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Abstract Beta cell connectivity describes the phenome-

non whereby the islet context improves insulin secretion by

providing a three-dimensional platform for intercellular

signaling processes. Thus, the precise flow of information

through homotypically interconnected beta cells leads to

the large-scale organization of hormone release activities,

influencing cell responses to glucose and other secreta-

gogues. Although a phenomenon whose importance has

arguably been underappreciated in islet biology until

recently, a growing number of studies suggest that such

cell–cell communication is a fundamental property of this

micro-organ. Hence, connectivity may plausibly be tar-

geted by both environmental and genetic factors in type 2

diabetes mellitus (T2DM) to perturb normal beta cell

function and insulin release. Here, we review the mecha-

nisms that contribute to beta cell connectivity, discuss how

these may fail during T2DM, and examine approaches to

restore insulin secretion by boosting cell communication.
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Abbreviations

AC Adenyl cyclase

ACh Acetylcholine

ADP Adenosine diphosphate

ATP Adenosine triphosphate

cAMP Cyclic adenosine monophosphate

Cx36 Connexin 36

Epac Exchange protein activated by cAMP

fMCI Functional multicellular calcium imaging

GABA Gamma aminobutyric acid

GIP Glucose-dependent insulinotropic polypeptide

GJ Gap junction

GLP-1 Glucagon-like peptide-1

GWAS Genome-wide association studies

GPCR G protein-coupled receptor

KATP ATP-sensitive K? channel

SST Somatostatin

SNP Single nucleotide polymorphism

T2DM Type 2 diabetes mellitus

VDCC Voltage-dependent Ca2?-channel

Introduction

Type 2 diabetes mellitus (T2DM) is a global epidemic that

currently consumes *10 % of the healthcare budget in the

developed world [1]. This syndrome has a complex etiology

but can be summarized as a failure of the beta cell mass to

adequately compensate for insulin resistance, or alterna-

tively a primary beta cell defect that leads to insulin

resistance. The resulting glucose intolerance, coupled with

dyslipidemia, drives a range of costly secondary complica-

tions including retinopathy, vasculopathy, renal failure,

cancer, and cardiovascular disease [2, 3]. Consequently,

elucidation of the mechanisms underlying the control of

insulin secretion from individual beta cells has been the

focus of intense research efforts. Thus, in response to an

elevation of blood glucose, equilibration of the sugar across
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the plasma membrane occurs rapidly and is achieved via

either the low affinity glucose transporter Glut2/slc2a2

(rodents) or the higher affinity transporter Glut1/slc2a1

(man) [4]. The low affinity hexokinase, glucokinase is then

chiefly responsible for determining glycolytic flux toward

pyruvate [5]. Conversion of the latter to acetyl-CoA in the

mitochondrial matrix, and its oxidation via the tricarboxylate

cycle, then ensues [6, 7]. The resultant increases in the ratio

of free adenosine triphosphate (ATP) to adenosine diphos-

phate (ADP) (ATP:ADP) in the cytosol [8] and subplasma

membrane domain [9] then leads to closure of ATP-sensitive

K? channels (KATP), membrane depolarization and the

influx of calcium (Ca2?) through voltage-dependent Ca2?-

channels (VDCC) [6, 7, 10, 11]. Together with the activation

of a less well-defined ‘‘amplifying’’ pathway [12, 13],

localized increases in the intracellular free Ca2? concen-

tration [14], including at the surface of the secretory granule

[15], then provoke insulin release through interactions with

the exocytotic machinery [16, 17].

By comparison, the population-level regulation of

insulin release is less well understood, although the idea

that it may contribute to T2DM risk has been suggested

[18–22]. Providing evidence that cell–cell interactions are

a prerequisite for proper hormone secretion is the obser-

vation that beta cells incommunicado (i.e., as isolated cells)

release less insulin per capita than their properly connected

counterparts within the intact islet [19, 23, 24]. Indeed, a

feature of the endocrine pancreas is the three-dimensional

encapsulation of beta, and other cell types, into islets of

Langerhans, a biological scaffold for cell–cell communi-

cations. Since these micro-organs are conserved throughout

the mammalian kingdom and beyond [25], albeit with

important differences in the numbers of each cell type and

their arrangement within the islet (see below), the intraislet

mechanisms governing insulin secretion may represent an

underappreciated target through which T2DM insults pro-

voke hyperglycemia. Building upon recent findings from

our own [26–28] and others’ [20–22, 29–31] laboratories,

the aim of the present review is to describe our current

understanding as to how beta cell–beta cell communication

(hereafter referred to as ‘‘connectivity’’) contributes to the

normal regulation of insulin secretion in healthy subjects.

We also discuss how changes in this property may con-

tribute to T2DM risk in genetically susceptible individuals.

Islets as discrete secretory units

The term ‘‘endocrine pancreas’’ describes the thousands

(millions in man) of islets of Langerhans scattered through-

out the exocrine tissue. Each islet can range in size from 20 to

400 lM and comprises alpha- (glucagon), beta- (insulin),

delta- (somatostatin), epsilon- (ghrelin), and pancreatic

polypeptide (PP) cells. Strikingly, islets are evolutionarily

stable structures and are present in most mammals studied to

date, including the Beluga whale, with a similar range of

sizes reported in each species [25]. With the exception of

bats, horses, hyenas, primates, and humans, the arrangement

of endocrine cells within islets is similar [25]. Thus, in rodent

islets, the most-studied model, beta cells form a central core,

with alpha cells occupying the mantle [25, 32, 33]. Sug-

gesting that this may be a consequence of the vasculature,

blood flow has been shown to follow an inner–outer flow

pattern, irrigating beta before alpha cells in this species [34],

and the vasculature appears to be instructive for pancreas

development [35]. By contrast, beta cells in human islets are

interspersed with alpha cells, in part the consequence of the

tertiary folding of an initial trilaminar alpha–beta–alpha

sheet, which promotes heterologous contacts [33, 36–38]. As

well as differences in islet architecture, alterations to cell

proportion are also apparent between species. For example,

the ratio of beta:alpha cells in rodent islets is *4:1, whereas

in humans it is *1.25:1. Such divergence in islet architecture

likely influences cell–cell communication by altering the

extent and nature of cell–cell signaling processes, and may be

an important source of species differences in islet function.

Regardless, the islet structure is permissive for insulin

secretion, and beta cells in two dimensions display blunted

responses to input, both in terms of Ca2? signaling and

magnitude hormone release [27, 39–41].

High-speed imaging of beta cell connectivity

Over the last decade, advances in microscopy have allowed

cell dynamics to be monitored in situ within the intact

tissue setting [42]. Key to this is the use of high-speed

imaging, which when combined with highly sensitive

detectors, allows a large area to be rapidly traversed at

cellular resolution. In terms of endocrine organ function,

the physiologically relevant output is hormone release.

However, large-scale imaging of exocytosis in individual

cells is only just becoming possible, although the currently

available dyes possess signal-to-noise ratios incompatible

with high-speed acquisition at visible light wavelengths

[43–46]. To circumvent these issues, membrane voltage or

intracellular Ca2? concentrations can instead be used as a

proxy for Ca2?-dependent hormone release [47–50]. To

this end, functional multicellular Ca2? imaging (fMCI),

originally used to map activity in cortical circuits [51–53],

has recently been adapted for use in beta cells [27, 28]. By

coupling a laser bank to a Nipkow spinning disk, the mil-

lisecond organization of beta cell population Ca2?-spiking

activity can be captured in near real time with reduced

phototoxicity and photobleaching. Following acquisition,

the 1datasets are subjected to nondeterministic Monte
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Carlo-based models to identify the cells with similar

behavioral profiles, i.e., those with correlated activity and

which are assumed to contribute to the same secretory

process [42, 54]. Statistical significance is determined by

shuffling the experimental dataset and calculating the

likelihood of detecting the same correlation pattern due to

chance. A functional connectivity map can then be con-

structed based on the location of significantly correlated

cell pairs, allowing perturbations to beta cell connectivity

to be evaluated (see Fig. 1, top panel, for an example). In a

refinement of this method, beta cell metabolic intercon-

nectivity has recently been mapped in intact islets by

monitoring intracellular free ATP:ADP dynamics, as for

Ca2? [55]. When using these techniques, it is important to

note that the territories of communicating beta cells within

intact islets are larger than those that can be recorded,

limiting the physiological inferences that can be drawn.

Islet wiring patterns

Network science principally relies on the use of graph

theory to identify the interactions that govern behavior in

complex systems (see [42] for a review of network science

in Endocrinology). Using these approaches, it has become

increasingly clear that network topology tends to be con-

served (e.g., scale-free and random) irrespective of the

components examined (e.g., cells vs. people) [42, 56, 57].

Recent research has shown that graph theory is also

applicable to the description of complex dynamics in the

endocrine pancreas. Thus, analysis reveals that beta cells

comprise glucose-responsive scale-free networks in which

cells can communicate over long distances, through pres-

ently undefined mechanisms [29]. Such network topologies

are defined by a power-law distributed link probability in

which a minority of cells (termed highly connected nodes)

host the majority of connections and are said to possess

small-world properties if there is a tendency toward for-

mation of cliques (6� of separation concept) (Fig. 1, bottom

panel). Price was the first to describe scale-free networks,

noting that journal citations follow a power-law distribu-

tion, sharing features in keeping with Pareto’s law (the

‘rich-get-richer’ hypothesis) [58]. Subsequently, Barabasi

and Albert showed that preferential attachment is respon-

sible for the emergence of scale-free properties [59].

Notably, scale-free distributions are ubiquitous and have

Fig. 1 Imaging and mapping

beta cell network topology.

(Above) Functional

multicellular Ca2? imaging is

used to monitor the large-scale

organization of glucose-induced

population dynamics (above,

left). By subjecting the resulting

traces (from * 50–100

individual cells per islet) to

correlation analyses, cells with

coordinated activity can be

identified and a functional

connectivity map plotted based

upon position within the imaged

field (x–y) (above, right). Scale-

free connection distributions are

typified by a minority of cells

that host the majority of

connections (nodes), while

maintaining streamlined

information flow due to a short

pathlength. Although robust in

the face of random attack, they

are prone to collapse following

a targeted attack (below, left).

By contrast, nonscale-free

networks (e.g., random or

lattice) may not efficiently

propagate signals due to a long

pathlength, and random attacks

significantly reduce capacity

(below, right)
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been described in social networks, computer networks,

neural networks, and anterior pituitary networks [54, 60–

63]. An important feature of scale-free networks is

robustness at low wiring cost: the chances of a random

attack disabling communication are low and the use of

hubs to route information reduces signal transmission

length [42]. However, should the highly connected nodes

be specifically targeted, the network is vulnerable to col-

lapse, since a high proportion of links will be lost (Fig. 1,

bottom panel). Therefore, an interesting but untested pos-

sibility is that highly connected beta cell nodes may

represent a subpopulation which is particularly susceptible

to T2DM insults. Conversely, these highly connected nodes

may serve as a functional reserve to maintain islet function

in the face of gross perturbation by allowing the redistri-

bution of information, again, a hypothesis that requires

experimental validation.

Mechanisms underlying beta cell–beta cell connectivity

Neural circuits have a clear basis for long-range connec-

tivity, since neurons send out axonal projections that can

form synapses located millimeters apart. By contrast, it is

less easy to conceptualize how beta cells within the islet

can communicate over long distances to organize their

activities. Might this involve, for example, ‘‘physical

connections’’ (e.g., through islet interneurons) between

remote cells, or alternatively linearly connected ‘‘trains’’ of

beta or other cells along which signals are transmitted to a

distant cell(s) from a controller (‘‘pacemaker’’) at a coor-

dination hub? In any case, the islet possesses a formidable

signaling toolbox (see Fig. 2). This is reviewed in depth

elsewhere [20, 21, 28, 64], so here we limit our discussion

to the pathways which may conceivably underlie connec-

tivity between beta cells.

Gap junctions

The best characterized cell–cell coupling mechanism in the

pancreas is provided by gap junctions (GJs). Beta cells

within rodent and human islets are homotypically con-

nected by connexin 36 (Cx36 or GJD2) [65, 66]. GJs

comprising Cx36 are charge- and size-selective channels

that allow the intercellular passage of ions (e.g., Ca2?,

Na?, and Zn2?) and nucleotides (e.g., ATP) [19, 20, 67].

Providing evidence that Cx36 is critical for coordinating

islet activity are the observations that dispersed beta cells

fail to synchronize their responses to glucose, and islets

lacking Cx36 display more stochastic activity patterns due

to increases in beta cell functional heterogeneity [31, 68–

70]. GJ linkages are essential for the regulation of normal

hormone release, since mice deleted for Cx36 are glucose

intolerant and display impaired pulsatility, as well as ele-

vated basal insulin secretion [22, 68, 71]. It is unclear how

GJs could account for the long-range functional connec-

tions that project between distant cells, as practically all

beta cells express Cx36 protein, meaning that communi-

cation should encompass even close neighbors [65, 72].

However, heterogeneity exists in fluorescence recovery

after photobleaching (FRAP) within islets [73], suggesting

that connectivity patterns between individual beta cells

may at least reflect differences in functional GJ coupling.

As proposed above, this may lead to the formation of linear

groups of cells, tightly interconnected in three dimensions

between one another, but (relatively) isolated from neigh-

boring cells outside the train, thus forming a conduit for the

passage of ionic (Ca2?) or other (e.g., paracrine, see below)

signals.

Neural

Islets receive rich innervation from the autonomic nervous

system, and neural regulation of insulin secretion is critical

for normal glucose homeostasis in vivo. The existence of a

physical network of neurons to couple remote beta cells

within the islet thus provides a conceptually straightfor-

ward model to explain recent experimental observations

[26, 27, 29]. Indeed, insulin release is strongly stimulated

by postganglionic cholinergic fibers that signal via acetyl-

choline (ACh)-mediated activation of muscarinic receptors

to phase set and synchronize beta cell activity within and,

potentially, between islets [74–76]. Such activation

underpins the cephalic phase of insulin secretion in antic-

ipation of food [77]. In addition, other neuropeptides

including pituitary adenylate cyclase activating peptide

(PACAP) and vasoactive intestinal peptide (VIP) may

contribute to the parasympathetic control of beta cell

function [74, 78]. By contrast, insulin release is suppressed

by noradrenergic sympathetic neurons that signal via a2-

adrenoreceptors to open KATP channels [74, 79, 80],

although a stimulatory effect of noradrenaline has also

been observed, probably through effects on cyclic adeno-

sine monophosphate (cAMP) accumulation and b-

adrenoreceptor activation [81, 82]. Marked differences

exist in the neural regulation of insulin secretion between

rodents and man. Thus, human islets are relatively devoid

of parasympathetic nerve fibers [83], and glucose-sensiti-

zation of beta cell activity instead relies upon ACh release

from vesicular acetylcholine transporter-expressing alpha

cells [84, 85]. This lack of direct innervation may partly

explain why beta cell glucose responses in human islets are

largely stochastic, with synchrony detected only between

small cell clusters [27, 33, 86]. Conversely, the assessment

of whether neurons contribute to long-range connectivity in

mouse islets firstly requires confirmation of cholinergic
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fiber survival in isolated islets, followed by their specific

manipulation (e.g., using patch clamp).

Primary cilia

Cilia can be regarded as cell extensions that act as sig-

naling hubs due to expression of G protein-coupled

receptors (GPCRs), ion channels and transcription factors

[87]. Primary cilia are immotile and are formed from a ring

of nine microtubule doublets wrapped in a membrane

sheath [88]. While studies of Kif3a, Lkb1, and Rfx3

knockout mice have all invoked a role for cilia in pan-

creatic development (i.e., ductal and endocrine cell

specification) [87, 89–91], little is known about their

involvement in cell–cell signaling processes within the

islet. Given the role of cilia in signal transmission in in

other tissues [92], and potentially in exosome-mediated

intercellular communications [93], we believe this warrants

further investigation.

Paracrine signaling

Intercellular communication may also be possible via the

production and secretion of messengers which act on

neighboring cells [20, 21, 28]. Over 230 secreted factors

have been identified in rodent islets [94], and a number of

signaling loops with roles in the regulation of beta cell

function and insulin release are now well characterized (see

references [21, 28, 64]). Despite this, it is unclear how

paracrine factors could contribute to the complex

Fig. 2 Schematic showing

single cell and population-level

beta cell signaling. At the

molecular level, glucose is

transported into the beta cell

before undergoing glycolysis to

increase the ratio of free

cytosolic ATP:ADP. This closes

KATP channels, leading to

opening of VDCC, Ca2? influx,

and Ca2?-dependent exocytosis.

At the population-level, beta

cell dynamics are further

dictated by signaling circuits

involving paracrine, juxtacrine,

autocrine, electrotonic (GJ),

neural and ciliary

communications
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functional islet wiring patterns described using graph the-

ory [29, 30], since all beta cells within the molecule

diffusion path would be expected to be affected. Although

it is plausible that active transport mechanisms and cognate

receptor expression levels/patterns may allow more precise

communication between beta cells, this needs further

study.

Despite the plethora of signaling mechanisms available

within the islet, we suggest that a combination of modali-

ties is required for producing the complex activity patterns

that underlie beta cell–beta cell communication and con-

nectivity. Notably, differences in signaling input, together

with alterations to islet architecture, may play an important

role in determining species-specific responses to secreta-

gogues such as glucose and incretins.

Glucose and GLP-1-regulated connectivity: metabolic

signals

It is generally acknowledged that metabolic activity within

individual beta cells is oscillatory, and that this generates

the membrane bursting activity required for Ca2? influx

and exocytosis [95]. Whether metabolic oscillations are

driven by Ca2? oscillations, or vice versa, is still the source

of debate [95, 96], but the islet context seems to be critical,

since dispersed beta cells display reduced periodicity in

mitochondrial potential [97]. Moreover, total internal

reflection fluorescence (TIRF) microscopy of mouse islets

has shown that near-membrane glucose-induced oscilla-

tions in ATP:ADP are coordinated between small beta cell

clusters [98], confirming earlier observations that

employed lower resolution autofluorescence imaging of

NAD(P)H [99–101]. The mechanisms underlying the syn-

chronous propagation of energy status between beta cells

remain unknown, but may reflect Ca2? feedback and

intrinsic metabolic behavior [96], or alternatively, meta-

bolic coupling via GJs [102, 103].

In addition to glucose, secretory potentiators, including

members of the incretin family, are able to influence beta

cell energetics. The incretin, glucagon-like peptide-1

(GLP-1), is released from the gut in response to bile transit

and glucose-dependently augments insulin secretion [104–

106]. While its effects on cAMP-Epac2, MAPK, and beta-

arrestin signaling pathways are well characterized [107–

109], little is known about whether GLP-1 alters the beta

cell metabolic set point to influence ATP:ADP. Whereas

luciferase-based studies by us have demonstrated a role for

GLP-1 in mitochondrial ATP synthesis in clonal MIN6

beta cells [110], others have observed no effect of the in-

cretin in rodent islets using biochemical detection methods

[111]. Since ATP dynamics and/or cell heterogeneity may

mask actions of incretin on metabolism, the effects of

GLP-1 on intracellular free ATP:ADP were monitored with

cellular resolution by expressing the recombinant probe

Perceval throughout the first few layers of rodent and

human islets [8, 55, 112]. Using these methods, we found

that GLP-1 engages a metabolically coupled subnetwork of

beta cells to amplify insulin secretion, an action that is

dependent upon Ca2? influx and elevations in cAMP [55].

Of note, in these studies, beta cells within mouse islets

responded coordinately to GLP-1 with synchronous

ATP:ADP oscillations, whereas human islets exhibited

more random dynamics. Thus, the regulation of beta cell–

beta cell metabolic connectivity may potentially contribute

to the disparate actions of incretin in rodents and man,

although confirmation of this will require simultaneous

measures of Ca2? and ATP:ADP in islets from both

species.

Glucose- and GLP-1-regulated connectivity: Ca21

signals

Ca2?-imaging of pancreatic islet slices has revealed that

glucose likely drives large-scale increases in population

synchrony by coaxing activity in a scale-free and small-

world network of beta cells [29, 30, 49]. Notably,

propagation of Ca2? waves via GJs is hypothesized to

underlie islet dynamics in response to glucose, since the

length of individual correlated links depends on

Euclidean distance, although long-range communications

are still evident [29]. Confirming these findings, we have

recently shown that the rapid (ms) oscillations in elec-

trical activity are similarly dictated by scale-free and

small-world beta cell wiring patterns [113]. Thus, under

conditions of high glucose, beta cells work together as

defined subpopulations to orchestrate and drive insulin

release from the islet.

As well as glucose, insulin secretion is also reliant upon

the amplifying or potentiating actions of incretins. Indeed,

in humans, almost 70 % of the insulin-raising effects of

oral glucose challenge can be attributed to the incretin

effect [114]. Notably, the insulinotropic activity of exog-

enously administered glucose-dependent insulinotropic

polypeptide (GIP) and GLP-1 is diminished in T2DM [115,

116], suggesting that altered beta cell incretin responsive-

ness may contribute to the disease state, although causality

is not well defined [117]. Since the single biggest T2DM

risk factor remains obesity, and high body mass index

(BMI) individuals present with reduced GLP-1-stimulated

insulin secretion [118, 119], excess lipid may target in-

cretin action to impair beta cell function. To investigate

this, we subjected human islets to fMCI to map population

dynamics, and found that both GIP and GLP-1 recruit a

highly coordinated subnetwork of GJ-coupled beta cells to
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augment insulin secretion [27, 28]. This process of incre-

tin-regulated beta cell connectivity may be a target for the

insulin-lowering effects of free fatty acid (FFA), since it

could be disrupted in a GJ-dependent manner following

exposure to a lipotoxic milieu, and was inversely correlated

with donor BMI [27]. Mechanistically, this may involve

FFA-induced overexpression of inducible cAMP early

repressor gamma (ICER-c), a protein that binds a cAMP-

response element in the Cx36 promoter [120, 121]. By

contrast, a similar effect of incretin on beta cell interac-

tivity was not present in mouse islets, but could be revealed

by placing mice on a high fat diet (HFD) to disrupt normal

glucose responses [27, 28]. We, therefore, speculate that

such divergent regulation of the incretin axis, potentially

stemming from structural and functional differences in islet

architecture, may represent a novel target for pro-diabeto-

genic insults in man.

Genes and connectivity

Type 2 diabetes has a strong hereditary component [122–

124]. Consequently, genome-wide association studies

(GWAS) have identified a number of gene variants linked

with an increased odds ratio (OR) of developing elevated

fasting glucose and T2DM. Although the effects of these

variants are usually quite small, their very existence indi-

cates that genes in the associated loci are highly likely to

play a role in disease etiology [125, 126]. While gene

variants and glucose homeostasis are well studied in man,

relatively less is known about their precise mechanisms of

action at the islet level [125], and in particular upon beta

cell connectivity. Several dozen ([90) risk-associated

polymorphisms have been identified to date, and those with

the strongest OR for development of T2DM, or with known

effects on beta cell–cell communication, are discussed

below (see Fig. 3).

TCF7L2

TCF7L2 is a member of the canonical Wnt-signaling

pathway and a transcriptional partner for beta-catenin.

Individuals who possess a single nucleotide polymorphism

(SNP), rs7903146, in intron 3 of the TCFL72 gene on

chromosome 10, have an increased risk of developing

T2DM, with an OR of 1.45 for the T allele [127–130]. This

is believed largely to be due to defects in insulin secretion

(insulin sensitivity is slightly impaired in T allele carriers),

as well as a markedly (*50 %) attenuated incretin effect

[127, 131, 132] (though see [125] for a discussion of a role

for hepatic glucose handling). Although the subject of

debate, these results have subsequently been confirmed in

conditional rodent models and human islets. Thus, TCF7L2

silencing leads to impaired insulin secretion from isolated

mouse and human islets [133, 134], and deletion of Tcf7l2

throughout the pancreas or selectively in the beta cell

causes glucose intolerance [135, 136], particularly after

oral glucose administration, with the observed effects

increasing with age or exposure to an HFD. Of note, a

further study failed to detect any effects on glycemia of

deleting Tcf7l2 in the adult beta cell, although this report

was restricted to examination of intraperitoneal glucose

tolerance in young (\12 weeks) animals [137]. GLP-1-

stimulated insulin secretion is strongly inhibited by Tcf7l2

elimination in vitro [134, 135], the latter due largely to

reduced GLP-1R expression and defects in the exocytotic

apparatus [133, 135, 138, 139]. Interestingly, when inves-

tigated in dissociated islets, TF7L2 knockdown leads to a

slight potentiation of glucose-induced Ca2? increases [133,

140], although only single (or clusters) of beta cells were

studied, precluding analysis of synchrony or coordination.

By contrast, ablation of the Tcf7l2 gene selectively in the

beta cell through Ins1Cre-directed recombination of flox’d

alleles impairs these increases when assessed in the intact

islet setting [136]. The reasons for these differences remain

Fig. 3 Potential mechanisms by which T2D-associated genes may

alter beta cell connectivity. ZnT8 gene variants disrupt cytosolic Ca2?

and Zn2? handling, and both of these ions are required for normal GJ

activity. ADCY5 gene variants decrease glucose-stimulated cAMP

rises, a second messenger shown to increase GJ communications

between beta cells. By contrast, TCF7L2 gene variants may disrupt

normal GJ function through effects upon glucose-stimulated Ca2?

increases, as well as GLP-1-stimulated cAMP generation

Beta cell connectivity in pancreatic islets 459
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obscure but suggest that either silencing in nonbeta cells in

the former case, or altered beta cell–beta cell interactions in

the latter, are at play. Of note, Tcf7l2 silencing in INS1 beta

cells lowers the expression of Ca2? channel subunits [141],

suggesting that TCF7L2 may exert control, either directly

or indirectly, over the Ca2?-signaling machinery. Of rele-

vance, when studied in islets from mice maintained on an

HFD, glucose-stimulated beta cell connectivity in Tcf7l2

null animals was significantly reduced versus that of con-

trol animals [136] (manuscript submitted). Of note, this

alteration was not associated with any changes in GJ

mRNA expression, though may conceivably involve

changes in Cx36 protein abundance.

ADCY5

ADCY5 gene products encode isoform V of the adenylate

cylase family, a type III Ca2?-inhibited enzyme tasked

with generation of cAMP [142, 143], a second messenger

involved in glucoregulation as part of the ‘‘amplifying’’

pathway [144]. Whereas other isoforms predominate in the

rodent islet, ADCY5 is among the most abundant members

of this family in human beta cells [26, 145]. The T2DM-

associated SNP rs11708067 on chromosome 3 lies within

intron 3 of the ADCY5 gene and is associated with

increased fasting glucose and 2-h glucose, but not oral

glucose responses [146], with an OR of 1.23 for the major

A-allele [147]. Using lentiviral shRNA approaches to

silence gene and protein expression in human islets, we

have recently shown that ADCY5 is required for the cou-

pling of glucose but not incretin to insulin secretion [148].

Although the former is partly due to impaired insulin

processing (i.e., proinsulin ? insulin conversion) [149],

islets depleted for ADCY5 also displayed impaired glu-

cose- but not GLP-1-induced increases in cAMP, and

consequent impairments in glucose-induced metabolism

(ATP:ADP ratios). Moreover, ADCY5-silenced islets

showed more stochastic long-term evolutions in coordi-

nated beta cell activity following glucose exposure [148].

By contrast, GLP-1-regulated connectivity was normal,

suggesting that ADCY5 is unlikely to link incretin sig-

naling to cAMP generation and beta cell communication.

Thus, ADCY5 preferentially affects glucose-induced

human islet dynamics, possibly through cAMP, which has

been shown to increase GJ conductance and trafficking [22,

73, 150], although this has only been so far demonstrated in

rodent tissues.

ZnT8

The R325W variant of SLC30A8, the gene encoding zinc

transporter 8 (ZnT8), is associated with reduced insulin

secretion. ZnT8 is highly expressed in beta cells where its

activation leads to Zn2? accumulation in secretory gran-

ules, promoting normal insulin crystallization, storage, and

processing [151–154]. While global ZnT8 deletion results

in mild insulin secretory deficits, which are only observed

in vivo and are undetectable at the dispersed islet level

[151, 152], beta cell-specific deletion of the same gene has

been reported either to inhibit [153] or stimulate [155]

insulin release from isolated islets. Indeed, it has been

suggested that defects in glycemia resulting from either

global or beta cell specific ZnT8 elimination [152, 153,

155] are due to enhanced insulin clearance by the liver

[155]. In any case, and complicating the picture further,

rare loss-of-function mutations in SLC30A8 protect against

T2DM in man [156]. Nonetheless, alterations in ZnT8

expression lead to altered Ca2?/Zn2?-handling [133, 152,

157], and GJ gating is dependent on fine-regulation of both

ions in the vicinity of the plasma membrane [158, 159];

whether this also applies to islets is unknown. Thus, while

an effect of SLC30A8/ZnT8 risk alleles on beta cell–beta

cell connectivity is not entirely implausible, further studies

are required to assess effects of the gene on coordinated

activity and the mechanisms underlying this (e.g., changes

in Cx36 expression or GJ function).

It should be noted that the studies concerning ADCY5,

TCF7L2 and beta cell connectivity were conducted on

models in which expression has essentially been eliminated

(through gene silencing or genomic deletion). It is likely

that any phenotype observed in vivo in man is a conse-

quence of more subtle cellular changes coupled with

exposure to a permissive environment. It remains to be

seen whether similar effects can be recapitulated in tissue

obtained from normoglycemic donors harboring specific

risk alleles. Lastly, even the strongest GWAS hits con-

tribute only marginally (though in a statistically significant

manner) to T2DM risk, and effects of gene variants on beta

cell coordination are presently of uncertain importance in

the absence of defined mechanisms/targets.

Rescuing beta cell connectivity during T2DM

Since the intraislet regulation of insulin release may be

altered by both genes and the environment to reduce insulin

secretion, beta cell connectivity may represent a novel

target for the pharmaceutical restoration of functional beta

cell mass. While upregulated GJ-signaling provides a

logical starting point for the enhancement of beta cell

connectivity, investigation of Cx36-modulating com-

pounds has so far been complicated by their off-target

effects. Notwithstanding, a recent study has described a

panel of seventeen molecules that increase beta cell–beta

cell communication, and further screening is warranted to

validate their activity profiles and specificity [160]. In
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addition, atlases of both GPCR and paracrine factor

expression/secretion have been reported for human and

rodent islets [94, 161], potentially accelerating the eluci-

dation and development of putative candidates for

manipulation of beta cell connectivity. Alternatively, per-

sonalized medicine/deep-phenotyping approaches [162]

could be used to identify individuals where the beneficial

effects of GLP-1 and GIP to enhance beta cell connectivity

may be exploited [27, 28]. For example, carriers of

ADCY5 risk alleles are predicted to respond well to the

insulin-raising actions of the incretins, as this gene pref-

erentially impacts glucose action [148]. By contrast, obese

subjects would potentially benefit more from the pro-

communicatory effects of the sulfonylureas due to altered

GLP-1- and GIP-signaling inputs [27, 163, 164].

Future perspectives

The network description of beta cells is still in its infancy

and more refined methods are required to better delineate

connection topology. Without statistical methods, such as

Granger causality, it is impossible to say whether coordi-

nated behavior in an individual cell is the origin or

consequence of the connections it shares with its neighbors

[42, 165]. Likewise, our understanding of the structural

basis for functional connectivity is presently lacking and

imaging approaches are required that allow the large-scale

interrogation of any underlying physical cell–cell linkages.

This is particularly applicable to human islets, where dif-

ferences in architecture may lead to divergent regulation of

insulin secretion and susceptibility to T2DM insults [28,

37, 64]. Lastly, it remains unknown how beta cell popu-

lation dynamics are influenced by episodes of functional/

pathological plasticity in the pancreas, and whether a

wiring footprint persists during T2DM that can be exploi-

ted to restore insulin secretion.

Summary

The three-dimensional organization of beta cells into islets

produces a gain of function in insulin release by fine-tuning

beta cell intercommunication. Each islet operates as a self-

supported signaling unit in which the spatiotemporally

precise propagation of information between neighboring

and distant cell ensembles is facilitated by GJ, neural, and

paracrine communications. Using imaging approaches

together with statistical methods borne from graph theory,

the flow of information throughout the beta cell population

can be monitored online and mapped. Pertinently, coordi-

nated activity in rodent islets appears to be driven and

orchestrated by a subpopulation of beta cells, and wiring

density can be increased by both glucose and incretin to

stimulate hormone release. We, therefore, propose that,

alongside ‘‘cell autonomous’’ effects, environmental and

genetic insults may target the intraislet regulation of insulin

secretion to precipitate beta cell dysfunction and glucose

intolerance, contributing to the risk of developing T2DM.
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