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Abstract Anti-apoptotic Bcl-2-family members not only

neutralize pro-apoptotic proteins but also directly regulate

intracellular Ca2? signaling from the endoplasmic reticu-

lum (ER), critically controlling cellular health, survival,

and death initiation. Furthermore, distinct Bcl-2-family

members may selectively regulate inositol 1,4,5-trisphos-

phate receptor (IP3R): Bcl-2 likely acts as an endoge-

nous inhibitor of the IP3R, preventing pro-apoptotic

Ca2? transients, while Bcl-XL likely acts as an endogenous

IP3R-sensitizing protein promoting pro-survival Ca2?

oscillations. Furthermore, distinct functional domains in

Bcl-2 and Bcl-XL may underlie the divergence in IP3R

regulation. The Bcl-2 homology (BH) 4 domain, which

targets the central modulatory domain of the IP3R, is likely

to be Bcl-2’s determining factor. In contrast, the hydro-

phobic cleft targets the C-terminal Ca2?-channel tail and

might be more crucial for Bcl-XL’s function. Furthermore,

one amino acid critically different in the sequence of Bcl-

2’s and Bcl-XL’s BH4 domains underpins their selective

effect on Ca2? signaling and distinct biological properties of

Bcl-2 versus Bcl-XL. This difference is evolutionary con-

served across five classes of vertebrates and may represent a

fundamental divergence in their biological function. More-

over, these insights open novel avenues to selectively

suppress malignant Bcl-2 function in cancer cells by tar-

geting its BH4 domain, while maintaining essential Bcl-XL

functions in normal cells. Thus, IP3R-derived molecules that

mimic the BH4 domain’s binding site on the IP3R may

function synergistically with BH3-mimetic molecules

selectivity suppressing Bcl-2’s proto-oncogenic activity.

Finally, a more general role for the BH4 domain on IP3Rs,

rather than solely anti-apoptotic, may not be excluded as part

of a complex network of molecular interactions.
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Anti-apoptotic Bcl-2-family members counteract

pro-apoptotic Bcl-2-family members

Bcl-2-family members play a pivotal role in a cell’s deci-

sion to initiate apoptosis or to promote cell survival by

controlling mitochondrial outer membrane permeabiliza-

tion (MOMP) [1, 2]. Anti-apoptotic Bcl-2-family members

(Bcl-2, Bcl-XL, Mcl-1, Bcl-W and Bfl-1) have a well-

studied and characterized role in scaffolding the Bcl-2

homology (BH) 3 domain of pro-apoptotic Bcl-2-family

members, thereby neutralizing their pro-apoptotic activity

[3]. A network of interactions has been described in which

anti-apoptotic Bcl-2-family members can scaffold the

multi-domain pro-apoptotic proteins, Bax and Bak, the pro-

apoptotic Bax/Bak-activator BH3-only proteins, Bid and

Bim, or the sensitizer BH3-only proteins, Bad, Bik, Noxa,

Hrk, Bmf, and Puma [2, 3]. The latter do not directly

activate Bax/Bak, but target anti-apoptotic Bcl-2 proteins,

thereby alleviating their repressive function on Bax, Bak,

Bid, and Bim. Furthermore, these interactions seem to be

dynamic and may be important to prevent the mitochon-

drial accumulation of pro-apoptotic proteins, like Bax

[4, 5]. For instance, Bcl-XL binds Bax at the outer
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mitochondrial membrane, shuttling Bax back in the cyto-

sol, where the Bcl-XL/Bax complex disassembles resulting

in Bax accumulation in the cytosol. On the other hand, Bax

activation by BH3-only proteins, like Bim/truncated Bid

and Puma, causes a stepwise activation, involving its

accumulation at mitochondrial membranes and its oligo-

merization to a death pore [6, 7]. Besides Bax/Bak, the

mitochondrial permeability transition pore can mediate

MOMP and cell death in response to apoptotic stimuli that

elevate intracellular Ca2? and induce mitochondrial cal-

cium overload [8, 9]. The latter mechanism can be directly

targeted and sensitized by Bad in Ca2?-dependent apop-

tosis through dephosphorylation of Bad by PP2A [10].

As summarized by Letai and coworkers [11], it is clear

that while both activator-BH3-only proteins are targeted by

all anti-apoptotic Bcl-2-family members, the interaction

between anti-apoptotic proteins and the sensitizer BH3-only

proteins display a high degree of selectivity [12–16]. For

instance, while the BH3 domain of Bad mainly targets Bcl-2,

Bcl-XL, Bcl-W, but not Mcl-1, the BH3 domain of Noxa

mainly targets Mcl-1, but not Bcl-2, Bcl-XL, Bcl-W. The

selectivity of BH3-only proteins towards anti-apoptotic Bcl-

2-family members has been exploited to derive BH3-domain

peptides and to set up a ‘‘BH3 profile’’ of cancer cells,

identifying cancer cells as ‘‘primed for death’’ and helping to

elucidate to which Bcl-2-family members these cancer cells

are addicted [11, 12, 17]. This network also spurred the

development of a novel class of anti-cancer drugs, the BH3-

mimetic molecules, including the Bad BH3-mimetic ABT-

737 (or its orally available variant ABT-263) [18–20].

Bcl-2 family members control Ca21 signaling

The endoplasmic reticulum (ER) and mitochondria

are closely connected

The first reports of Bcl-2 affecting ER Ca2? arose in the

beginning of the 90s [21, 22]. Since then, it has become

increasingly clear that ER, the main intracellular Ca2? store,

is tightly controlled by Bcl-2-family members critically

regulating Ca2? fluxes from ER to mitochondria [23–27]. In

particular, the close connection of the mitochondria and the

ER, illustrates the critical role of ER Ca2? homeostasis and

ER Ca2? release via inositol 1,4,5-trisphosphate (IP3)

receptors (IP3Rs) during cell survival and cell death [28–31].

The latter channels are important components of the mito-

chondria-associated ER membranes (MAMs), which

establish physical links between mitochondria and ER

through interorganellar multi-protein complexes involving

IP3Rs, glucose regulated protein (GRP) 75, voltage-depen-

dent anion channels (VDACs), mitofusins, chaperones like

phosphofurin acidic cluster sorting protein 2, and peptidic

tethers [32, 33]. Recently, the ER-stress sensor PKR-like

ER-regulated kinase (PERK) has been identified as a novel

member of the MAMs [34]. As a consequence, both the

steady-state Ca2?-filling level of the ER [35] as well as the

IP3R activity [31] will affect the mitochondria. This is

underpinned by recent studies of Foskett’s [36] and the

Mikoshiba’s groups [37]. It was shown that constitutive

Ca2? transfer from the ER to the mitochondria through IP3Rs

is essential for mitochondrial bioenergetics and for the

production of ATP through oxidative phosphorylation.

Suppressing this basal Ca2? firing of IP3Rs causes the acti-

vation of AMP-activated kinase (AMPK) and subsequent

induction of macroautophagy, a pro-survival lysosomal

delivery pathway [36]. This concept is supported by previous

studies showing that inhibition of IP3R signaling triggered

autophagy [38, 39]. In this perspective, lowering the steady-

state [Ca2?]ER levels may reduce the amount of Ca2? that is

released by spontaneous IP3R activity and consequently

attenuate Ca2?-mediated cross-talk between ER and mito-

chondria. In addition, lowering the [Ca2?]ER causes the

intraluminal ER chaperone, GRP78/BiP, to dissociate from

IP3R1, leading to a decline in the amount of functional IP3R1

channels, further reducing IP3R1-mediated Ca2? mobilization

and inducing apoptotic cell death, as recently described [37].

Besides the spontaneous IP3R activity, agonist-triggered

IP3R-mediated Ca2? signals also affect cell survival and

cell death. While repetitive and small Ca2? oscillations

seem to enhance mitochondrial bioenergetics, thereby

promoting survival, large Ca2? transients will inevitably

lead to MOMP, thereby promoting cell death [23]. In the

latter paradigm, decreasing steady-state [Ca2?]ER will help

to avoid mitochondrial Ca2? overloading and will promote

survival, while increasing steady-state [Ca2?]ER will

enhance apoptosis. Beyond apoptosis, IP3R activity also

seems to be critical for proper autophagy induction during

starvation [40, 41] and thus probably for survival responses

during adverse conditions. Although the Ca2?-release

pathways of the ER have been well established, the mito-

chondrial Ca2?-uptake pathways remained elusive for a

long time. Now, recent work from the Rizzuto group found

that VDAC1, but not VDAC2 or VDAC3, is specifically

involved in transferring apoptotic Ca2? signals across the

outer membrane of the mitochondria [42]. This likely

underlies the selective presence of VDAC1 in the MAMs.

Furthermore, Ca2? transfer across the inner membrane of

the mitochondria is mediated by the recently identified

mitochondrial Ca2? uniporter (MCU) [43–45].

Proto-oncogenes and tumor suppressors regulate

intracellular Ca2? signals and -release channels

As illustrated above, it is now clear that cell survival and

cell death are tightly controlled by Ca2? signaling. Hence, it
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is not surprising that proto-oncogenes, like anti-apoptotic

Bcl-2-family members, protein kinase B (PKB)/Akt, Bax-

Inhibitor-1 (BI-1) and tumor suppressors like promyelocytic

leukemia (PML) and fragile histidine triad (FHIT) regu-

late ER Ca2?-release and mitochondrial Ca2?-uptake

mechanisms [46–49]. IP3Rs are phosphorylated by the pro-

survival kinase PKB/Akt, which is activated by phosphati-

dylinositol-3,4,5-trisphosphate (PIP3), thereby suppressing

IP3R-channel activity and promoting survival [50, 51]. This

is important, since phosphatase and tensin homolog

(PTEN), a negative regulator of PKB/Akt signaling through

dephosphorylation of PIP3 to phosphatidylinositol-4,5-bis-

phosphate, is one of the most frequent loss functions in

human cancers [52]. Another negative regulator of PKB/

Akt activity is the tumor suppressor PML, which recruits

protein phosphatase 2A to the IP3R-PKB/Akt-protein

complex in the MAMs and suppresses PKB/Akt activ-

ity [53–55]. At the mitochondrial level, FHIT seems to

target MCU-driven mitochondrial Ca2? uptake, thereby

enhancing the transfer of Ca2? into mitochondria during

physiological signaling [56]. In addition, anti-apoptotic

Bcl-2 proteins can regulate VDAC1-channel activity by

directly binding, among other domains, its N-terminal tail, a

region important for VDAC-1’s pro-apoptotic activity [57].

Importantly, some anti-apoptotic proteins do not target

ER Ca2?-release or -uptake mechanisms, but function

themselves as Ca2?-leak channels. For instance, ER-stress

suppressor BI-1 has been shown to display endogenous

Ca2?-leak activity as a Ca2?/H? antiporter or Ca2?-release

channel, thereby directly controlling the filling state of the

ER Ca2? stores [58–60]. In accordance with this, BI-1

overexpression has been proven to lower the Ca2?-filling

state of the ER, a mechanism previously shown to act

protective against apoptosis [35]. In this regard, we have

also recently identified a putative Ca2?-channel pore in the

C-terminal part of BI-1 [61]. In addition to this, BI-1

directly binds IP3Rs through their channel domains, thereby

sensitizing these intracellular Ca2?-release channels to IP3

[62]. This mechanism seems to underlie the autophagy-

promoting effect of BI-1, which required the presence of

functional IP3R channels [63].

Bcl-2-family members control Ca2? signaling

from the ER

Besides these mechanisms, the best-studied protein family,

regulating intracellular Ca2? is the anti- and pro-apoptotic

Bcl-2-family. Pinton et al. [64] elucidated a protective role

of Bcl-2 at the ER. They found that Bcl-2 overexpression at

the ER enhanced the ER Ca2?-leak rate and thus reduced

the level of steady-state [Ca2?]ER, thereby dampening

agonist-induced IP3R-mediated Ca2? signals originating

from the ER and thus reducing the transfer of Ca2? to the

mitochondria. This mechanism was underpinned by

Scorrano and coworkers [65] who used mouse embryonic

fibroblasts lacking Bax/Bak to increase the ratio of anti-

apoptotic over pro-apoptotic Bcl-2 family members. Bax/

Bak-deficient cells displayed decreased steady-state

[Ca2?]ER levels, which protected the cells against apoptotic

stimuli. The underlying mechanism involved the hyper-

sensitization of the IP3R1 towards basal IP3 through a

PKA-dependent phosphorylation of the IP3R, enhancing

the basal IP3R-mediated Ca2? leak from the ER [66]. In

contrast, Distelhorst and coworkers initially proposed

another mechanism for the protective role of Bcl-2 at the

ER, pointing out that Bcl-2 maintained ER Ca2? homeo-

stasis [67]. Successively, Bcl-2 was also reported to recruit

calcineurin/PP2B on IP3Rs [68, 69] or indirectly bind to the

IP3R and suppress IP3R activity through the phosphatase

PP1 [70]. More recent works elucidated direct binding

of anti-apoptotic Bcl-2-family members to IP3Rs, finely

regulating their Ca2?-flux properties and consequently cell

death outcomes [71–73]. Additionally, Bcl-2-family

members are able to indirectly regulate IP3R signaling by

controlling the expression levels of IP3Rs. For instance,

Bcl-XL overexpression has been shown to decrease the

level of IP3Rs in cells by a decreased binding of the tran-

scription factor nuclear factor of activated T cells (NFAT)

cytoplasmic 2 to the IP3R promoter [74]. Next, anti-

apoptotic Bcl-2 was proposed to up-regulate sarco/ER

Ca2?-ATPase (SERCA) levels, thereby supporting sus-

tained ER Ca2? filling [75, 76]. This may be due to the

direct molecular interactions found between some anti-

apoptotic Bcl-2 family members and SERCA [75–77].

However, other studies indicated that the targeting of

SERCA1, the skeletal muscle type isoform, by Bcl-2

seemed to destabilize and inactivate the SERCA protein by

exposing thiol groups [78], thereby lowering the content of

ER Ca2? stores. The mechanisms may involve the trans-

location of SERCA1 from sarcoplasmic reticulum (SR)

lipid-caveolae domains [79]. A recent paper from the same

group showed that Bcl-2 also destabilized SERCA2b, the

house-keeping isoform of the SERCA-protein family,

while heat-shock proteins, chaperones, and other stress-

regulated proteins attenuated the negative regulation of

SERCA2b by Bcl-2 [80]. These findings are underpinned

by recent observations in cystic fibrosis airway epithelium,

which displayed decreased SERCA levels, increased Bcl-2

levels and the presence of SERCA/Bcl-2-protein com-

plexes on ER membranes [81]. Finally, Bcl-2 was shown to

counteract both the pro-apoptotic and paraptotic effects of

p20, a cleaved form of Bap31, via regulation of ER Ca2?.

Paraptosis is a form of caspase-independent non-apoptotic

programmed cell death that is characterized by cytoplasmic

vacuolation initiated by mitochondrial and ER swelling

[82–84]. Bap31 is an ER-located protein that plays roles in
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protein trafficking [85] as well as ER-associated degrada-

tion [86]. In addition, Bap31 was shown to have anti-

apoptotic qualities [87]. When Bap31 is cleaved by caspase

8, the resultant ER-located protein, p20, is known to have

pro-apoptotic functions. This protein mobilizes ER Ca2?,

resulting in MOMP. Via the above-described mechanisms,

Bcl-2 is able to counteract these pro-apoptotic signals,

allowing cell survival [88]. In addition, a recent paper

describes a p20-initiated Bax/Bak-independent paraptotic

death pathway [89]. Instead of mobilizing the ER Ca2?,

p20 was shown to increase [Ca2?]ER leading to ER

remodeling, vacuolization, and both caspase and Bax/Bak-

independent paraptotic cell death. Here, the ability of Bcl-2

to lower [Ca2?]ER was shown to protect the cells from

these events typically associated with paraptotic cell death.

Finally, in many cells, including pancreatic acinar cells,

the ER can come in very close contact with the plasma

membrane [90]. Thus, ER-localized Bcl-2 may have

plasmalemmal targets and more general cell biological

functions in regulating cellular Ca2? homeostasis. A recent

report showed that Bcl-2 suppresses cellular Ca2? extrusion

through the plasma membrane Ca2? ATPase (PMCA),

thereby determining the cell-death pathway that is engaged

[91]. In this study, it was shown that Bcl-2-deficient pan-

creatic acinar cells extrude Ca2? more efficiently, protecting

them against excessive necrosis. At the same time, apoptosis

was increased in cells exposed to reactive oxygen species

(ROS) generated by menadione treatment. However, inhi-

bition of PMCA using a peptide inhibitor promoted necrosis

in menadione-treated cells, which may indicate that

excessive Bcl-2 accumulation at the ER-plasma membrane

junction inhibiting PMCA may be deleterious.

Irrespective of the underlying mechanism, it is clear that

Bcl-2 proteins critically regulate ER Ca2? homeostasis and

dynamics. This is supported by a recent study, showing that

chemical inhibitors of pro-survival Bcl-2-family members

like the BH3-mimetic molecules BH3I-20 and HA14-1

cause a pro-apoptotic depletion of the ER Ca2? stores in

part through activation of IP3R Ca2?-release channels [92].

Bcl-2-family members directly target IP3Rs

Bcl-2 and Bcl-XL directly target IP3Rs, but at different

sites

More recent work indicated that Bcl-2 does not primarily act

by altering the ER Ca2?-store content. Instead, Bcl-2

directly targets IP3Rs and functions as an endogenous

regulator of IP3Rs [71, 93–97]. In this paradigm, Bcl-2

suppresses pro-apoptotic IP3R-mediated Ca2? transients

(provoked by strong T-cell-receptor stimulation), while

maintaining or even promoting pro-survival Ca2?

oscillations (provoked by weak T-cell receptor stimulation).

Moreover, Bcl-XL also directly binds IP3Rs and sensitizes

IP3R-channel to sub-threshold [agonist] stimulation [72, 98].

IP3R/Bcl-XL-complex formation increases the frequency of

Ca2? oscillations, mitochondrial bioenergetics, and NFAT-

mediated signaling in Bcl-XL-overexpressing DT40 cells,

while not affecting global agonist-induced Ca2? transients.

Elegantly, it was shown that Bcl-XL protection against high

[anti-IgM]-induced apoptosis was reduced in the absence of

IP3Rs [98]. Furthermore, the effect of Bcl-XL on Ca2? sig-

naling depended on the type of IP3R isoform. Bcl-XL

stimulated IP3R-mediated Ca2? oscillations for all three

isoforms while it lowered [Ca2?]ER in IP3R3-, but not in

IP3R1- or IP3R2-, expressing DT40 cells.

At the molecular level, striking differences between Bcl-

2 and Bcl-XL for IP3R binding were observed. While Bcl-2

binds to the central, modulatory domain of the IP3R [95,

96], Bcl-XL binds the C-terminal region close to the Ca2?-

channel pore [72, 98] (Fig. 1). This C-terminal tail is also

involved in the control of IP3R-channel gating through the

N-terminal suppressor domain of the IP3-binding domain

[99]. Thus, Bcl-XL may enhance the coupling between the

N-terminal IP3-binding domain and C-terminal channel-

pore opening, underlying the observed IP3R sensitization.

The latter region has been proposed to display structural

features that mimic the BH3 domain of BH3-only proteins

[100]. In this respect, one expects that the hydrophobic

cleft formed by BH3, BH1, and BH2 of all anti-apoptotic

Bcl-2-family members may participate in the binding the

IP3R. Finally, it has been recently described that not only

Bcl-XL but also Bcl-2 and Mcl-1 target this site on IP3Rs

and cause IP3R sensitization [73]. In addition to this site,

Bcl-2 possesses an additional binding site on the IP3R with

distinct molecular and functional properties. Indeed, Bcl-2

directly binds to a site between amino acids 1389–1408 of

IP3R1. Bcl-2 binding to this central, modulatory domain

of the IP3R causes an inhibition of the Ca2?-flux properties

of IP3R in response to agonist stimulation (Fig. 1). Fur-

thermore, a peptide corresponding to the Bcl-2-binding site

on IP3Rs (a.a. 1389–1408), IP3R-derived peptide (IDP),

completely abolishes the binding of Bcl-2 to the IP3Rs

[95]. A cell-permeable version of IDP enhances IP3R-

mediated Ca2? signaling, thereby potentiating apoptotic

signals, similarly to strong TCR stimulation. In this respect,

IDP derepresses Bcl-2’s inhibitory function on IP3R1 by

specifically targeting its BH4 domain and not the BH3-

binding hydrophobic cleft. The only domain of Bcl-2 suf-

ficient for binding, inhibiting, and protecting against

IP3R1-mediated apoptosis [96, 101] is indeed the BH4

domain. This indicates that IDP targets Bcl-2 indepen-

dently of the compounds that target the hydrophobic cleft,

like the BH3-mimetic tools, ABT-737 and HA14-1.

Combining IDP with ABT-737 enhanced the potency of
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ABT-737 to induce cell death in lymphocytes obtained

from chronic lymphocytic leukemia (CLL) patients [102].

Furthermore, applying a stabilized cell-permeable form of

IDP (TAT-IDPDD/AA) potently induced cell death through

excessive IP3R-mediated Ca2?-release events in CLL cells,

while TAT-IDPDD/AA did not significantly reduce the sur-

vival of normal lymphocytes [103].

Bcl-2 and Bcl-XL regulate various IP3R-dependent

physiological and pathophysiological processes

Bcl-2 and Bcl-XL-mediated regulation of IP3Rs is not only

relevant for cell death and cancer but also for other phys-

iological processes like embryonic development and

pathophysiological conditions, like muscle dystrophy,

type-2 diabetes, and bipolar disorders.

A recent paper by Gillet et al. revealed that Nrz (the

zebrafish orthologue of human Nrh/Bcl-2L10) through its

BH4 domain binds and regulates IP3R-mediated Ca2?

signaling in the developing zebrafish embryo, acting as an

inhibitor of IP3R function [104]. In more detail, Nrz is

proposed to suppress Ca2? signaling in yolk syncytial layer

(YSL) to facilitate proper blastomere migration from the

animal to vegetative pool (known as epiboly, a process that

happens before the onset of gastrulation [105]) [104].

Completion of epiboly is characterized by the formation of

an acto-myosin contractile ring close to the vegetative pool

of the enveloping layer and the deep cell layer. Therefore,

it is critically important that during epiboly Ca2? signaling

in the YSL is suppressed to prevent premature acto-myosin

contractions. This is supported by recent findings showing

that nrz morphants displayed elevated Ca2? signaling in the

YSL causing Ca2?-dependent myosin light chain (MLC)

phosphorylation by MLC kinase, thereby affecting cyto-

skeletal dynamics and cell movements [104]. As a

consequence, nrz morphants undergo developmental arrest

before the onset of gastrulation, resulting in embryonic

death without the activation of caspases [106]. This

Fig. 1 Differential regulation of IP3R channels by Bcl-2 versus Bcl-

XL. The Ca2?-flux properties of IP3R are thought to be critically

controlled by Bcl-2-family members to promote cell survival or

protect against cell death. We hypothesize that distinct Bcl-2-family

members target distinct IP3R domains. In this paradigm, Bcl-2

through its BH4 domain may primarily target the central, modulatory

domain of the IP3R, thereby reducing large global pro-apoptotic Ca2?

transients (left), while Bcl-XL through its hydrophobic cleft (HC) or

another domain may primarily target the C-terminal tail of the IP3R

close to the channel pore, thereby increasing IP3R sensitivity to basal

IP3 levels and promoting pro-survival Ca2? oscillations (right). It

should be noted that the C-terminal domain of IP3Rs has been

proposed to harbors BH3-like domains and may also recruit Bcl-2. In

addition, there is increasing evidence that other Bcl-2-family

members may target IP3Rs, like NrZ, the zebrafish homologue of

Bcl-2L10, through its BH4 domain and Mcl-1 through its hydropho-

bic cleft (HC) or another domain may primarily target the C-terminal

tail of the IP3R close to the channel pore
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indicates that Bcl-2 family members as critical Ca2? reg-

ulators not only control apoptosis but also developmental

processes through Ca2?-dependent processes like acto-

myosin contraction and/or cell movements [107]. The

molecular determinants underpinning this role have not

been fully characterized yet but it is intriguing that both

Bcl-2’s and Nrz’s BH4 domains bind and modulate IP3Rs

despite their very divergent primary sequence. Eventually,

this may suggest that the concept of Bcl-2-dependent reg-

ulation of IP3Rs is dynamically conserved during

evolution.

In Duchenne muscle dystrophy, a lethal disease caused by

deficiency in dystrophin, a cytoskeletal protein, the degen-

eration of muscle is associated with disrupted intracellular

Ca2? homeostasis [108]. Overexpression of Bcl-2 in myo-

tubes obtained from dystrophic (mdx) mice decreases

subsarcolemmal and mitochondrial Ca2? elevations in

response to stimulation of the nicotinic acetylcholine

receptor [109]. The central role of IP3Rs in this process was

underpinned by experiments performed on saponin-perme-

abilized myotubes. Myotubes obtained from mdx mice

displayed more IP3-induced Ca2? responses than their wild-

type counterparts, while Bcl-2 overexpression suppressed

these IP3R-dependent Ca2? signals. These observations

correlate with the increased susceptibility of mdx myotubes

to apoptotic stimuli, which could be counteracted by over-

expressing Bcl-2 or an IP3 sponge.

In the vascular smooth muscle of type 2 diabetes mouse

models, the level of Bcl-XL, but not of Bcl-2, seemed

elevated, while IP3R levels remained constant [110].

Importantly, the rate of IP3R-mediated Ca2? release from

the SR of vascular smooth muscle of type 2 diabetes mouse

models was similar to their wild-type counterparts. This

enhanced IP3R activity by Bcl-XL was counteracted by

ABT-737, suggesting IP3R regulation by Bcl-XL through

its hydrophobic cleft.

Very recently, a single-nucleotide polymorphism (SNP)

in the Bcl-2 gene (rs956572) associated with bipolar dis-

order seemed to affect Ca2? signaling in the lymphoblasts

of bipolar disorder patients [111, 112]. This Bcl-2-deficient

SNP variant AA is known to be associated with reduced

Bcl-2-mRNA and -protein levels and directly affects the

brain by significantly decreasing grey matter volume in the

ventral striatum of healthy subjects [113]. The striatum’s

ventral region is important for the neurobiology and path-

ophysiology of mood disorders [114]. Particularly, Bcl-2-

deficient SNP variant AA caused elevated cytosolic [Ca2?]

and increased IP3R-mediated Ca2? release without affect-

ing basal ER and mitochondrial Ca2? levels [111]. These

properties were associated with a decline in the Bcl-2-

mRNA and -protein levels. In addition, increased IP3R-

mediated Ca2? release could be mimicked by treating

lymphoblasts from subjects presenting the normal Bcl-2

SNP variant GG with the Bcl-2 inhibitor BH3-I. Therefore,

it is likely that IP3Rs from lymphoblasts containing the

Bcl-2-deficient SNP variant AA are largely depleted from

Bcl-2. Nevertheless, this study suggests a critical role for

IP3R/Bcl-2 complexes in regulating intracellular Ca2?

dynamics in the brain to control emotional regulation and

reward processing.

Collectively, these examples show that Bcl-2 and

Bcl-XL display different functional properties towards

IP3R regulation, underpinning that distinct IP3R and

Bcl-2/Bcl-XL protein domains are responsible for this

phenomenon.

Bcl-2 and Bcl-XL display different BH4-domain

properties at the level of the IP3R

Despite the fact that Bcl-2 and Bcl-XL are highly similar in

sequence and structure, the BH4-domain biology of Bcl-2

and Bcl-XL seems totally different [101]. Both their BH4

domains protect against IP3R-mediated apoptosis, but only

the BH4-Bcl-2 domain binds and inhibits IP3Rs. Indeed,

IDP seems to inhibit only Bcl-2 by targeting its BH4

domain without affecting Bcl-XL’s anti-apoptotic function.

This is an important therapeutic advantage over the exist-

ing BH3-mimetic molecules. For instance, ABT-737 acts

as a Bad BH3-mimetic molecule, indicating that it does not

discriminate between Bcl-2 and Bcl-XL, thus inhibiting

both proteins. This may not be desirable in cancer patients

and cause adverse effects, since Bcl-2 and Bcl-XL have

distinct biological functions. While some types of cancer

cells may need the elevated Bcl-2 levels to compensate for

the on-going upstream pro-apoptotic signaling and the

elevated levels of BH3-only proteins, normal cells may still

need Bcl-XL for their survival. Potent Bcl-2 inhibitors, like

the BH3 mimetics ABT-737 and ABT-263, which target

the hydrophobic cleft of both Bcl-2 and Bcl-XL, are already

in clinical development and enhance the therapeutic

potency of different chemotherapeutical drugs in solid and

hematologic malignancies [20, 115–119]. However, in

single-use regiments, these compounds lead to in vivo

dose-dependent transient thrombocytopenia [120] and

thrombocytopathy [121] in a similar range as they kill

cancer cells (like CLL). The former is due to the inhibition

of Bcl-XL, which is essential to sustain platelet survival by

limiting Bax activity [122]. Since BH3-mimetic molecules

do not discriminate between the hydrophobic cleft of Bcl-2

and Bcl-XL, the treatment of Bcl-2-dependent malignan-

cies by BH3 mimetics like ABT-263 will provoke side

effects in patients by limiting the life span of platelets.

Hence, specifically targeting the BH4 domain of Bcl-2 with

IDP may be a very promising approach to promote cell

death via the induction of pro-apoptotic Ca2? signaling in

Bcl-2-dependent malignancies [102].
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Collectively, these data indicate that Bcl-2 and Bcl-XL

likely have distinct properties at the level of the IP3R

(Fig. 1). We propose that the predominant effect of Bcl-2 is

executed via its BH4 domain targeting the central, modu-

latory domain of the IP3R, imposing IP3R inhibition and

ultimately preventing large pro-apoptotic Ca2? transients.

For Bcl-XL, we anticipate a dominant role for its hydro-

phobic cleft targeting the BH3 structure near the C-terminal

Ca2?-channel pore of the IP3R, optimizing IP3R-channel

gating and sensitivity towards IP3. We do not exclude that

Bcl-2 too targets this C-terminal site, but its BH4-domain

biology seems to overcome this sensitizing effect.

The conserved Lys17 in the BH4 domain of Bcl-2

determines its selective action on IP3Rs

Recently, we elucidated one factor in the selective action of

Bcl-2 and Bcl-XL on IP3Rs [101]. While most residues are

conserved among the BH4 domains of Bcl-2 and Bcl-XL,

we identified a critical difference in one single surface-

accessible residue in the center of this domain (Fig. 2). We

found that Lys17 in BH4-Bcl-2 is not conserved in BH4-

Bcl-XL, in which it corresponds to an Asp residue. We

performed a plethora of molecular and functional studies to

pinpoint this residue as the underlying factor responsible

for the difference in BH4-domain biology between Bcl-2

and Bcl-XL. Indeed, replacing Asp11 by Lys in BH4-Bcl-

XL led to a variant that is able to bind and inhibit IP3Rs,

while replacing Lys17 by Asp in BH4-Bcl-2 led to a var-

iant that completely lost its IP3R-binding and inhibitory

properties. The importance of this critical difference for the

biological properties of these proteins is highlighted by the

fact that altering this residue in full-length Bcl-2 impairs its

ability to regulate IP3Rs and to protect against Ca2?-

mediated apoptosis. This is further highlighted by the fact

that this critical difference in residues is conserved among

the five classes of vertebrates in both Bcl-2 and Bcl-XL

(Fig. 3). Indeed, all vertebrate Bcl-2 orthologues contain a

positively charged amino acid in the center of their BH4

domain, while all vertebrate Bcl-XL orthologues contain a

negatively charged amino acid. This means that already in

the first appearances of Bcl-2 and Bcl-XL during evolution,

this selective function may have been important.

Therefore, while Bcl-2 and Bcl-XL were considered

alike in their respect to regulating Ca2? signaling, we

propose selective functions for Bcl-2 and Bcl-XL at the

level of the IP3R. This idea impinges on the selective

environment in which Bcl-2 and Bcl-XL seems to operate.

Bcl-2 seems to operate at different intracellular mem-

branes, including the ER, while Bcl-XL seems to mainly

operate at mitochondrial membranes and in the cytosol. On

the one hand, excessive Bcl-2 expression at the mito-

chondria seems to be toxic for the cells and leads to

apoptotic cell death, while Bcl-2 expression at the ER

promotes bona fide anti-apoptotic responses [22]. On the

other hand, a very recent and elegant study using the rec-

omplementation of Bcl-XL
-/- cells with either ER or

mitochondrial-targeted Bcl-XL showed that the presence of

Bcl-XL is a conditio sine qua non for proper protection

against apoptotic stimuli [123]. Strikingly, ER-targeted

Bcl-XL expression in Bcl-XL
-/- cells was able to regulate

ER Ca2? homeostasis, but this was not sufficient to protect

against apoptotic stimuli. The latter required mitochondrial

Bcl-XL, since Bcl-XL expression in wild-type cells con-

taining endogenous Bcl-XL provided apoptosis protection.

Thus, the ER seems part of the natural environment, in

which Bcl-2 would operate in protecting against apoptosis,

while the mitochondria may be the natural environment for

Bcl-XL-mediated protection against apoptosis. Finally,

alignment of the BH4 domain of the other Bcl-2-family

members indicates that the BH4 domain of Bcl-XL

resembles Bcl-2 one’s the most. Thus, since BH4-Bcl-XL is

not able to target IP3Rs, this may suggest a unique role for

the BH4 domain of Bcl-2 among the other Bcl-2-family

members in repressing pro-apoptotic IP3R function.

Fig. 2 A representation of the overlapping Bcl-2 and Bcl-XL

structures. Their respective BH4 domains (blue for Bcl-2, orange for

Bcl-XL) have been indicated together with the critical difference

between Bcl-2 (Lys17) and Bcl-XL (Asp11), which determines the

ability of Bcl-2, but not of Bcl-XL, to interact with the central,

modulatory domain of the IP3R
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Other selective BH4-domain targets for Bcl-2

and Bcl-XL?

Although a number BH4 domain targets of Bcl-2 and/or

Bcl-XL have been identified, a selective role for both

proteins has not been investigated. In this respect, most

studies either focused on the BH4 domain of Bcl-2 or of

Bcl-XL, providing a growing list of novel targets beyond

IP3Rs, including calcineurin/PP2b, VDACs, Raf-1, Ras,

CED-4, paxillin, NF-kB, BI-1 and apoptosis-stimulating of

p53 protein 2 (ASPP2) [96]. However, some findings in the

literature seem to hint towards a selective regulation of

these targets by Bcl-2 versus Bcl-XL and vice versa [124–

126]. Nevertheless, in many cases, firm evidence is lack-

ing, because a side-by-side comparison of the regulation of

these targets by Bcl-2 versus Bcl-XL, or by protein domains

derived from them, has never been performed. Since

VDAC1 and BI-1 directly control Ca2?-signaling events

and apoptosis, we first discuss their BH4-mediated regu-

lation. Finally, we focus on the pro-apoptotic ASPP2

protein, which has been proposed to display selective Bcl-

2/Bcl-XL-binding properties.

VDACs

VDACs are transport proteins located on the outer mito-

chondrial membranes responsible for exchanging

metabolites and ATP between cytosol and mitochondria

and for the flux of Ca2? ions from ER into the mitochondria

[127, 128]. VDAC proteins seem to be essential for both

cell growth and apoptosis [129, 130]. The role in cell

growth seems to involve their ability to transport metabo-

lites and energy, but may also be attributed to its Ca2?-flux

properties and its localization in MAM’s [127]. This flux of

Ca2? from the ER into the mitochondria is essential for

proper mitochondrial bioenergetics [36]. This correlates

with recent observations from White and coworkers

showing that Bcl-XL, at the mitochondrial membranes,

enhanced VDAC1-mediated Ca2? flux into the mitochon-

dria, thereby promoting ATP production and increasing

mitochondrial bioenergetics (Carl White, pers. comm.).

However, Bcl-XL’s regulation of mitochondrial Ca2?

uptake might be different during apoptosis, since this anti-

apoptotic protein was previously shown to delay Ca2?-

mediated MOMP in neuronal cell models [131]. Although

the role of VDAC proteins in mitochondria-dependent cell

death has always been controversial, recent evidence

showed that VDAC1, but neither VDAC2 nor VDAC3,

relays IP3R-mediated pro-apoptotic Ca2? signals into the

mitochondria [42]. Additionally, the expression of VDAC1

appears to critically control apoptosis likely by the forma-

tion IP3R/VDAC1 complexes, which are enhanced during

apoptotic stress, and by the formation of VDAC1 oligomers

[42]. The oligomerization of VDAC1 has been shown to be

coupled to its ability to induce apoptosis [132]. Further

reports, from Shoshan-Barmatz’s laboratory, indicate that

anti-apoptotic proteins, like Bcl-2 and hexokinase I and II

bind mainly the N-terminal part of VDAC1 and suppress

Fig. 3 Sequence alignment of the BH4 domain of different Bcl-2 and

Bcl-XL homologues in the different classes of vertebrates. Bcl-2 and

Bcl-XL homologues were obtained from the DeathBase [152]. The

number between brackets indicates the accession number of the

protein database of the National Center for Biotechnology Informa-

tion (http://www.ncbi.nlm.nih.gov/protein). This analysis reveals that

the amino acid Lys17 in human Bcl-2 is conserved as a positively

charged residue during evolution. The amino acid Asp11 in human

Bcl-XL also seems conserved as a negatively charged residue during

evolution, although Xenopus Bcl-XL contains a Lys and zebrafish Bcl-

XL contains a Phe in the corresponding position. The positively

charged (red) and negatively charged (blue) amino acids are depicted

in color. The conserved critical Lys residue in the Bcl-2 homologues

and its corresponding residue in the Bcl-XL homologues are displayed

on a gray background and are indicated by an arrow
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VDAC’s apoptotic function [57, 133–135]. The Bcl-2/Bcl-

XL protein domain regulating VDAC1 activity was pro-

posed to be its BH4 domain [126]. Indeed, the isolated BH4

domains of both Bcl-2 and Bcl-XL were sufficient to inhibit

VDAC1 activity in isolated mitochondria and to prevent

apoptosis in intact cells. Likewise, solely a Bcl-XL not

lacking the BH4 domain could display these anti-apoptotic

properties. However, in this study [126], a complete,

quantitative comparison between the properties of the BH4

domain of Bcl-2 and Bcl-XL for preventing apoptosis

through targeting VDAC1 was not performed. Neverthe-

less, a sucrose-driven liposomal swelling assay mediated by

reconstitution of recombinant VDAC1 into the liposomes

showed that both BH4-Bcl-2 and BH4-Bcl-XL inhibited

VDAC1 activity, but BH4-Bcl-XL seemed more potent than

BH4-Bcl-2. In any case, a full side-by-side and quantitative

comparison between BH4-Bcl-2 and BH4-Bcl-XL is needed

to unravel their differences in regulating VDAC1 activity

and to characterize the importance of Asp11 in BH4-Bcl-XL

and Lys17 in BH4-Bcl-2 for these properties. Furthermore,

it will be necessary to determine how the properties of

isolated BH4 domains are reflected in the regulation of

VDAC1 by full-length Bcl-2 and Bcl-XL. Indeed, it seems

likely that other protein domains of Bcl-2 and Bcl-XL

besides the BH4 domain are involved in the direct inter-

action with VDAC1, since Bcl-XL lacking its BH4 domain

still interacts with VDAC1 [126, 136]. In addition, the

mechanism by which these BH4 domains target VDAC1 is

poorly characterized and may involve a complex network of

protein interactions.

Bax Inhibitor-1

Seminal work from Reed’s laboratory elucidated BI-1 as a

highly conserved ER-localized six/seven-transmembrane

domain protein that protects cells against apoptosis and

counteracts ER stress [137, 138]. Part of BI-1’s anti-

apoptotic properties have been attributed to its role in

controlling ER Ca2? homeostasis through its H?/Ca2?-

antiporter activity [59, 60, 139]. BI-1 overexpression leads

to enhanced ER Ca2? leak and decreases the steady-state

ER Ca2? levels, while cells deficient for BI-1 display an

increase in [Ca2?]ER. These BI-1 properties seemed to be

highly dependent on its C-terminal domain [59, 140, 141].

These findings are compatible with the recently identified

Ca2?-channel pore in the membrane-embedded part of the

C-terminal domain of BI-1 [61]. Furthermore, there is

now mounting evidence that other BI-1-related proteins

like human Golgi anti-apoptotic protein (hGAAP) and

TMBIM6/GRINA also control ER Ca2? homeostasis

potentially by regulating IP3Rs [142, 143]. While BI-1’s

name refers to its discovery as a high-copy suppressor of

Bax-induced cell death in yeast, BI-1 is targeted and

regulated by anti-apoptotic Bcl-2-family members. Bcl-2

seems to bind BI-1 through its BH4 domain [138]. Fur-

thermore, the BH4 domain of Bcl-2 stimulates BI-1’s H?/

Ca2? anti-porter activity by promoting BI-1 oligomeriza-

tion [139]. In fact, the regulation of the Ca2?-flux

properties of BI-1 by anti-apoptotic Bcl-2-family members

may underlie the conflicting evidence on whether Bcl-2-

family members can lower the ER Ca2?-store content or

not. Reed and coworkers showed that Bcl-XL required the

presence of BI-1 to lower [Ca2?]ER, since overexpression

of Bcl-XL in BI-1-deficient cells failed to decrease the ER

Ca2?-store content, indicating a critical role for BI-1 as

downstream targets of Bcl-2 proteins in lowering [Ca2?]ER

[60]. In these studies, both Bcl-2 and Bcl-XL seemed to

similarly affect the Ca2?-leak properties of BI-1. While it

seems likely that these effects are mediated through their

BH4 domains, it is not known whether BH4-Bcl-2 and

BH4-Bcl-XL are equally potent in controlling BI-1

properties.

ASPP2

ASPP2 provokes mitochondrial-dependent cell death by

activating tumor suppressors like p53 and by counteracting

pro-survival mechanisms like NF-jB and Bcl-2 [144, 145].

Two variants of the pro-apoptotic protein ASPP2 have been

discovered: one variant binds to the tumor suppressor p53

and stimulates its pro-apoptotic activity by enhancing the

expression of pro-apoptotic proteins at the transcriptional

level; the other variant binds to and counteracts the anti-

apoptotic Bcl-2 proteins, leading to apoptosis by promoting

the release of pro-apoptotic proteins, like BH3-only pro-

teins, from Bcl-2 [146, 147]. Structural studies elucidated

four ankyrin repeats and an SH3 domain in the C-terminal

part of ASPP2, responsible for interaction with other pro-

teins, including p53, NF-jB, and Bcl-2 [146, 148–151]. An

elegant study combining molecular modeling with bio-

physical analysis revealed the molecular properties of the

interaction of C-terminal domain of ASPP2 with anti-

apoptotic Bcl-2-family members [125]. Using a peptide

array screening, both the BH4 domains as well as the

hydrophobic cleft, involved in scaffolding pro-apoptotic

BH3 domains, were identified as ASPP2-binding sites.

Using quantitative biophysical methods, it was shown that

the binding affinity of ASPP2 to BH4-Bcl-2 was about

tenfold higher than to BH4-Bcl-XL or to the Bcl-2-hydro-

phobic cleft. This indicates a dual selectivity in ASPP2-

binding properties of anti-apoptotic Bcl-2-family members.

Strikingly, a critical role in the high-affinity binding of

BH4-Bcl-2 to ASPP2 was attributed to the surface-exposed

Lys17. Lysine’s additional positive charge seemed critical,

since replacing Lys17 by an alanine or an aspartate (like in

BH4-Bcl-XL) caused a significant reduction in the binding
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affinity to ASPP2 or completely abolished ASPP2 binding,

respectively. Docking studies revealed that SH3 domain

targeted the BH4 domain of Bcl-2/Bcl-XL, while the

ankyrin repeats targeted the hydrophobic cleft of Bcl-2/

Bcl-XL. Hence, ASPP2 may counteract the anti-apoptotic

function of both Bcl-2 and Bcl-XL but with different

efficiency. In this way, ASPP2 may discriminate between

Bcl-2 and Bcl-XL targets. Therefore, pro-apoptotic tar-

gets of Bcl-2 and Bcl-XL may be released in a selective

manner or time frame upon ASPP2 binding to Bcl-2 and/or

Bcl-XL. In this respect, ASPP2 levels may control the

properties of proteins that are targeted by both the BH4

domain and the hydrophobic cleft of Bcl-2 anti-apoptotic

proteins.

Conclusions

An essential role of anti-apoptotic Bcl-2 family proteins is

due to their regulation of intracellular Ca2? dynamics.

Here, we have discussed a selective function of Bcl-2 as

endogenous IP3R inhibitors versus Bcl-XL as endogenous

IP3R sensitizers. We propose that distinct functional

domains of Bcl-2 and Bcl-XL underlie their divergence in

IP3R-functional regulation. In more detail, Bcl-2 acts on

the IP3Rs primarily via its BH4 domain on the receptor

central, modulatory domain while Bcl-XL via its hydro-

phobic BH3-domain-binding cleft and on the C-terminal

channel-pore domain. We identified a conserved molecular

determinant (Lys17) that is critical for the inhibitory action

of the BH4 domain of Bcl-2 on IP3Rs and that is evolu-

tionary conserved among all Bcl-2 orthologues in the five

classes of vertebrates. It is one of the most striking dif-

ferences in surface-accessible residues between BH4-Bcl-2

and BH4-Bcl-XL underlying the selective action of BH4-

Bcl-2 on IP3Rs. Furthermore, since the sequence of the

BH4 domains of other Bcl-2 family members including

Mcl-1 deviates a lot from Bcl-2, this suggests a unique role

for the BH4 domain of Bcl-2 as an endogenous inhibitor of

the IP3R channel. However, this concept may be too sim-

plistic, considering the recent data showing that the

zebrafish’s Bcl-2-related protein Nrz is still able to bind

and control IP3Rs activity via its BH4 domain. These data

may suggest a broader role for the BH4 domain biology in

Ca2? signaling beyond apoptosis modulation, either by a

distinct regulation of the Ca2?-flux properties of IP3R

channels or by selective binding and regulation of Ca2?-

transport systems in both the ER and the mitochondria. In

conclusion, future research is needed to fully characterize

BH4-domain biology in the context of Bcl2’s proteins

physiological and pathophysiological activities, especially

considering the growing list of its potential molecular tar-

gets besides the IP3Rs.
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