenocarcino-
mas and several other human cancer cell lines. Thus, a 
putative repressive mechanism involving the MYC asso-
ciation with EZH2 and DNMT3B on RASSF1A has been 

suggested [79]. Although this report shows that Myc is 
important for PRC2 recruitment, it is also true that Myc 
is not sufficient to recruit PcG proteins, as nearly 5 % of 
mouse ESC promoters bound by Myc are also bound by 
PcG proteins [80].

Recently, it has been demonstrated that Myc suppresses 
the PI3K/Akt pathway through transcriptional upregula-
tion of its negative regulator the PTEN TS, initiating and 
maintaining gene repression. Furthermore, Ezh2 is acti-
vated by Myc-mediated suppression of Akt kinase activity, 
which in turn leads to Ezh2-mediated gene repression. Myc 
represses genes via Ezh2-induced H3K27me3, including 
Myc itself in rat fibroblasts, supporting a role of Ezh2 in 
Myc-mediated gene repression and autoregulation [81].

MYCN represses clusterin TS through direct interac-
tion with a non-canonical E-box inducing bivalent epige-
netic marks and recruitment of repressive enzymes such 
as histone deacetylases (HDACs) and PcG proteins. MYC 
recruits EZH2 to clusterin promoter inducing transcrip-
tional silencing both in vivo and in vitro in neuroblastomas. 
Notably, although binding of MYCN was associated with 
active chromatin marks such as H3ac and H3K4me2, neg-
ative marks such as H3K9me3 and H3k27me3 were also 
observed immediately downstream of the E-box. In agree-
ment with this observation, several chromatin remodeling 
factors associated with transcriptional repression such as 
HDAC 1/2, BMI1, EZH2, and SUZ12 were detected around 
the E-box or downstream of the E-box sequence in the 
presence of MYCN. This ‘bivalent’ configuration is typical 
of repressed, developmentally regulated genes, which are 
poised to be activated by physiological stimuli [82].

Myc is also involved in stem cell biology, as both c-MYC 
and MYCN expression is required for ESCs and induced 
pluripotent stem cell (iPSC) self-renewal that could not be 
compensated by MYCL, highlighting the different biologic 
properties of each homolog in ESC biology. This regula-
tory function of MYC is achieved through the regulation of 
miRNAs involved in iPSC biology, modulation of cell cycle 
regulator expression, control of the euchromatin organiza-
tion, and consequently the epigenetic state of iPSCs [48]. 
Accumulating evidence shows that PcG proteins and Myc 
are involved in stem cell biology, and induced pluripotency. 
Most recent findings establish that c-MYC, together with 
KLF4, are responsible for initiating the first transcriptional 
wave during somatic cell reprogramming [83]. Moreover, 
there is a Myc-centered network that acts independently of 
the other core TFs (Oct4, Sox2, Nanog) composing sub-sig-
natures represented by the core TF network, the Myc net-
work, and the Polycomb cluster [84]. Intriguingly, recent 
data revealed that inactivation of Ezh2 in MEFs treated 
with Oct4, c-Myc, Klf4, and Sox2 TFs resulted in success-
ful reprogramming, probably via Ezh1 recruitment on target 
genes and H3K27me retention [85].
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ESCs can undergo rapid self-renewal and can differenti-
ate into any cell type. That feature depends on TFs, includ-
ing Oct4, Sox2, and Nanog, that form the core pluripotency 
network. This ESC-specific network interacts with both the 
Myc-based transcription network and a chromatin-mod-
ifying complex network including PRC2. Together these 
three networks occupy and regulate a large number of tar-
get genes essential for the self-renewal and differentiation 
of ESCs. Myc and PRC2 seem to be under the control of 
the Utf1 TF, which prevents PRC2 binding, while it blocks 
the Myc–Arf feedback loop, ensuring rapid proliferation of 
ESCs [86]. Thus, the three modules do not act separately 
but rather in conjunction, with Utf1 being the intermediate 
link.

Myc is involved in the transcriptional regulation of 
ESCs pluripotency network and in histone methylation 
mediated by PcG. Transcriptional activation of the entire 
PRC2, and not of individual core members, contributes to 
high H3K27me3 levels, therefore keeping bivalent genes 
silent. The final result of the Myc–PRC2 interaction was 
a maintained ESCs undifferentiated state, as established in 
double knockdown experiments, and the cell cycle progres-
sion maintaining self-renewal of ESCs [87].

Ben-Porath et al. [88] sought to determine whether the 
regulatory networks that characterize ESCs are also active 
in cancer. Four groups were defined, with 13 partially over-
lapping gene sets; the Polycomb targets and the Myc tar-
gets were among them. Their data suggested that poorly 
differentiated tumors display a molecular pattern similar to 
ESCs, and that cancer cells in such tumors are biologically 
closer to normal undifferentiated stem cells than are cells in 
well differentiated tumors.

C-MYC overexpression in human umbilical cord blood-
marrow stroma cells (hUCB-MSCs) induces the expression 
of PcG complex genes, and most PcG genes are down-
regulated after HDAC2 inhibition. However, the expression 
level of PHC1, PHC2, RING1, and EZH2 are not down-
regulated after HDAC2 inhibition. This might indicate that 
these genes are not under the control of HDAC2 or c-MYC. 
A c-MYC regulatory feature might also be the regulation 
of PcG gene expression via HDAC2 control. As a result, 
cell proliferation and differentiation of adult stem cells is 
affected [89]. These studies on adult stem cells and iPSCs 
could act as guides to get further insight in the first steps of 
carcinogenesis.

Poly‑MYCroRNAs: “ménage a trois”

miRNAs are a class of non-coding RNAs with regulatory 
function of gene expression. They are involved in the regu-
lation of physiological processes, in pluripotency, in repro-
gramming and in several different diseases including cancer 

[90–92]. Their function is achieved through modulation of 
cell signaling, differentiation, proliferation, organogenesis, 
development, and apoptosis. miRNA genes are distributed 
in all human chromosomes except for the Y chromosome. 
Half of them are found in clusters and they are transcribed 
as polycystronic primary transcripts [93, 94].

More than 2,000 human mature miRNA sequences are 
included in miRBase release 19 accounting for the 1–2 % 
of the human genome, with the ability to control the activ-
ity of nearly 50 % of all coding genes [95].

miRNA biogenesis is a complex multistep process 
involving several proteins. Canonical and alternative 
miRNA biogenesis pathways have been described, and our 
knowledge in their biogenesis is expanding every day. In 
the canonical pathway, the pri-miRNAs generated by RNA 
Pol II are cleaved in the nucleus by the RNase III DRO-
SHA in conjunction with the DGCR8 protein. These new 
pre-miRNAs are exported to the cytoplasm by Exportin-5 
protein, where they are further cleaved by DICER, reach-
ing their final ~22 nt length. The resulting double-stranded 
small RNA is loaded onto the Argonaute (Ago) proteins, 
forming the effector complex RNA-induced silencing com-
plex (RISC). One RNA strand remains attached to the Ago 
as a mature miRNA while the other strand is degraded [94, 
96]. Alternative miRNA biogenesis pathways that bypass 
DICER and/or DROSHA/DGCR8 have also been identified 
[97, 98].

miRNAs are able to regulate their target gene expres-
sion by base pairing with the 3′ untranslated region (UTR) 
of the target mRNA, although there is evidence support-
ing that targets can be located in the 5′UTR or in coding 
regions of genes. miRNA target sites exhibit perfect match-
ing between the nucleotides 2–7 of a single miRNA and 
the mRNA, whereas mutations in the target genes might 
lead to novel target sites [99]. Through that interaction, a 
single miRNA is capable of repressing tens to hundreds 
of targets. Several mechanisms of target regulation have 
been proposed, including stimulation of translation, endo-
nucleolytic cleavage, deadenylation and degradation of the 
mRNA, inhibition of translation initiation, and inhibition 
after translational initiation. All these mechanisms finally 
consolidate gene silencing [100].

miRNAs possess regulatory functions of fundamen-
tal signaling pathways such as Wnt, NOTCH, Hedgehog, 
RAS, and MAPK/PI3K/AKT [101, 102]. MiRNAs have 
the ability to act either as TS or as oncogenes depending 
on the type of genetic or epigenetic abnormality present. 
They have multiple roles in tumor genesis and progression, 
as they are capable of modulating oncogenic, TS pathways, 
and metastasis pathways, including c-MYC, p53, RAS, 
and BCR/ABL, the TWIST1–miR10b–HOXD10 pathway. 
Nevertheless, their expression can be regulated by other 
oncogenes or TS [102, 103]. They are involved in almost 
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all types of human cancer, and they can classify human 
cancer according to the differentiation state and devel-
opmental lineage of the cancer [104]. Their expression is 
significantly associated with major cancer outcomes, while 
they can be used as biomarkers for disease progression and 
response to treatment [104–108]. A more detailed descrip-
tion of miRNA biogenesis, function, and regulation is 
beyond the scope of the present manuscript.

miRNAs act at the transcriptional and post-transcrip-
tional level and they are regulated by TFs, forming com-
plex regulatory networks affecting each other’s expression. 
Both TFs and miRNAs form feedback and feedforward 
loops through which their target gene expression is regu-
lated [109]. Thus, miRNAs are closely associated with 
MYC. For example miR-150 is under the negative control 
of MLL-fusion/Myc/Lin28 axis in MLL-rearranged AML 
[110]. Moreover, several other TS miRNAs are downregu-
lated by MYC in lymphoma cells by direct binding to their 
promoters, promoting lymphomagenesis [111]. MiR-22 
and MYC form feedforward loops in cells that exit a qui-
escent state and enter a proliferative state characteristic of 
malignant transformation [112]. MYC has the ability to 
suppress proline oxidase and proline metabolism in cancer 
cells through mir-23b* upregulation, affecting in that way 
another hallmark of cancer [113].

However, miRNAs also interact with the PcG members. 
EZH2 is under the control of several different miRNAs 
affecting H3K27me3 levels of target genes, whereas EZH2 
itself activates or represses other miRNAs [114]. Specific 
miRNAs have the ability to promote myogenesis and ter-
minal differentiation in mouse myoblast cell lines. Among 
them, the upregulated expression of miR-26a was required 
during terminal differentiation in order to induce rapid and 
efficient silence of Ezh2, which is a negative regulator of 
myogenesis Ezh2 [115].

The interaction between MYC-miRNAs and PcG pro-
teins is quite complex, as these factors compose sophisti-
cated modulatory networks. MiR-29 has dual oncogenic or 
TS function depending on the cellular context and it seems 
that acts as TS in MYC-associated lymphomas. MiR-29 is 
MYC-repressed with the cooperation of HDAC3 and EZH2 
in MYC-associated lymphomas cell lines and in primary 
samples. Interestingly, MYC recruits EZH2 and SUZ12 
at miR-29 promoter, promoting its epigenetic silencing. 
MYC depletion leads to decreased recruitment of RNA pol 
II, HDAC3 levels, and EZH2, promoting increased histone 
acetylation and decreased H3K27me3, respectively. An 
important finding of this study is the identification of the 
MYC–miR-26a–EZH2–miR-494 positive feedback loop that 
sustains MYC activity and consequent miR-29 repression. 
MYC leads to EZH2 upregulation through miR-26a repres-
sion and in turn EZH2 suppresses miR-494, which targets 
MYC. That loop confers the MYC oncogene persistent high 

protein levels and further repression of miR-29. This study 
sheds light on a putative mechanism of EZH2 activation 
and contribution to tumor aggressive transformation [116].

Ezh2 can epigenetically repress miRNAs, enhancing the 
expression of Bmi1 and Ring2, promoting H2AK119ub in 
advanced prostate cancer. Therefore, miRNAs also act as 
the intermediate link for the coordinated function of PRC1 
and PRC2 in cancer [117]. The interaction between miR-
NAs and PcG proteins could indirectly affect the fate of 
the hematopoietic progenitor. In fact, an miR-223/PcG 
axis regulates the NFI-A gene affecting hematopoietic cell 
lineage determination [118]. MiR-18a and miR-19a were 
upregulated and transctivated by MycN in neuroblastoma 
and they negatively regulated ERα1 expression [119].

MYC and EZH2 were overexpressed and positively corre-
lated in primary samples and in a mouse model of prostatic 
intraepithelial neoplasia. However, as MYC regulates the 
expression of miR-26a/b, and miR-26a/b targets EZH2 in 
prostate cancer cells only and not in breast cancer or AML, 
it could be suggested that the MYC–miR-26a/b–EZH2 inter-
action presents a tissue-specific pattern. Final result of the 
deregulated axis is the maintained proliferative capacity of 

Fig. 1  Direct upstream regulators and downstream effectors of MYC 
oncogene are shown. MYC expression is directly regulated by other 
transcription factors (FoxM1c) and by different polycomb proteins 
(EZH2, BMI1, Mel-18). BMI1 also regulates MYC via other tran-
scription factors (nuclear factor [NF]-κB) or via Wnt pathway inhibi-
tors such as Dickkof (DKK1). EZH2 is able to activate c-MYC in a 
Wnt/b-catenin–EZH2–ERα–MYC axis. MYC represses genes via 
EZH2, including MYC itself, forming autoregulatory loops with 
EZH2. MYC controls the polycomb repressive complex (PRC)-1 
member RING1B through regulation of its direct downstream regula-
tor BMI1. In turn, BMI1 affects the expression of cell cycle regula-
tors. For a more detailed description see the text
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cancer cells. Therefore, EZH2 can also represent an early 
prostate cancer contributor and a driver of disease progres-
sion, and its expression could be enhanced by MYC via two 
mechanisms (directly or through miR-26a/b) [120].

MYC has the ability to alter PRC2 by interacting with 
the TS miR-26a or by targeting E2F1 proapoptotic protein 
[121]. miR-26a is downregulated in MYC-induced lym-
phoma, whereas its direct negative target EZH2 is over-
expressed [122]. That interaction might result in MYC-
induced EZH2 expression through downregulation of its 
target miRNA. In AML samples, MYC directly enhanced 
EZH2 transcription, while it also repressed miR-26a tran-
scription [123].

miR-26a was also downregulated in nasopharyngeal 
(NPC) primary samples and cell lines promoting tumor 
growth, while negatively correlated with EZH2 levels. miR-
26a directly targeted EZH2 in NPC cells and it was demon-
strated that ectopic EZH2 expression rescued miR-26a cell 
growth inhibition and cell cycle arrest. The effect of forced 
miR-26a expression on tumor growth inhibition was in part 
mediated by downregulation of c-MYC together with other 
cell-cycle regulators [124].

Treatment options

MYC seemed to represent an attractive therapeutic target 
as it fulfilled the required criteria for optimal therapeu-
tic efficacy [125]. However, the enthusiasm has switched 
to skepticism, and a search for alternative approaches for 
several reasons [126]. Drugs able to inhibit c-MYC/MAX 
dimerization, and to decrease global H3K9ac and increase 
H3K9me2 levels, such as Omomyc, have been developed 
[127, 128]. Other alternative approaches for inhibiting 
MYC expression have been developed, such as inhibition 
of the bromodomain and extraterminal (BET) subfamily 

of human bromodomain proteins, or the use of antogomirs 
and miRNA mimics to inhibit or activate oncogenic and TS 
miRNAs, respectively, that are associated with Myc func-
tion [129–131].

Similarly, pharmacologic inhibition of EZH2-activating 
mutations in lymphoma has been reported. DZNep is the 
most studied EZH2 inhibitor in different cancer subtypes 
with a targeting potential that reaches the CSC compart-
ment [132–135].

However, there is no evidence of how inhibition of MYC 
or PRC could affect each other’s expression. Moreover, 
none of the currently known drugs have been reported to 
affect both MYC and PcG and modulate their interaction. 
Recently, it was described that genistein, a botanical isofla-
vone enriched in soybean products, induces the expression 
of p21waf1 and p16ink4a and downregulates both Bmi1 and 
c-Myc [136]. C-Myc itself was determined to be an HDAC 
inhibitor target, which also possesses the ability to indi-
rectly suppress Bmi1 and EZH2 transcription in breast can-
cer cell lines, leading to reactivation of PcG target genes 
[137]. The effect of HDAC inhibitors and of genistein on 
Myc in cancer biology should be further explored.

Conclusions

It is widely accepted that PcG proteins and MYC are 
involved in several physiogical processes, induced pluripo-
tency, and cancer, acting independently or in conjunction. 
PcG proteins regulate chromatin organization, whereas 
MYC might also control global chromatin organization 
through regulation of target gene transcription. PcG pro-
teins also exhibit gene-expression regulator characteristics 
and might act as fine tuners of MYC-induced changes in 
cell biology. Although MYC binding to its targets corre-
lates with specific epigenetic changes, it is unclear whether 

Fig. 2  MYC interacts with 
the histone methyltransferase 
EZH2 and recruits the DNA 
methyltransferase DNMT3B, 
expression of which is enhanced 
by HOXB3, on the promoter 
of RASSF1 tumor suppressor 
repressing its expression. MYC 
also binds to EZH2/SUZ12 and 
in cooperation with the histone 
deacetylase HDAC3 promote 
silencing of miR-29. MYC is a 
part of a MYC/miR-26a/EZH2/
miR-494 regulatory loop 
enhancing MYC expression
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MYC establishes these marks or is recruited to target pro-
moters as a consequence of chromatin modifications. MYC 
and PcG protein interactions are involved in the regulation 
of most important signaling pathways (Fig. 1). MYC might 
promote the transcription of TS, which in turn suppress 
signaling transduction and finally enhances its oncogenic 
potential via PcG target gene repression. Moreover, MYC, 
PcG proteins, and miRNAs form complex networks, feed-
forward and feedback loops regulating gene expression and 
controlling each other’s expression (Fig. 2). PcG proteins 
have been shown to be able to substitute MYC in induced 
pluripotency. However, given that the function of these 
genes is not completely clear and understood, we must be 
prudent before using them widely. Accumulating data con-
tinuously describe new complex circuitries in which PcG 
proteins and MYC are deregulated in cancer, with prospec-
tive therapeutic implications against both blood and solid 
cancers.
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