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Abstract Hypermethylation of SOCS genes is associ-

ated with many human cancers, suggesting a role as

tumor suppressors. As adaptor molecules for ubiquitin

ligases, SOCS proteins modulate turnover of numerous

target proteins. Few SOCS targets identified so far have

a direct role in cell cycle progression; the mechanism by

which SOCS regulate the cell cycle thus remains largely

unknown. Here we show that SOCS1 overexpression

inhibits in vitro and in vivo expansion of human mela-

noma cells, and that SOCS1 associates specifically with

Cdh1, triggering its degradation by the proteasome. Cells

therefore show a G1/S transition defect, as well as a

secondary blockade in mitosis and accumulation of cells

in metaphase. SOCS1 expression correlated with a

reduction in cyclin D/E levels and an increase in the

tumor suppressor p19, as well as the CDK inhibitor p53,

explaining the G1/S transition defect. As a result of

Cdh1 degradation, SOCS1-expressing cells accumulated

cyclin B1 and securin, as well as apparently inactive

Cdc20, in mitosis. Levels of the late mitotic Cdh1 sub-

strate Aurora A did not change. These observations

comprise a hitherto unreported mechanism of SOCS1

tumor suppression, suggesting this molecule as a candi-

date for the design of new therapeutic strategies for

human melanoma.
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Abbreviations

APC/C Anaphase-promoting complex/cyclosome

BrdU 5-bromo-20-deoxyuridine

CDK Cyclin-dependent kinase

CFP Cyan fluorescent protein

FRET Fluorescence resonance energy transfer

IRS Insulin receptor substrate 1

JAK2 Janus kinase 2

MAD2 Mitotic arrest deficient 2

Mdm2 Murine double minute 2

SH2 Src homology 2

SOCS Suppressor of cytokine signaling

STAT Signal transducer and activator of transcription

YFP Yellow fluorescent protein
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Introduction

The frequent reduction of SOCS gene expression in

human cancers indicates that SOCS proteins have a role

as tumor suppressors. Decreased SOCS gene expression

due to promoter methylation has been observed in

advanced human cancers including melanoma [1–7]. In

agreement with a proposed role in tumor suppression,

SOCS1-deficient mice show myeloproliferative disorders

and lymphomas [8–10]. In addition, SOCS1-deficient

fibroblasts are susceptible to transformation by CBL and

TEL-JAK2 oncogenes [11], whereas SOCS1 overex-

pression in tumor cells blocks proliferation [6, 11].

SOCS deficiency correlates with enhanced invasion and

angiogenesis of melanoma cells [12]. Treatment with an

analog of the SOCS1 protein SH2 domain has antipro-

liferative effects on prostate tumor cells; although the

mechanism is still unclear, it appears to involve reduced

cyclin levels and interference with cell cycle progression

[13].

SOCS proteins direct the turnover of cellular targets

through the formation of a complex with the Elongin-

Cullin E3 ligase complex [14, 15]. In this way, SOCS

modulates the ubiquitination of a variety of proteins, which

are subsequently recognized by the proteasome and

degraded. Proteins whose ubiquitination is modulated by

SOCS include JAK2 [16], the insulin signaling intermedi-

ates IRS1 and IRS2 [17], the NF-kappaB subunit RelA

[18], and focal adhesion kinase [19], among others.

Although some studies describe that some SOCS targets,

including JAK/STAT, are involved in signaling events that

promote proliferation (for example, the activation of cyclin

D promoters [20, 21]), others report suppression of pro-

liferation by the same pathways [22, 23]. Through a

mechanism involving the SH2 domain and C terminal

SOCS box region, SOCS1 can induce p53-dependent

senescence in fibroblasts. In addition, SOCS1 is required

for the p53-dependent response to constitutively active

STAT5A [24].

The wide variety of tumors that show SOCS gene pro-

moter methylation suggests that, in addition to its effect on

upstream signaling pathways, SOCS modulates the cell

cycle at its core. Given the importance of ubiquitination in

the cell cycle and the potential role of SOCS as an adaptor

for ubiquitin ligases, SOCS proteins might target one or

more key regulators of cell cycle progression. The mam-

malian cell cycle is regulated by a group of protein

complexes, each composed of a catalytic subunit termed

cyclin-dependent kinase (CDK) and a regulatory subunit,

cyclin. The CDK phosphorylates key regulators of cell

cycle progression only when associated with a cyclin,

which are cell cycle phase-specific [25, 26].

Phosphorylation of substrates by CDK is regulated through

its association with one cyclin molecule per kinase subunit

[27]; CDK complexes are inactivated through the ubiqui-

tination and proteolytic degradation of the cyclin subunit

[28, 29]. Ubiquitination of cyclins and other relevant cell

cycle proteins, and thereby the coordination of cell cycle

progression, depends on the anaphase-promoting complex/

cyclosome (APC/C). The APC/C is a large ubiquitin E3

ligase complex coordinated by two homologous mitotic

coactivators, Cdc20 and Cdh1 [30]. Substrate selection by

Cdc20 and Cdh1 results in the sequential degradation of

individual target proteins in each step of mitosis; whereas

APC/C-Cdc20 targets the anaphase inhibitor securin and

initiates chromosome separation, APC/C-Cdh1 promotes

degradation of spindle proteins such as Aurora kinases and

Cdc20 itself [31]. Because of its role in the metaphase-

anaphase transition, APC/C-Cdc20 activity is controlled

through the spindle assembly checkpoint [32]. Direct

interaction of the mitotic checkpoint complex and the

activity of CDK1 inhibit APC/C-Cdc20 as long as the

spindle checkpoint is engaged [33–35]. Only a few early

APC/C substrates, for example NEK2, are degraded before

spindle checkpoint inactivation. These substrates seem to

be ubiquitinated through direct interaction with the APC/C

core complex [36]. Loss of Cdh1 activity has been reported

in many cancers, either directly through downregulation

[37], or indirectly through loss of the Cdh1 activator PTEN

[38]. The accumulation of various APC/C-Cdh1 substrates

is also associated with tumor progression and poor prog-

nosis [39].

Here we show that SOCS1 overexpression inhibits in

vitro growth of the human melanoma cell lines BLM,

MeWo, HT-1080 and UACC-257. In addition, we found

that SOCS1 expression inhibits in vivo growth of meta-

static BLM melanoma cells. The mechanism of growth

suppression involves a block in G1/S and M phases, and

SOCS1 association to Cdh1. SOCS1 expression leads to

Cdh1 ubiquitination, a marked reduction in Cdh1 levels

and concomitant accumulation of the alternative Cdc20.

We did not find a significant association between SOCS1

and the latter APC/C adaptor. In accordance with the

Cdh1/Cdc20 imbalance, SOCS1-BLM arrest concurs with

cyclin B1 and securin accumulation and NEK2 degrada-

tion. Levels of Aurora A, a well-characterized anaphase

substrate of Cdh1 [40], were not altered in BLM-SOCS1

cells.

Taken together, these results implicate SOCS1 in cell

cycle progression, and suggest that the SOCS1-dependent

balance between Cdh1 and Cdc20 controls proliferation of

human melanoma. Strategies mimicking SOCS1 effects

might therefore be of interest in defining new therapeutic

strategies for melanoma treatment.
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Materials and methods

Mice and cells

Nude mice on the BALB/c background were obtained from

Harlan (Barcelona, Spain). Procedures were approved by

the CNB Animal Use Ethics Committee in compliance

with national and European legislation. Human MeWo,

HT-1080 and UACC-257 melanoma cells were obtained

from the American Tissue Type Collection (Manassas,

VA), and human BLM melanoma cells were kindly dona-

ted by Dr. J. Teixidó (CIB/CSIC, Madrid, Spain).

Constructs

The Flag-SOCS1 sequence was recovered by polymerase

chain reaction (PCR) from the pEF-FLAG-I/mSOCS1

construct (from Dr T. Willson, Walter and Eliza Hall Inst.,

Victoria, Australia) using oligonucleotides 50NheI-SOCS1

(5-ATGCTAGCATGGCGCGCCAGGACT ACAAG-3)

and 30Sac1-SOCS1 (5-GAGCTCTCAGATCTGGAAgGG

GAAGG-3) and cloned into pIRES2Ac-GFPNuc (BD

Clontech, Palo Alto, CA) to obtain pIRES2-AcGFP1Nuc-

flagSOCS1.

Human Cdh1, Cdc20 and SOCS1 were amplified by PCR

using the oligonucleotides listed below and cloned into

pECFP-N1/pEYFP-N1 (Cdc20) and into pECFP-C1/pEY-

FP-C1 (Cdh1 and SOCS1) (Clontech): Cdc20: 50EcoRI

(50AAGAATTCATGGCACAGTTCGCGTT CGAG30) and

30AgeI (50ACCGGTTTACAGCGGATGCCTTGGTGGAT

G30). Cdh1: 50EcoRI (50ATGAATTCAATGGACCAGGAC

TATGAGCGG30) and 30XmaI (50CCCGGG TTACCGGAT

CCTGGTGAAGAG30). SOCS1: 50EcoRI (50ATGAATTCA

ATGGCGCGCC AGGACTACAAG30) and 30XmaI (50CCC

GGGTCAGATCTGGAAGGGGAAGG30).

Cell culture and transfection

Cells were cultured in Dulbecco’s modified Eagle’s med-

ium (DMEM) with 10 % fetal calf serum (FCS; both from

Invitrogen, Carlsbad, CA). Cells expressing SOCS1 protein

were generated after transient transfection (5 9 106 cells),

using JetPei reagent (Polyplus, Illkirch, France), with

15 lg of pIRES2-AcGFP1Nuc-flagSOCS1 (BLM-SOCS1)

or empty pIRES2-AcGFP1Nuc (control), followed by

selection in G418 (100 lg/ml; Invitrogen) for in vitro

analysis of tumor cell growth. To test the SOCS1-mediated

effect on Cdh1 levels, BLM cells (3 9 105 cells) were

transiently transfected with different amounts (1–5 lg) of

pIRES2-AcGFP1Nuc-flagSOCS1 or empty pIRES2-Ac-

GFP1Nuc. To determine Cdh1 ubiquitination, BLM cells

were transfected with 4.5 lg Cdh1-GFP and 4 lg

pcDNA3.1-HA-ubiquitin [41] or with 1.5 lg of pIRES2-

AcGFP1Nuc-flagSOCS1, alone or with 4.5 lg Cdh1-GFP

and 4 lg pcDNA3.1-HA-ubiquitin.

Tumor cell growth analysis in vitro and in vivo

SOCS1-transfected or control cells were cultured (105

cells/plate) in DMEM with 10 % FCS. Cultured cells were

harvested daily by trypsinization, and viability assessed by

Trypan blue exclusion staining. BALB/c nu/nu mice

received intradermal (i.d.) injections in the right flank with

BLM-SOCS1 (48 h post-transfection; BLM-SOCS1) or

control cells (106 cells in 50 ll PBS). Tumor growth was

measured every 3–4 days using a Vernier precision caliper.

Cell synchronization and drug treatment

Cell synchronization

We used the double-thymidine release method to syn-

chronize BLM cells in early S phase. BLM-SOCS1 or

control cells were incubated with 2 mM thymidine (Sigma-

Aldrich, St. Louis, MO; 0.4 9 106 cells, 16 h, 37 �C)

washed three times with PBS and released into fresh

DMEM (8 h, 37 �C). After an additional thymidine treat-

ment (16 h, 37 �C), cells were released from early S phase

and harvested by trypsinization at 0, 3, 5, 7, and 9 h. To

measure cell cycle progression, ethanol-fixed samples

(15 min, 4 �C) were stained with 5 lg/ml propidium iodide

(PI; Molecular Probes, Carlsbad, CA) containing 100

lg/ml RNase A (Sigma-Aldrich; 1 h, 37 �C) and DNA

content analyzed by flow cytometry. To synchronize cells

in early M, BLM–SOCS1 and control cells were treated

with 100 ng/ml nocodazole (Sigma-Aldrich; 0.4 9 106

cells, 16 h, 37 �C), then washed twice with PBS and

resuspended in nocodazole-free medium. Cells were har-

vested by trypsinization at 0, 3, 5, 7, and 9 h, and DNA

content analyzed by flow cytometry after PI staining.

BrdU pulse-chase experiments

BLM-SOCS1 or control cells were incubated in complete

medium with 10 mM BrdU (Sigma-Aldrich; 0.4 9 106

cells, 30 min, 37 �C) then washed three times with PBS

before adding BrdU-free medium. Cells were harvested by

trypsinization at 0, 3, 5, 7, and 9 h, fixed with ice-cold

ethanol (30 min, 4 �C), incubated in 2 M HCl [30 min,

room temperature (RT)], and neutralized with 0.1 M

sodium tetraborate, pH 8.5. Cells (106/ml) were resus-

pended in PBS-BT (PBS, 1 % bovine serum albumin

[BSA], 0.5 % Tween 20) and incubated with 20 ll anti-

BrdU-FITC antibody (Becton–Dickinson, San Jose, CA;

45 min, RT). After washing with PBS-BT, cells were resus-

pended in PBS-BT containing 5 lg/ml PI and 100 lg/ml
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RNAse A (1 h, 37 �C). Finally, the percentage of BrdU-

containing cells and DNA content were analyzed by flow

cytometry.

Proteasome inactivation

BLM-SOCS1 or control cells were incubated in complete

medium with 10 lM MG132 (Sigma Aldrich, 4 h, 37 �C)

prior to lysis and evaluation by Western blot.

Western blot and antibodies

BLM-SOCS1 and control cells (2 9 107cells) were lysed,

and the lysates were electrophoresed and analyzed in

Western blot, as described [42]. Anti-SOCS1 (ab9870),

-NEK2 (ab55550) and -securin (DCS 280) antibodies were

purchased from Abcam (Cambridge, UK), anti-Cdc20

(H-1759), -p53 (FL-393), -ERK1 (C-16) and -ERK2 (C-14)

were from Santa Cruz Biotechnology (Santa Cruz, CA),

anti-cyclin D3, -cyclin E, -CDK1-4 and –p19ARF were

from BD Transduction Labs (Cell cycle sampler kit I; San

Diego, CA), anti-Cdh1 (DH01) was from Thermo Scien-

tific (Fremont, CA), anti-phospho-p53 (16G8) from Cell

Signaling (Danvers, MA), anti-cyclin B1 (GNS-1) and

-Aurora A from BD Pharmingen (San Diego, CA) and

horseradish peroxidase-conjugated secondary antibodies

from Dako (Glostrup, Denmark).

To determine Cdh1 ubiquitination, BLM cells transfec-

ted with SOCS1 or cotransfected with SOCS1/Cdh1/HA-

ubiquitin or with Cdh1/HA-ubiquitin. Cells were lysed

using a detergent buffer (20 mM triethanolamine pH 8.0,

300 mM NaCl, 2 mM EDTA, 20 % glycerol, 1 % digito-

nin with 10 lM sodium orthovanadate, 10 lg/ml leupeptin,

and 10 lg/ml aprotinin) 24 h after transfection, immuno-

precipitated using anti-Cdh1 or -HA mAb (HA.11;

Covance, Princeton, NJ) and analyzed by Western blot

with anti-Cdh1 mAb. In the case of anti-Cdh1 immuno-

precipitates, the blot was developed using ExactaCruz E

reagent (Santa Cruz Biotechnology) following the manu-

facturer’s protocol.

Immunochemistry

BLM-SOCS1, BLM-Cdh1, BLM-SOCS1/Cdh1 or control

cells (3 9 104 cells/well) were plated on collagen-coated

coverslips (20 lg/ml, 1 h, 37 �C, Sigma-Aldrich) and

cultured (48 h, 37 �C). Cells were washed in cold PBS,

fixed with 4 % paraformaldehyde (10 min, RT) and per-

meabilized with 0.2 % Triton X-100 in PBS (10 min, RT).

To avoid non-specific binding, cells were treated (1 h, RT)

with PBS containing 1 % BSA, 0.1 % goat serum, and

150 mM NaCl. Cells were stained with anti-tubulin

(30 min, RT, Sigma-Aldrich), -cyclin B1 (30 min, RT) or

-p-histone H3 (Ser 28) antibodies (1 h, RT; Millipore,

Bedford, MA), followed by Cy5-goat anti-mouse or -rabbit

IgG (30 min, RT; Abcam, Cambridge, UK). After washing,

cells were mounted with Vectashield medium containing

DAPI (Vector Laboratories Inc., Burlingame, CA). Fluo-

rescence was evaluated on an Olympus IX81 laser-

scanning confocal microscope.

Measurement of CDK1 activity

BLM-SOCS1 and control cells (2 9 107) were lysed, and

lysates were centrifuged and processed as described [43].

Briefly, we incubated 900 lg protein with 3 ll anti-cyclin

B1 mAb (3 h, 4 �C), followed by protein A. For the kinase

reaction, immunoprecipitated protein was added to 5 lg

GST-H1 or cdc25 in kinase buffer. Phosphorylated GST-H1

or cdc25 were detected by SDS-PAGE and autoradiography.

FRET analysis

FRET was measured by photobleaching as described [44],

using BLM cells transiently cotransfected with 0.5 lg

SOCS1-CFP and 0.5 lg Cdh1-YFP, with 0.5 lg SOCS1-

CFP and 0.5 lg Cdc20-YFP or with 0.5 lg Cdc20-CFP

and 0.5 lg Cdh1-YFP constructs to assure a 1:1 YFP:CFP

ratio. Cells (5 9 104 cells/well) were cultured in coverslip

chambers (Nunc) precoated with collagen VI (20 lg/ml,

60 min, 37 �C), and 48 h after cDNA transfection, imaged

on an Olympus IX81 microscope with a PLAPON 60X03

objective (aperture 1:40) and FV10-ASW 1.6 software.

FRET efficiency was calculated from three independent

experiments using at least 50 images from each.

Statistical analysis

Statistical analyses were performed using Student’s two-

tailed t test. For FRET analysis, statistics were obtained

using Graph Prism 5.0 software (GraphPad). We used non-

parametric t test to compare two subject groups and two-

tailed Mann–Whitney U test for correlation analysis. Data

are given as mean ± SEM (***p \ 0.001).

Results

SOCS1 protein expression by human melanoma cells

inhibits their in vitro and in vivo growth

We transfected SOCS1 into four human melanoma cell

lines that did not express endogenous SOCS1 (BLM,

MeWo, HT-1080, UACC-257), and compared their in vitro

growth with mock-transfected cells. SOCS1 was cloned

into a pIRES2-AcGFP1-Nuc vector to identify cells
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expressing the protein through concomitant nuclear GFP

expression. All cells were cultured in complete DMEM,

supplemented with G418 in the case of SOCS1 transfected

cells, for 7 days and the growth rate was evaluated. Results

indicate that SOCS1 expression completely abrogated cell

growth (Fig. 1a). Of the lines tested, BLM cells showed

complete absence of endogenous SOCS1 in combination

with robust SOCS1 expression at 48 h post-transfection

(Fig. 1b). Transiently transfected BLM cells were therefore

selected for further experiments.

We tested the effect of SOCS1 expression on in vivo

melanoma cell growth. BLM cells expressing SOCS1

(BLM-SOCS1) or mock-transfected (control) were injected

i.d. into nude mice, and tumor growth was analyzed over a

25-day period. SOCS1 expression also inhibited in vivo

BLM cell growth (Fig. 1c). Whereas 50 % of BLM-

SOCS1 cell recipients did not generate a solid tumor, the

remaining 50 % showed a smaller tumor area than controls

(at 25 days, mean ± SD = 31.5 ± 2.8 mm2 vs. 65.1 ±

4.1 mm2, respectively; Online Fig. 1). The data indicate

that SOCS1 expression blocks both in vitro and in vivo

expansion of melanoma cells.

SOCS1 expression disrupts human melanoma cell cycle

transitions at G1/S and G2/M

Since SOCS1 expression blocked proliferation, we assayed

the effect of SOCS1 on cell cycle progression. Cell cycle

status of BLM-SOCS1 and control cells was evaluated by

flow cytometry using PI staining (Fig. 2a, b). We observed

a slight but consistent increase in the percentage of BLM-

SOCS1 cells in G1 phase compared to controls

(60 % ± 1.2 vs. 50 % ± 1.3, respectively), a small

decrease in S phase (17 % ± 1.1 vs. 21 % ± 1.3), and a

slight reduction in G2/M cell percentage (21 % ± 1.1 vs.

26 % ± 1.2). In addition, we measured DNA synthesis by

flow cytometry analysis of BrdU (5-bromo-20deoxyuridine)

incorporation. Whereas 39 % ± 4.2 of control cells
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incorporated BrdU, only 19 % ± 2.8 of BLM–SOCS1

cells incorporated BrdU after 30 min. (Fig. 2c, d). These

data support previous evidence of a role for SOCS1 in

altering G1/S phase progression in tumor cells [13].

Although most BLM-SOCS1 cells accumulated in G1, a

small proportion incorporated BrdU, indicating that they

progressed through the cell cycle (Fig. 2c). To allow for

accumulation in early S phase, we synchronized BLM-

SOCS1 and control cells by double thymidine block.

Immediately after this blockade, most control cells accu-

mulated in S phase (57 % ± 3.1 for controls vs.

26 % ± 0.14 for BLM-SOCS1), whereas a large propor-

tion of BLM-SOCS1 cells were in G1 (49 % ± 4.1 for

BLM-SOCS1 vs. 22 % ± 0.39 for controls) (Fig. 3a,

Online Fig. 2). In addition, while control cells resumed a

normal cell cycle after release from the thymidine block,

the BLM-SOCS1 showed progression through S but sub-

sequent accumulation in G2/M (Fig. 3a, Online Fig. 2). By

9 h post-release, approximately half of the control cells had

passed through mitosis and were again found in G1/S; the

BLM-SOCS1 cells did not progress to G1/S, but remained

arrested in mitosis (Online Fig. 2). These results suggest

that SOCS1 expression in melanoma cells not only caused

a G1/S progression defect, but also altered G2/M phase

transition.

To analyze G2/M in detail, we synchronized cells in

early M phase using the microtubule polymerization

inhibitor nocodazole. In agreement with a slow G1/S

transition, nocodazole treatment was less effective for the

accumulation of BLM-SOCS1 cells in mitosis when com-

pared to mock transfected controls (37 % ± 3.6 for BLM-

SOCS1 vs. 80 % ± 10.0 for controls at time 0 h; Fig. 3b,

Online Fig. 3). Nonetheless, part of BLM-SOCS1 cells

accumulated in mitosis. In contrast to arrested control cells,

which resumed mitosis and passed to G1/S after noco-

dazole release, cell cycle distribution of arrested BLM-

SOCS1 cells did not change significantly after nocodazole

release (Fig. 3b, Online Fig. 3), again indicating a G2/M

arrest of BLM-SOCS1 cells.

To exclude interference from the G1/S transition, we

analyzed the population of cells that were actively pro-

gressing through S phase. Briefly, BLM-SOCS1 or control

cells were incubated in medium with 10 mM BrdU for

30 min, and subsequently chased in BrdU-free medium for

the indicated time. In agreement with a defect in S phase

entry, BLM-SOCS1 cells were labeled less efficiently with

BrdU (Online Fig. 4). A comparison of BrdU-positive cells

however showed an increased accumulation of BLM-

SOCS1 cells in G2/M after a 9 h chase period (55 % ± 3.7

vs. 26 % ± 4.7 for controls) (Fig. 3c), confirming the

additional defect in G2/M. These data confirm that SOCS1

expression inhibits G1/S and, as a secondary barrier, blocks

the G2/M transition in human melanoma cells.

SOCS1 expression in human melanoma cells alters

protein levels of G1 phase regulators

To determine the molecular basis of the SOCS1-induced

G1/S transition blockade, we analyzed BLM-SOCS1 and

control cells by Western blot using mAb specific for sev-

eral key G1 regulators, including cyclin D, cyclin E,

CDK2, CDK4, p19ARF and p53. BLM-SOCS1 cells
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cells were cultured in complete

medium with 10 mM BrdU,

harvested, fixed, stained with

anti-BrdU-FITC mAb and

analyzed by flow cytometry.

A representative experiment is

shown (n = 4). d Mean

percentage ± SD of BrdU-

positive cells from experiments

in c
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showed a notable decrease in cyclin D and cyclin E levels,

and an increase in CDK4 and CDK2 compared to controls

(Fig. 4a). SOCS1 expression also led to upregulation of the

Mdm2 inhibitor p19ARF and consequently the Mdm2 target

p53 [45]; as previously described [24], we detected an

increase in both total and phosphorylated (active) p53

(Fig. 4a).

G1/S arrest similar to that observed here was reported in

hepatocellular carcinoma cells treated with a JAK inhibi-

tor, and was associated with reduced STAT3 activation

[46]. In other studies, however, STAT3 activation is

associated with cell cycle arrest [22]. Since SOCS proteins

are involved in the regulation of the JAK/STAT pathway

[47], we used Western blot to evaluate the effect of SOCS1

on JAK/STAT activation in BLM cells. As indicated for

several tumor cell types [48], BLM cells showed consti-

tutively active JAK2/STAT3. SOCS1 expression triggered

a marked reduction in p-JAK2 and p-STAT3 (Fig. 4b).

Total JAK2 and STAT3 protein levels were nonetheless

similar in BLM-SOCS1 and control cells. Our results show

that SOCS1 expression in melanoma cells alters cyclin D

and cyclin E levels and increases p19ARF and p53
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transitions. a The G1/S phase

transition in BLM-SOCS1 and

control cells was analyzed by

double-thymidine

synchronization, PI staining,

and flow cytometry. A

representative experiment is

shown (n = 3). b The G2/M
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nocodazole synchronization and

evaluated as in a. A

representative experiment is

shown (n = 3). c The S phase
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cytometry evaluation. Mean
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expression, thus inhibiting G1/S transition. In accordance

with previous reports, these results show that SOCS1 can

regulate an excessive cytokine response, not only by

blocking the JAK/STAT pathway directly but also by

inducing p53-dependent cell cycle arrest [24].

SOCS1 expression by human melanoma alters protein

levels of M phase regulators

To characterize the SOCS1-induced defects in the G2/M

transition, we first evaluated the distribution of the mitotic

phases in BLM-SOCS1 and control cells. Cells were

stained with DAPI and phosphorylated histone H3 (pH3)-

specific antibodies, followed by fluorescence microscopy.

In agreement with a G1/S defect, visual inspection showed

a marked reduction in the number of pH3-positive BLM-

SOCS1 cells compared to controls (1.4 % ± 2.0 vs.

7.1 % ± 1.7, respectively; Fig. 5a). Mitosis was rescued

when BLM cells were cotransfected with SOCS1 and Cdh1

(3.42 % ± 0.5). BLM-Cdh1 controls showed 4.8 % ± 1.0

mitotic cells (Fig. 5a). We thus performed a detailed

analysis of pH3-positive mitotic cells (Fig. 5b), which

showed a reduction of BLM-SOCS1 cells in prophase

relative to controls (44.8 ± 2.6 vs. 72.8 % ± 1.8, respec-

tively) and a marked increase in metaphase cells

(43.8 % ± 0.4 vs. 14.9 % ± 1.5), suggestive of an addi-

tional defect in mitotic progression.

M phase depends on the activation of individual pro-

teins, which are successively degraded as mitosis

progresses [49]. To further evaluate the SOCS1-induced

blockade of M phase, we used Western blot to analyze

BLM-SOCS1 and control cell lysates with mAb specific for

mitotic markers. Compared to controls, BLM-SOCS1 cells

showed nearly complete absence of NEK2 (Fig. 5c), which

is degraded early in mitosis [36]. In contrast, we observed

accumulation of proteins that are normally degraded in the

metaphase-to-anaphase transition [49], such as securin and

cyclin B1 (Fig. 5c). Proteins levels of Aurora A, a protein

kinase degraded late in mitosis [50], showed no alterations

(Fig. 5c). To test whether cyclin B1 accumulation altered

the activity of its associated kinase CDK1, BLM-SOCS1

and control cell extracts were immunoprecipitated with

anti-cyclin B1 mAb, and the activity of associated CDK1

was determined in an in vitro kinase assay using cdc25 and

histone 1 (H1) as substrates. The results showed that CDK1

immunoprecipitated from BLM-SOCS1 was more active

than that from controls (Fig. 5d). Taken together, these

data show that SOCS1 expression in BLM cells results in

metaphase arrest.

SOCS1 expression alters M phase protein levels

through Cdh1 degradation

Mitotic progression is governed by a large ubiquitin ligase

termed APC/C (anaphase-promoting complex) [51].

Ubiquitination by the APC/C labels individual proteins for

destruction by the proteasome. To regulate the destruction

of individual targets at the appropriate time, Cdh1 and

Cdc20 act as adaptor molecules for the APC/C [52]. To test

whether SOCS1 expression alters APC/C adaptors, we

assayed Cdh1 and Cdc20 levels in BLM-SOCS1 and con-

trol cells, whose lysates were tested in Western blot using

anti-Cdc20 and -Cdh1 mAb. SOCS1 expression resulted in

increased Cdc20 levels, whereas Cdh1 levels decreased

compared to controls (Fig. 6a). Since SOCS itself is an

adaptor for ubiquitin ligases [53], the reduction in Cdh1

levels might be a result of proteasomal degradation. To

determine if SOCS-dependent Cdh1 reduction requires the

proteasome, BLM cells were transiently transfected with

SOCS1; after 48 h, cells were left untreated or were treated

with the proteasome inhibitor MG132 for 4 h, lysed, and

analyzed by Western blot with anti-Cdh1 and -SOCS1

antibodies (Fig. 6b). SOCS1 expression resulted in

diminished amounts of Cdh1, confirming the direct corre-

lation between SOCS1 expression and Cdh1 degradation.

The loss of Cdh1 protein was prevented by MG132 treat-

ment, indicating that SOCS-dependent ubiquitination

targets Cdh1 for destruction by the proteasome.

To test whether SOCS1 can target Cdh1 for degradation,

we evaluated association between SOCS1 and Cdh1 using

fluorescence resonance energy transfer (FRET) photoble-

aching. BLM cells were transiently transfected with Cdh1-

YFP and SOCS1-CFP, with Cdc20-YFP and SOCS1-CFP
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Fig. 4 BLM-SOCS1 cells show defects in key G1 phase regulators.

a BLM-SOCS1 and control cells were lysed and analyzed in Western

blot with anti-cyclin D3, -CDK4, -cyclin E, -CDK2, -p19ARF, -p53,

and -p-p53 mAb. To control protein loading, the membrane was

developed with anti-ERK1/2 antibodies. b Cells as in a were analyzed

in Western blot with anti-p-JAK2 mAb (upper) and -pTyr-STAT3

(Tyr 705) or -pSer-STAT3 (Ser 727) mAb (lower). As control, the

membrane was developed with anti-JAK2 or -STAT3 mAb
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or with Cdc20-CFP and Cdh1-YFP as control, and FRET

was determined by confocal microscope. We confirmed

that the transfection ratio corresponded to equivalent (1:1)

protein expression levels using specific mAb in Western

blot as well as individual measurement of YFP and CFP

fluorescence. Heterodimeric complexes between Cdh1 and

SOCS1 were detected specifically at the nucleus (FRET

efficiency: 11.62 ± 0.94), while no significant interaction

was detected between Cdc20 and SOCS1 (FRET effi-

ciency: 2.70 ± 0.57) or between Cdc20 and Cdh1 (FRET

efficiency: 1.44 ± 0.51) (Fig. 6c, d). Our data show direct

and specific association between SOCS1 and Cdh1 in the

nucleus, consistent with a role for SOCS1 in the degrada-

tion of this APC/C cofactor.

Finally, untreated or MG132-treated BLM-SOCS1 cells

were lysed and cell extracts immunoprecipitated using anti-

Cdh1 mAb. Western-blot analysis with the same mAb

revealed a laddered pattern typical for protein ubiquitina-

tion in cells treated with the proteasome inhibitor (Fig. 6e).

We lysed MG132-treated BLM-Cdh1/HA-ubiquitin or

BLM-SOCS1/Cdh1/HA-ubiquitin cells and immunopre-

cipitated the extracts with anti-HA mAb. Western-blot

analysis of these immunoprecipitates with anti-Cdh1 mAb

verified the presence of ubiquitinated Cdh1 in MG132-

treated cells, which increased when SOCS1 was coex-

pressed (Fig. 6f). These results confirmed that, through

interaction with SOCS1, Cdh1 is ubiquitinated and degra-

ded by the proteasome.

Discussion

Several lines of evidence point to a role for SOCS1 as a

tumor suppressor. SOCS1/IFNc–deficient mice are more
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Fig. 5 BLM-SOCS1 cells show defects in key regulators of M phase.

a BLM-SOCS1, -Cdh1, -SOCS1/Cdh-1 and control cells were labeled

with anti-p-H3 antibodies and counterstained with DAPI; the

proportion of mitotic cells was then determined by fluorescence

microscopy. Mean percentage ± SD of p-H3? cells. (***p \ 0.001;

**p \ 0.01) b Mean percentage ± SD is shown for BLM-SOCS1 and

control cells in each mitotic phase from experiments in a. c BLM-

SOCS1 and control cells were lysed and analyzed in Western blot

with anti-cyclin B1, -CDK1, -securin, -NEK2 and -Aurora A

antibodies. As protein loading control, the membrane was developed

with anti-ERK1/2 antibodies. d BLM-SOCS1 and control cells were

lysed and immunoprecipitated using anti-CycB1 mAb and the activity

of the associated CDK1 evaluated in an in vitro kinase assay using

cdc25 or histone H1 as substrate. As protein loading control,

immunoprecipitates were evaluated in Western blot using anti-CycB1

mAb. As specificity controls, cell lysates were incubated with anti-

CycB1 mAb (C1) or with Protein G alone (C2)
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Fig. 6 BLM-SOCS1 cells show degraded Cdh1. a BLM-SOCS1 and

control cells were lysed and analyzed in Western blot with anti-Cdc20

and -Cdh1 mAb. The membrane was developed with anti-ERK1/2

antibodies as protein loading control. b Untreated or MG132-treated

BLM cells transfected with pIRES2-AcGFP1Nuc-flagSOCS1 (?; 3 g) or

control (-) were lysed and analyzed in Western blot with anti-Cdh1 and -

SOCS1 mAb. As protein loading control, the membrane was developed

with anti-ERK1/2 antibodies. c FRET analysis by acceptor photoble-

aching of SOCS1-CFP/Cdh1-YFP and SOCS1-CFP/Cdc20-YFP.

Representative images are shown of CFP and YFP staining before

(CFP-pre, YFP-pre) and after photobleaching (CFP-post, YFP-post), as

well as a zoom image of FRET at the photobleached area using a false

color scale (inset). Areas showing a *1:1 YFP/CFP ratio were selected

for bleaching and analysis (white outline). Areas in which the YFP/CFP

ratio was greater or lower than* 1 were not included in the analysis. As a

negative control, FRET analysis is shown of Cdc20-CFP/Cdh1-YFP

complexes by acceptor photobleaching. d FRET efficiency is shown

(mean ± SEM; ***p \ 0.001). e Untreated or MG132-treated BLM-

SOCS1 cells were lysed, immunoprecipitated with anti-Cdh1 mAb and

analyzed by Western blot using the same mAb. As controls, BLM and

BLM-SOCS1 cell lysates were included. Arrows indicate probable Cdh1

mono- and di-ubiquitination; bracket, poly-ubiquitination. f Untreated

and MG132-treated BLM-SOCS1/Cdh1/HA-ubiquitin or BLM-Cdh1/

HA-ubiquitin cells were lysed, immunoprecipitated with anti-HA mAb

and analyzed by Western blot with anti-Cdh1 mAb. Arrows indicate

probable mono- and di-ubiquitination; bracket, poly-ubiquitination. As

control, whole cell lysate of BLM cells was analyzed by Western blot

with anti-Cdh1 mAb (left)
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susceptible than normal mice to T lymphoid leukemia,

probably due to the activated state of T lymphocytes in the

absence of SOCS1 [10]. Human tumor cells have devel-

oped mechanisms to prevent SOCS1 expression, which

endows them with a greater capacity for proliferation and

resistance to apoptosis [13]. Loss of SOCS1 results critical

for enhanced invasion and angiogenesis of melanoma cells

[12], and SOCS1 hypermethylation predicts progression of

malignant melanoma [7]. Here we used several SOCS1-

negative human melanoma cell lines (BLM, MeWo, HT-

1080 and UACC-257) to show that SOCS1 expression

regulates their proliferation both in vitro and in vivo.

Although tumor suppression by SOCS1 is well docu-

mented, the mechanisms by which SOCS1 prevents cell

proliferation remain largely unknown. SOCS1 was initially

identified as a negative regulator of cytokine signaling and

the JAK2/STAT3 pathway [54, 55]. SOCS1 is expressed as

a response to JAK2/STAT3 activation and participates in a

negative feedback loop, limiting membrane receptor

phosphorylation and JAK2 activity [54, 55]. Although

SOCS1 is thought to contribute to tumor suppression by

inhibiting a constitutively active JAK2/STAT3 pathway in

hepatocellular carcinoma and other carcinomas [6, 11, 13],

other studies associate activation of the JAK2/STAT3

pathway with cell cycle arrest [22, 23]. Thus, although the

JAK2/STAT3 pathway appears to have tumor-promoting

and -suppressing effects, SOCS1 expression is consistently

suppressed in a wide variety of tumors including melanoma

[12]; these findings suggest that SOCS1 has a JAK2/

STAT3 pathway-independent role in tumor suppression.

Using a combination of cell synchronization experi-

ments and SOCS1 expression, we show here that SOCS1

inhibits cell cycle progression at the G1/S transition and in

mitosis. We observed decreased expression of cyclins D

and E, both needed for activation of G1-associated CDK

(CDK4/6 and CDK2, respectively). In addition, we found

accumulation of p19ARF. SOCS1 target proteins JAK2 and

STAT3 can promote G1/S progression through expression

of cyclins D and E [56]; conversely, JAK2/STAT3 inhi-

bition in tumor cells is linked to G1/S blockade and

downregulation of cell cycle molecules such as cyclin D

[57, 58]. In BLM melanoma cells, SOCS1 overexpression

also suppressed JAK2/STAT3 activation and correlated

with decreased levels of cyclin D3 and E, suggesting that

G1/S blockade in our model follows the JAK2/STAT3

pathway. As shown in Cdh1-deficient cells [59], we not

only found reduced cyclin E levels reminiscent of a sup-

pressed JAK2/STAT3 pathway but also detected increased

levels of the Mdm2 inhibitor p19ARF and the Mdm2 target

p53 [45] in BLM-SOCS1 cells; a p53-dependent mecha-

nism has been implicated in cell senescence [24] indicating

that it might also participate in the G1/S blockade we

observed.

Our data show that SOCS1 expression also affected M

phase progression, and arrested cells in metaphase. No

JAK2/STAT3 pathway involvement has thus far been

reported in mitosis. Visual inspection of BLM-SOCS1 cells

indicated metaphase blockage, which was subsequently

confirmed by analysis of mitotic markers. The main protein

complex involved in mitotic progression is the APC/C,

which targets substrate proteins for ubiquitination and

subsequent destruction by the proteasome [49]. The APC/C

undergoes complex regulation through its association with

Cdc20 or Cdh1, and through checkpoint-dependent phos-

phorylation [60]. SOCS1 targets Cdh1 in BLM cells; our

FRET analysis showed that SOCS1 specifically associated

with Cdh1 but not Cdc20. As a result of this association

with SOCS1, Cdh1 was ubiquitinated and degraded by the

proteasome. Hence, SOCS1 expression lowers Cdh1 but

not Cdc20 levels in BLM cells. Since Cdc20 is a target for

the ubiquitin ligase activity of APC/C-Cdh1 complexes

[31], SOCS1-mediated Cdh1 degradation might account

for Cdc20 accumulation. In accordance with a role for

SOCS1 in Cdh1 degradation, cells from mice lacking Cdh1

show proliferative defects and mitotic block reminiscent of

BLM-SOCS1 cells, as well as increased Cdc20 levels [59].

Although Cdh1-deficient cells have been analyzed

before [59], the exact nature of the cell cycle blockade in

these cells is not completely understood. Mitosis is gov-

erned by an APC/C-driven feedback loop, in which

metaphase-to-anaphase transition is a crucial step [61].

Progression from metaphase to anaphase involves securin

degradation, which allows for separase activation, cohesin

ring degradation and finally, sister chromatid separation

[25]. Correct transition from metaphase to anaphase also

requires CDK1 inactivation through degradation of cyclin

B1 [26]. In SOCS1-expressing BLM cells, lack of Cdh1

prevents cyclin B1 degradation, resulting in the metaphase

arrest observed. This cell cycle transition is blocked fol-

lowing expression of constitutively active CDK1 [61],

which maintains inhibition of APC/C-Cdc20 without

Cdc20 degradation [35]. These data indicate that in BLM-

SOCS1 cells, the cyclin B1/CDK1 complex sustains

metaphase and prevents APC/C-Cdc20 activation. Simul-

taneously, the APC/C continues to degrade substrates that

do not depend on mitotic checkpoints, such as NEK2 [36,

62]. NEK2 degradation might also interfere with mitosis

progression in BLM-SOCS1 cells, since recent reports

suggest a role for NEK2 in abolishing MAD2-Cdc20

control of the metaphase checkpoint [63]. Finally,

destruction of targets late in mitosis, including Aurora A

and Cdc20 itself, again depends on Cdh1 [31, 40]; Cdh1

degradation and metaphase blockade nonetheless prevent

BLM-SOCS1 cells from reaching this stage. The combi-

nation of markers indicates that Cdh1 is the main SOCS1

target in mitosis and explains why SOCS1 overexpression
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causes accumulation of cells in metaphase. In accordance

with these results, we observed that simultaneous expres-

sion of Cdh1 overcame the effect of SOCS1 on BLM cells,

and mitosis was partially recovered.

Our results show direct interaction between SOCS1 and

Cdh1, SOCS1-mediated Cdh1 ubiquitination, and a rela-

tionship between SOCS1 expression and Cdh1

downregulation. These findings indicate a role for SOCS1

in Cdh1 degradation. Since SOCS1 expression is partially

regulated by JAK2/STAT, SOCS1 provides a link between

this pathway and cell cycle progression. Although most of

BLM-SOCS1 cells showed G1/S blockade, we detected

additional defects in M progression, suggesting that

SOCS1 expression establishes two barriers to cell trans-

formation. The methylation status of the SOCS1 gene

promoter might explain the divergent effects on cell pro-

liferation observed in different models of JAK2/STAT3

activation. Our data show that SOCS1 has an important

function in the control of human melanoma cell cycle

progression and indicate that it should be considered in the

design of strategies for human melanoma therapy.
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