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Yin et al in Nat Methods 11:106–112, 2013). In addition, 
many diseases, including several cancers, are caused by 
aberrant signalling through the two pathways (Bolós et al 
in endocr Rev 28: 339–363, 2007; Clevers in Cell 127: 
469–480, 2006). In this review, we will outline the two sig-
nalling pathways, describe the different points of interac-
tion between them, and cover how these interactions influ-
ence development and disease.

Keywords Notch · wnt · Signalling crosstalk · 
Development · Disease

Notch signalling

The Notch gene encodes a single-pass transmembrane 
receptor protein that functions as a membrane-bound tran-
scription factor. The extracellular domain contains eGF-
like repeats, which are responsible for ligand binding, and 
the LIN12-Notch repeats that prevent premature recep-
tor activation [16]. The intracellular region comprises the 
RAM23 domain that is required for the interaction with 
members of the RBPj family of transcription factors [17], 
seven cdc10/ankyrin repeats that bind the Mastermind fam-
ily of co-activators [18], nuclear localisation sequences, 
a transcriptional activation domain, and a PeST domain 
that is involved in protein degradation (Fig. 1a). Follow-
ing binding of the Delta/Serrate/Jagged family of ligands, 
the Notch protein undergoes sequential cleavage by the 
ADAM10/Kuzbanian metalloprotease and γ-secretase 
enzymes (Fig. 1b). The second of these cleavages occurs 
within the transmembrane domain and releases the intra-
cellular domain (NICD) [19, 20]. NICD then translocates 
to the nucleus, where it binds the RBPj transcription factor 
and the Mastermind co-activator to activate transcription of 
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Fig. 1  Notch signalling pathway. a. Schematic of mammalian Notch 
proteins. The extracellular domain contains the eGF-like repeats that 
bind ligand and the LIN12-Notch repeats (LNR) that prevent prema-
ture receptor activation. The main regions of the intracellular domain 
are the RAM23 (RAM) domain that is required for the interaction 
with members of the RBPj family of transcription factors, the ankyrin 
repeats (ANK) that bind the Mastermind (MAML) family of co-acti-
vators, two nuclear localisation sequences (NLS), and a transcrip-
tional activation domain (TAD). b. The mammalian Notch receptors 
are synthesised in the eR as a co-linear precursor which is cleaved 
by a Furin-like convertase at site 1 (S1) within the Golgi. Cleavage 
results in two non-covalently associated subunits expressed at the cell 
surface. Notch signalling is triggered by ligand binding to the eGF-
like repeats (grey), exposing a second cleavage site (S2) processed by 

ADAM metalloproteases, generating a Notch intermediate. Two more 
cleavages occur at site 3 and 4 (S3 and S4) of the transmembrane 
domain by γ-secretase, releasing the Notch intracellular domain 
(NICD). NICD migrates to the nucleus and binds to RBPj transcrip-
tion factors displacing co-repressors and recruiting activators, such as 
Mastermind. endocytic trafficking of Notch ligands, promoted by e3 
Ubiquitin (Ub) ligases Mindbomb (Mib) and Neuralized (not shown) 
regulate productive ligand–receptor interactions. Ligand-independent 
Notch activation can also occur by Deltex (Dx) promoting the endo-
cytosis and trafficking of Notch through the early endosome and its 
cleavage on the outer membrane of the multivesicular body (MvB). 
Suppressor of Deltex [Su(Dx)] counters Dx activity and promotes 
lysosomal degradation of NICD
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target genes. The RBPj transcription factors are also known 
as RBPjκ or the CSL family, whose name is derived from 
the human, Drosophila and C. elegans homologues CBF-
1, Suppressor of Hairless (Su(H)), and LAG1, respectively. 
we shall use the term RBPj to denote this family of tran-
scription factors. The most well characterised Notch/RBPj 
target genes are the basic helix–loop–helix transcrip-
tion factors: Hairy and Enhancer of Split (Hes) and Hes 
related with YRPW motif (Hey) [21, 22], although genes 
regulating the cell cycle or apoptosis are also directly 
expressed in response to Notch signalling [23–29]. It is 
important to note that in the absence of Notch signalling, 
RBPj functions as a transcriptional repressor by binding 
co-repressors, such as Hairless in Drosophila, and MINT, 
KyoT2, HDAC (histone-deacetylase), and SMRT (silencing 
mediator of retinoid and thyroid receptors) in vertebrates 
(Fig. 1b; reviewed in [30]). Lastly, there is good evidence 
that NICD can regulate gene expression through its interac-
tion with other transcription factors, including SMADs and 
LeF1 (reviewed in [31–35]).

Notch activity is also tightly regulated by ubiquitination 
and endocytosis which can lead to signalling in the absence 
of a Delta/Serrate/Jagged ligand (Fig. 1b). Notch receptors 
present on the surface of the cell are constantly endocy-
tosed and recycled back to the membrane [36] or degraded 
in the lysosome [37]. The trafficking of Notch through the 

endocytic system is regulated by the balance between the 
e3 ubiquitin ligases, Deltex and Suppressor of Deltex. Sup-
pressor of Deltex favours the trafficking to the lysosome 
and hence Notch degradation. On the other hand, Deltex 
promotes the retention of Notch in the limiting membrane 
of the multivesicular body, which can lead to the release of 
NICD by γ-secretase-mediated cleavage and ligand-inde-
pendent signalling once the extracellular domain of Notch 
has been degraded within the multivesicular body [38].

Wnt signalling

A conserved wnt signalling pathway has been identified in 
vertebrate and invertebrate model systems, which regulates 
the cytosolic and nuclear levels of β-catenin (Armadillo in 
Drosophila). This is termed the wnt/β-catenin signalling 
pathway and is depicted in Fig. 2.

In the absence of wnt ligands, the β-catenin molecules 
that are not found with the adherens junctions, but are 
instead present in the cytosol, are bound and processed 
by a destruction complex. This destruction complex is 
formed by the scaffolding proteins Axin and APC [39, 40], 
and the kinases GSK3β (Shaggy in Drosophila) [41] and 
Casein kinase 1 (CK1) [42–44]. The limiting component 
within this destruction complex is Axin, as it is the least 

Fig. 2  wnt/β-catenin signal-
ling pathway. a. In the absence 
of wnt ligand, β-catenin is 
recruited by the Axin destruc-
tion complex, sequentially 
phosphorylated by CK1 and 
GSK and targeted for deg-
radation. Cytosolic levels of 
β-catenin (β-cat) are maintained 
at a low level, and β-catenin 
is mainly found at adherens 
junction. b. extracellular wnt 
binds to Frizzled (Fzd) and 
LRP5/6 co-receptors at the cell 
membrane and activates signal-
ling. Subsequently, Dishevelled 
(Dvl) inactivates the destruction 
complex and β-cat accumulates 
in the cytosol. This allows trans-
location of β-cat to the nucleus 
where it activates transcription 
of target genes upon binding to 
LeF/TCF transcription factors
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abundant member, but interacts with all the other compo-
nents. Once β-catenin is bound to the destruction complex, 
it is initially phosphorylated by CK1α generating a bind-
ing site for GSK3β, which subsequently phosphorylates 
three further Ser/Thr residues. Phosphorylated β-catenin 
interacts with the e3 ubiquitin ligase β-TrCP (β-transducin 
repeat containing protein), which targets it for proteosomal 
degradation [45, 46]. In this way, the cytoplasmic concen-
tration of β-catenin is maintained at low levels. Therefore, 
in unstimulated cells, most of the endogenous β-catenin 
is found at the membrane, bound to e-cadherin, α-catenin 
and the cytoskeleton, regulating cell–cell adhesion [47, 48]. 
In the nucleus, in the absence of wnt/β-catenin signalling, 
the TCF/LeF family of transcription factors interact with 
Groucho proteins and together act as transcriptional repres-
sors [49, 50].

In the presence of wnt ligands, a receptor complex 
containing Frizzled and LRP5/6 proteins is formed at the 
plasma membrane. This induces the phosphorylation of 
LRP5/6 by GSK3β, priming a second phosphorylation by 
CK1α. Subsequently, both Dishevelled (Dvl, Dsh in Dros-
ophila) and Axin are recruited to the membrane, with Dvl 
interacting with the C-terminal tail of the Frizzled protein 
and Axin with the hyperphosphorylated LRP5/6, form-
ing an intracellular bridging complex (reviewed in [51]). 

This sequesters Axin away from the destruction complex, 
allowing cytoplasmic β-catenin/Armadillo to accumu-
late quickly. Upon stabilisation, β-catenin translocates to 
the nucleus and accumulates [52, 53], whereupon it binds 
with LeF/TCF family of transcription factors [54, 55]. This 
interaction physically displaces Groucho [56] and recruits 
transcriptional co-activators, including Pygopus and Leg-
less [57–59], leading to the expression of specific target 
genes, such as Axin2 and c-Myc [60, 61].

wnt proteins also activate several other downstream 
signalling pathways: the most well characterised of these 
non-canonical wnt pathways are: (I) the planar cell polar-
ity pathway, which was identified in Drosophila and is 
required to establish the polarity within the plane of an epi-
thelium [62, 63]; and (II) the wnt/calcium pathway, first 
described in vertebrates [64].

Mechanisms underpinning the crosstalk between the 
Notch and Wnt pathways

The molecular mechanisms underpinning the interactions 
between signalling pathways can be placed roughly into 
three classes: co-operative regulation of transcriptional 
targets; transcriptional targets of one pathway affecting 

Fig. 3  Interactions between the Notch and wnt signalling path-
ways. Notch and wnt signalling pathways interact in three main 
ways. a Co-operative regulation of transcriptional targets. when both 
pathways are active at the same time, additional targets that require 
input from both pathways can be transcribed. b Transcriptional tar-
gets of one pathway affect the other. In this case, one pathway acti-
vates expression of the ligand for the second pathway, resulting in 

sequential signalling. c Direct molecular crosstalk. Crosstalk can be 
inhibitory (left) or activating (right). If the pathways are linear, then 
crosstalk can alter relative output levels (quantitative—not shown). If 
more than one branch is activated downstream of a ligand (blue), then 
crosstalk can affect the type of response (qualitative—compare left 
and right with centre)
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another, resulting in temporally or spatially separated activ-
ity; and direct molecular crosstalk between the signal trans-
duction machineries (Fig. 3). The described interactions 
between Notch and wnt signalling fall into each of these 
categories.

Co-operative regulation of transcriptional targets

One of the first pieces of direct evidence of an interaction 
between the Notch and wnt signalling pathways was the dis-
covery that Notch and wingless together regulate vestigial 
expression at the boundary formed between the developing 
dorsal and ventral surfaces of the fly wing; wingless was the 
first wnt ligand identified in Drosophila. The enhancer ele-
ment that regulates expression of vestigial at the dorso-ventral 
boundary contains both dTCF and Suppressor of Hairless 
(the Drosophila homologue of RBPj) binding sites. Co-acti-
vation of both pathways leads to synergistic activation of the 
enhancer element in the developing wing [65]. Co-operative 

regulation of gene expression has also been observed in verte-
brates, where NICD, β-catenin and RBPj form a complex that 
activates transcription [66, 67]. For example, Yamamizu and 
colleagues detected a complex of RBPj, NICD and β-catenin 
that binds to RBPj binding sites within the enhancer/promoter 
elements of several arterial genes. The complex forms in the 
endothelial cells that line both embryonic and adult arteries 
but not in the cells lining veins, suggesting that the complex 
plays an important role in distinguishing arterial and venous 
endothelial cells. In keeping with this, dual activation of 
β-catenin and NICD is required to induce arterial endothelial 
cell fate in Flk1+ eS-derived cells, a fate that neither protein 
alone was able to induce, and both proteins enhanced arterial 
gene expression during in vivo angiogenesis.

Transcription-dependent interaction

A common motif of Notch–wnt interactions is the expres-
sion of one pathway’s ligand in response to signalling 

Fig. 4  wingless–Notch interactions shape the developing fly wing. The 
adult fly wing comprises two overlaid epithelial sheets: the dorsal side 
(D-yellow) and the ventral side (v-green) with wing margin tissue at the 
D-v border (purple) (top panel). The adult wing tissue is derived from 
the larval imaginal disc (left), which is patterned by wingless–Notch 
interactions (outlined below). within the developing wing, Notch sig-
nalling is initially activated in a broad stripe at the D-v boundary, by 
expression of the ligands Serrate and Delta in the D and v compart-

ments (left). Notch activates the expression of wg (purple), which then 
refines this stripe of Notch activity in two ways: wingless signalling 
maintains Notch ligand expression in the cells that flank the margin so 
that they can signal back to the margin cells and maintain Notch activity, 
and wingless also inhibits Notch signalling in the cells outside of the 
margin through direct crosstalk. These interactions result in a gradient of 
wingless activity with high threshold targets expressed close to the D-v 
boundary and lower threshold targets expressed further away
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through the other. This is used repeatedly throughout devel-
opment to generate either temporal or spatial separation of 
Notch and wnt pathway activity. For example, the oscilla-
tions in gene expression that drive somitogenesis are due in 
part to the LeF1-mediated regulation of Delta-like1 ligand 
in vertebrates [68]. This forms part of the interlinked but 
out-of-phase oscillations of wnt, Notch and FGF activ-
ity that pattern the segmented vertebrate body plan [69]. 
Alternatively, spatial separation of Notch and wnt signal-
ling is required during formation of boundaries between 
developing tissues. This occurs during the segmentation 
of the vertebrate hindbrain into rhombomeres [70, 71] and 
the specification of the dorsal (D) and ventral (v) compart-
ments in the developing Drosophila wing (Fig. 4) [72–75]. 
In both cases, Notch signalling is activated in the cells that 
make up the boundary between adjacent compartments. 
These boundary cells then produce long-range signalling 
molecules, such as wnts, that orchestrate the growth and 
patterning of the neighbouring compartments. within the 
developing Drosophila wing, Notch signalling is initially 
activated in a broad stripe at the dorso-ventral boundary, or 
future wing margin. This induces the expression of the wnt 
protein wingless which refines this stripe of Notch activity 
in two ways. Firstly, wingless signalling maintains Notch 
ligand expression in the cells that flank the margin so that 
they can signal back to the margin cells and maintain Notch 
activity and wingless expression [4, 73]. Secondly, wing-
less also inhibits Notch signalling in the cells outside of the 
margin through direct crosstalk (see below). In addition to 
patterning the body plan by forming boundaries between 
defined territories, transcription-dependent wnt–Notch 
interactions are also required to specify the size of particu-
lar domains. For example, wnt signalling positively regu-
lates the expression of the Notch ligand Jag1 during the 
development of the otic placode in the mouse to specify the 
size of the placode [76].

Not all transcriptional interactions are at the level of 
Notch/wnt ligands. For example, Notch/RBPj-dependent 
activation of Frizzled receptor expression is required for 
optimal differentiation of dendritic cells from haematopoietic 
stem cells (HSCs). Here the surrounding stroma expresses 
Notch ligands, activating Notch signalling in HSCs and 
upregulating Frizzled expression [77]. In the developing 
Drosophila eye, PCP signalling defines the fate of two pho-
toreceptors: R3 and R4. Frizzled/Dsh signalling is active in 
R3 and activates expression of Neuralized, which promotes 
Delta function in R3 and therefore Notch activity in R4 [78]. 
Conversely, in mammary stem cells (MaSCs) wnt signal-
ling inhibits Notch activity through a β-catenin/Pygopus2-
dependent remodelling of the chromatin at the Notch3 locus 
that prevents expression of the Notch3 gene [79]. This pro-
motes the self-renewal of MaSC as Notch3 signalling is 
required for the differentiation of these cells.

Direct molecular crosstalk between signal transduction 
machinery

There are many lines of evidence that suggest that Notch 
and wnt signal transduction machineries can interact 
with each other and directly affect signalling output from 
the other pathway. Below we will summarise the major 
findings.

Dishevelled inhibits Notch

Molecularly, Dishevelled has been shown to physically 
interact with Notch in vivo and in yeast-2-hybrid studies 
[3, 80–82]. Furthermore, the two proteins co-localise when 
expressed in Drosophila S2 cells [3]. Functionally, the 
Dishevelled interaction inhibits Notch signalling and has 
been shown to disrupt the lateral inhibition signal mediated 
by Notch that limits the specification of sensory organ pre-
cursor (SOP) cells [3]. Lateral inhibition signals ensure that 
those SOPs that do develop are separated from one another. 
Consequently, many more SOPs form when Dishevelled 
is overexpressed and neighbouring cells can also develop 
as SOPs. Interestingly, there is a marked difference in the 
Dishevelled and Armadillo/β-catenin overexpression phe-
notypes [83]. Although many more SOPs develop in both 
cases, the SOPs are evenly spaced when Armadillo/β-
catenin is overexpressed. Thus, Dishevelled has the dual 
function of activating Armadillo and simultaneously inhib-
iting Notch activity. However, it is not entirely under-
stood how Dishevelled inhibits Notch signalling, although 
experiments suggest one mechanism may involve wing-
less/Dishevelled promoting Notch endocytosis [81]. Lastly, 
similar inhibition of Notch signalling by Dishevelled has 
been shown during the establishment of planar polarity 
in the Drosophila eye and leg epithelium, linking Dishev-
elled’s role in wnt/PCP signalling to the positioning of 
Notch activity [84, 85].

Dishevelled inhibits RBPj

we recently identified a novel point of crosstalk, whereby 
Dishevelled limits Notch signalling in mammalian cells 
[6]. In reporter gene assays, Dishevelled inhibits Notch 
pathway activity induced by treatment with Notch ligand, 
or overexpression of active forms of the Notch and RBPj 
proteins. Dishevelled does so by binding and sequestering 
RBPj proteins away from the nuclear fraction that contains 
active transcription factors. To assess the importance of this 
crosstalk in vivo, we examined whether Dishevelled influ-
enced the spacing of ciliated cells in the epidermis of the 
Xenopus embryo. The spacing of these cells is regulated 
by Notch-dependent lateral inhibition [86]. we found that 
the level of Notch signalling, and thus the spacing of the 
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ciliated cells, is regulated by the level of Dishevelled and 
its ability to bind RBPj. Furthermore, this mode of cross-
talk is qualitatively different from other forms of crosstalk 
between developmental signalling pathways and Notch 
receptors described previously [31]: Dishevelled inhib-
its signalling by all four Notch paralogues as it targets the 
unique and common pathway component, RBPj, that is 
found downstream of all Notch proteins.

GSK‑3β/Notch crosstalk

In mammalian cells, GSK-3β has been shown to physically 
bind and phosphorylate the intracellular domain of two 
Notch paralogues. However, the outcome of this interaction 
varies as N1 ICD is positively regulated, whilst the activity 
of N2 ICD is negatively regulated by GSK-3β. GSK-3β sta-
bilises N1 ICD via phosphorylation, which promotes Notch 
signalling [87]. Consistent with this, the activity of a Notch 
reporter construct is reduced in GSK-3β null fibroblasts 
but it is not abolished. In contrast, GSK-3β does not affect 
the stability of N2 ICD, but instead reduces the ability of 
N2 ICD to signal. Negative regulation may occur through 
a decrease of the ability of Notch2 to bind co-factors due 
to the juxtaposition of the binding sites for GSK-3β and 
the co-activator CBP [88]. In the latter study, wnt signal-
ling, which reduces the activity of GSK-3β, was shown to 
increase the activation of the Hes-1 promoter by Notch2. 
This difference between Notch1 and Notch2 may reflect 
the specificity of individual Notch molecules, but it may 
also reflect the importance of cellular context in signalling 
outcomes as the experiments were conducted in different 
systems.

Notch inhibits Armadillo/β‑catenin

Several groups have described complex genetic interac-
tions between Notch and wingless mutations in Drosoph-
ila, which suggest that Notch can inhibit wingless signal-
ling [80, 89–93]. More recent reports provided a detailed 
mechanism for these genetic interactions, whereby Notch 
acts independently of ligand and RBPj-dependent tran-
scription to reduce the amount of the active form of Arma-
dillo in the cell. In the wing disc, membrane-bound Notch 
associates with Armadillo at the adherens junction and as 
Notch is endocytosed it causes ‘active’ Armadillo to be 
trafficked as well [94]. Consequently, Armadillo appears 
within endosomes and is ultimately degraded, reducing 
pathway activity. In vertebrates, a similar trafficking model 
exists for Notch/β-catenin antagonism in the differentia-
tion of multipotent cardiac progenitor cells [95, 96]. Again, 
this work demonstrated that membrane-bound Notch 
can physically associate with dephosphorylated, ‘active’ 
β-catenin and promote its endosomal trafficking, leading 

to its degradation in the lysosome. Interestingly, the inhi-
bition of β-catenin function does not require the function 
of γ-secretase, arguing that the inhibition of wnt/β-catenin 
signalling by membrane-bound Notch does not require the 
release of NICD or the expression of downstream Notch 
targets [95, 97]. On the other hand, work from several 
groups has shown that NICD can also inhibit wnt/β-catenin 
signalling [98], and that this inhibition may be mediated 
by the expression of downstream Hes/Hey proteins [99] or 
the recruitment of transcriptional co-repressors by NICD 
to β-catenin binding sites within wnt target genes [100]. 
Recent work from our own lab suggests that NICD inhibits 
β-catenin activity directly by forming a complex that pre-
vents β-catenin binding its target sites, and instead recruits 
β-catenin to NICD/RBPj targets sites ([6] Hidalgo-Sastre, 
Acar et al. unpublished), consistent with the observations 
in cell lines, neural precursor cells and arterial endothelial 
cells described above [66, 67, 101].

Effect of direct molecular crosstalk

One key property that direct inhibitory molecular cross-
talk can confer is the rapid switch between Notch-
ON/wnt-OFF and wnt-ON/Notch-OFF states without 
having to rely on transcriptional feedback loops. The 
activity of Dishevelled in promoting wnt signalling and 
limiting signalling through the Notch pathway drives the 
wnt-ON/Notch-OFF state. Conversely, Notch can both 
limit β-catenin activity and promote RBPj transcriptional 
activity, possibly also co-opting β-catenin to RBPj pro-
moters, to generate a Notch-ON/wnt-OFF state. In both 
cases, the binary switch between states can occur rapidly 
and independently of the transcription of pathway com-
ponents. Given the many contexts in which Notch and 
wnt have opposing effects (reviewed in [102]), the tem-
poral transition from a state of Notch-ON/wnt-OFF to 
wnt-ON/Notch-OFF, or vice versa, is critical for robust 
and precise development. For example, during early 
embryonic myogenesis and in muscle repair in the adult, 
the requirement to switch between high Notch signalling 
and high wnt signalling is evident [103, 104]. Here, an 
initial peak of Notch signalling is required to trigger the 
differentiation programme of progenitors and to expand 
the muscle progenitor pool prior to terminal differentia-
tion. However, Notch activity must be silenced and wnt 
signalling then activated for terminal differentiation to 
occur appropriately. If this temporal switch does not take 
place and the Notch signal is maintained, proper myogen-
esis fails to occur [104], even in the presence of active 
wnt signalling [103]. The latter result suggests that direct 
inhibitory crosstalk may be a more common feature of the 
cell-fate antagonism between the Notch and wnt path-
ways than has previously been appreciated.
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Integrated Notch–Wnt activity and the control of gene 
regulatory networks

The wnt and Notch signalling pathways are so intertwined 
during development that it has been suggested that they 
form an integrated signalling device termed ‘wntch’ [102]. 
The role of wntch is to limit variability in terms of sharp-
ening boundaries and regulating stochastic cell-fate deci-
sions at the population level. Comparison of tissue home-
ostasis in the fly and mammalian gut suggests that wntch 
activity can also regulate the balance between stem cells, 
progenitors and differentiated cells within a tissue, as we 
shall outline below.

One classic example of sharpening boundaries is the 
patterning of the Drosophila wing margin, as outlined 
briefly above (Fig. 4). Notch activity positions the bound-
ary between the dorsal and ventral compartments and 
induces wingless expression in the boundary cells. wing-
less then signals to the surrounding cells to increase expres-
sion of the Notch ligands Delta and Serrate, which signal 
back to Notch receptors at the boundary to maintain wing‑
less expression [4, 74]. However, this transcriptional feed-
back loop is also impacted by direct molecular crosstalk. 
The initial wingless expression gradient is broad and shal-
low, but as wingless activates Dishevelled and Dishevelled 
inhibits Notch signalling, Notch activity and thus wingless 
expression is refined into a sharp stripe at the boundary [5]. 
This refinement is required for the proper patterning of the 
adult wing. There are many similarities between the pat-
terning of the Drosophila wing and the patterning of the 
rhombomeres in the vertebrate hindbrain. Here again, wnt 
proteins expressed at the rhombomere boundary promote 
Notch ligand expression in adjacent cells to maintain Notch 
activity. The boundary then also serves as a wnt signalling 
source as Notch promotes wnt expression [70, 71, 105]. 
Thus, the mechanisms that maintain the spatial separation 
of Notch and wnt signalling to pattern tissues appear to be 
conserved from Drosophila to vertebrates.

The recent turn to computational modelling of biologi-
cal phenomena has confirmed just how important the direct 
molecular crosstalk between Notch and wnt pathways is 
in patterning tissues. In fact, mathematical modelling of 
Drosophila wing patterning has shown that it is only once 
the crosstalk between Notch and wnt is factored into the 
analysis that the model can reproduce the dynamics seen 
in vivo [106]. This study also revealed a point of cross-
talk that had previously been overlooked and is required 
to maintain Notch signalling at the dorso-ventral bound-
ary, and thus generate a stable pattern of gene expression 
in the surrounding tissue. A refractoriness to wingless 
signalling must be induced within the wingless-express-
ing cells of the boundary; otherwise, the boundary cells 
would also respond to wingless and inhibit Notch activity 

through Dishevelled-mediated crosstalk, thus temporally 
limiting expression of wingless and its target genes. Simi-
larly, modelling of the developing chick feather bud has 
revealed a requirement for Notch/wnt crosstalk [107]. A 
“zone of polarizing activity” located in the posterior feather 
bud mediates the directional elongation of the feather bud 
primordium and ensures proper feather orientation. Trans-
plantation experiments show that it is a dermal nuclear 
β-catenin positive zone (DBZ) that bears the polarizing 
activity. The DBZ is shaped by wnt7a, which is secreted 
from the posterior epithelium and acts on dermal cells to 
promote stabilisation and nuclear translocation of β-catenin. 
This activation of wnt/β-catenin signalling has two func-
tional effects: non-muscle myosin IIB is activated, mediat-
ing directional elongation of the feather bud; and Jagged-1 
is expressed activating Notch signalling in the surrounding 
area. Feedback from the Notch pathway is then required to 
refine the boundary of the DBZ. Currently, the molecular 
nature of Notch feedback onto wnt/β-catenin signalling is 
not known, but it is required to translate a weak and noisy 
gradient of wnt7a protein into a broad and relatively homo-
geneous response within a field of cells with a sharp bound-
ary between responding and non-responding cells. when 
Notch signalling is disrupted by treating the chick embryo 
with a γ-secretase inhibitor, many fewer cells respond to 
the wnt7a protein gradient and the sharp boundary of the 
response is lost. The requirement for wnt/Notch feedback 
is recapitulated in a mathematical model in which crosstalk 
stimulates the change from a noisy, gradual wnt gradient to 
a definitive threshold wnt response. This also raises the idea 
that interactions between Notch and wnt signalling not only 
allow the smooth transition from a Notch-ON/wnt-OFF 
to a Notch-OFF/wnt-ON state without transcription, but 
also limit noise within a system to provide a co-ordinated 
response to a wnt signal [102, 108].

The role for Notch and wnt in governing stochastic 
fate decisions at the population level is best studied in the 
equivalence groups that produce the sensory organ precur-
sors (SOP) or the muscle precursors in Drosophila (Fig. 5), 
although there are many examples in both invertebrates and 
vertebrates. In both cases, a group of cells is established 
that all have the potential to become either the Achaete/
Scute-expressing SOP or S59/Slouch-expressing muscle 
precursor but only one cell from the group will eventually 
adopt the fate and in doing so will force the others to adopt 
a secondary fate, though lateral inhibition [109–113]. The 
balance of wingless and Notch signalling tightly controls 
the probability of cells adopting the precursor fate, but it 
does not determine which cell will adopt the fate. Initially, 
RBPj-independent Notch signalling maintains the cells 
within the equivalence group in a naïve state and Ac/Sc 
or S59/Slouch are not expressed. wingless signalling then 
overcomes this Notch-mediated inhibition, promoting a 
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subset of the group to express Ac/Sc or S59/Slouch in a 
‘transition state’. RBPj-dependent Notch signalling then 
limits the number of cells that maintain gene expression 
and adopt the precursor fate through lateral inhibition: 
namely, the cell that stochastically expresses the highest 
level of Notch ligand signals to the surrounding cells to 
prevent them adopting the SOP or muscle precursor fate. 
Consequently, Notch ligand expression is reduced in the 
surrounding cells, reducing the Notch signal received by 
the cell that is adopting the SOP or muscle cell fate. This 
fall in Notch signalling promotes the further differentia-
tion of the cell adopting the SOP or muscle cell fate and 
its increased Notch ligand expression. Thus, this positive 
feedback loop enforces a binary outcome with one cell per 
cluster adopting the SOP or muscle precursor fate.

The many different scenarios in which interactions 
between Notch and wnt signalling regulate stochas-
tic cell-fate decisions raises the question of how the two 
pathways can directly regulate so many different cell-fate 
decisions; it is difficult to see how the RBPj and TCF tran-
scription factors at the base of the two pathways can dis-
tinguish between promoters of many different cell type-
specific genes. The answer most likely lies in the fact that 
both signalling pathways regulate cell-fate decisions in a 

permissive manner and are guided to the promoters of cell 
type-specific genes by pioneer transcription factors already 
present within the cells, rather than specifying fate directly 
[114, 115].

Gut homeostasis as a paradigm for understanding Notch–
wnt interactions in controlling the differentiation along a 
cell lineage

The maintenance of the gut brings together in one tis-
sue many aspects of wntch interactions that have been 
described thus far: evolutionary conservation of Notch–
wnt interactions; iterative use of Notch/wnt antagonism 
to regulate fate decisions; Notch ligands being a transcrip-
tional target of wnt activity; and regulation of stochastic 
fate decisions at the population level. we will now outline 
the mechanisms governing homeostasis on the fly and the 
mammalian intestine (Fig. 6).

The processes regulating the turnover of the fly gut 
and mammalian intestine are remarkably well conserved. 
In both the fly and mammalian intestine, the cell line-
ages comprise an intestinal stem cell (ISC) population 
that resides next to niche cells; the Paneth cells within the 
intestinal crypts in mammals and the escargot+ nests in the 

Fig. 5  wntch signalling controls cell-fate decisions in equivalence 
groups RBPj-independent Notch signalling maintains the cells within 
the equivalence group in a naïve state and Achaete/Scute (Ac/Sc) or 
S59/Slouch are not expressed (white). wg signalling then overcomes 
this Notch-mediated inhibition, promoting members of the group to 
express A/Sc or S59/Slouch in a ‘transition state’ (light green). RBPj-

dependent Notch signalling then limits the number of cells that main-
tain gene expression and adopt the precursor fate through lateral inhi-
bition: that is the cell that stochastically expresses the highest level of 
Notch ligand (dark green) signals to the surrounding cells to prevent 
them adopting the primary fate. A schematic is shown below
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fly intestine [8, 116–118]. At division, the ISCs undergo 
self-renewal and/or differentiation into the transit ampli-
fying (TA) population, termed enteroblasts (eBs) in the 
fly. The TA population then differentiates into the mature 
cells found in the gut: the absorptive lineage [enterocytes 
(eCs)] and the secretory lineage including goblet cells, 
enteroendocrine cells and Paneth cells in mammals, or 

the enteroendocrine (ee) cells in the fly. The intestine is 
one of the most rapidly renewing tissues in the adult; in 
the mouse, each crypt can generate up to 200 cells per 
day, replacing the cells within the intestinal epithelial lin-
ing every 4–5 days [119]. Such a high turnover rate means 
that the self-renewal and differentiation along each lineage 
must be tightly controlled at the population level in order 
to maintain tissue integrity and prevent tumour formation. 
Notch and wnt signals are a vital part of this regulation.

In both cases, wnt/wingless signalling promotes the 
self-renewal of ISCs [8, 117]. whilst it is not clear how the 
transition from ISC to TA fate is controlled in the mamma-
lian gut lining, Notch promotes the adoption of the eB fate 
in Drosophila, suggesting that antagonism between the two 
pathways may control the switch between these two fates 
[116, 118]. However, competition between the two path-
ways is clearly seen at the stage of TA/eB differentiation 
and lineage bifurcation with wnt promoting the secretory 
lineage (goblet, Paneth and enteroendocrine cells in mam-
mals, ee cells in Drosophila), whilst Notch promotes the 
adoption of the absorptive enterocyte cell fate [12, 13, 120, 
121]. At both the self-renewal versus TA decision and the 
lineage split, there must be a clear Notch-ON/wnt-OFF or 
wnt-ON/Notch-OFF response in order to generate the sta-
ble, binary fate decisions. It is likely that direct crosstalk 
between the two pathways plays a significant role in main-
taining the bistable outcome of these decisions. Moreo-
ver, the sequential wnt–Notch activity is achieved in part 
through upregulation of Notch ligands in response to wnt/
wingless signalling in both Drosophila and mammals (Jag1 
in mice, Delta in flies [117, 118, 122]).

Recent work has shown that the ISCs in both tissues are 
maintained with neutral drift dynamics, meaning that the 
fate of the two daughter cells of a dividing ISC are speci-
fied by signalling between the two daughter cells and their 
local environment, rather than being specified through an 
invariant asymmetric cell division [116, 123, 124]. Conse-
quently, when the ISC divides it is possible to obtain two 
ISCs, two TA/eB cells or one of each, although the divi-
sion usually yields one ISC and one TA/eB cell. This also 
means that if an ISC is lost through differentiation, it can 
be replaced by the symmetric division of a neighbouring 
ISC. Given the importance of wnt/wingless and Notch sig-
nalling in ISCs and TA/eB cells, interactions between the 
two pathways may play a role in maintaining the balance 
between the ISC and TA/eB cell populations. Specifically, 
wnt–Notch interactions may regulate the stochastic cell-
fate specification of the two daughter cells from a dividing 
ISC to control the number of ISCs and TA/eB cells within 
the tissue as a whole.

Due to the genetic tractability, it has been possible to 
demonstrate that the two pathways control the balance 
between ISCs and eB cells in Drosophila. Reducing Notch 

Fig. 6  wnt and Notch interactions control gut homeostasis. a Sche-
matic representation of the mammalian intestine. Intestinal stem 
cells (ISC-yellow) reside at the bottom of the crypt along with Paneth 
cells. Stem cell self-renewal is balanced with the production of tran-
sit amplifying cells (TA-green), which move up into the prolifera-
tive zone. TA cells give rise to absorptive enterocytes (blue) and the 
secretory lineage that includes enteroendocrine cells (purple), goblet 
cells (pink) and Paneth cells (coral). b. Schematic of the fly midgut, 
which follows a similar but less elaborative pattern to the mamma-
lian model. Upon division, stem cells can give rise to the intermedi-
ate non-amplifying precursor the enteroblast (eB-green), which then 
differentiates into either the absorptive lineage (enterocyte-eC) or the 
secretory lineage (enteroendocrine-ee). The cells are wrapped in mus-
cle fibres (orange and grey), which are the source of the wnt ligand. 
c. Diagram showing the opposing effects of Notch and wnt signalling 
at the ISC to TA/eB step and the adoption of the secretory (purple) 
versus the absorptive (blue) lineage step. This model holds for both 
mammalian and fly models. (adapted from [116, 139])
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dosage shifts the stable ISC:eB ratio to favour the ISC pop-
ulation, whereas Notch gain of function mutations favour 
the differentiation of eB cells increasing their proportion 
within the stable adult population [116]. The opposite 
phenotype is seen when wingless signalling is increased 
[117]. In this scenario, the ISC population is increased and 
ISC-like tumours develop, which can be rescued by forced 
Notch activation. These results also suggest that Notch/wnt 
interactions may regulate the balance of stem cells and dif-
ferentiated cells in other tissues where stem cell number is 
regulated by neutral drift and the two pathways have oppos-
ing effects on differentiation, such as the skin [7, 9–11]. 
Given the opposing effects of Notch and wnt signalling on 
mammary gland stem cells [125–128], it will be interesting 
to investigate how Notch/wnt interactions affect mammary 
gland biology.

Clinical relevance of Notch–Wnt crosstalk

Given the importance of Notch and wnt signalling during 
development, it is not surprising that their manipulation is 
key to the successful generation of differentiated cells from 
stem cells for therapeutic benefit, for instance to regulate 
the neural differentiation of eS cells [129]. Furthermore, 
the results of Trowbridge and colleagues are of direct rele-
vance to patients needing bone marrow transplants. Using a 
mouse model, they found that GSK-3β inhibition following 
haematopoietic stem cell (HSC) transplantation augmented 
haematopoietic repopulation in recipient mice, improved 
neutrophil and megakaryocyte recovery, recipient survival 
and enhanced sustained long-term haematopoietic repopu-
lation [130]. This was due to the increase in both wnt and 
Notch signalling following treatment with the GSK-3β 
inhibitor, which improves HSC survival and self-renewal; 
however, it is not clear whether the increase in Notch sig-
nalling is due to altered phosphorylation of Notch by GSK-
3β or increased Notch ligand expression downstream of 
β-catenin/TCF transcription. Therefore, GSK-3β inhibi-
tion might be a clinical means to improve the outcome of 
patients receiving transplanted HSCs.

Manipulating Notch and wnt signalling may also sig-
nificantly improve the treatment of liver disease. Following 
significant hepatic injury, damaged cells are replaced by 
the proliferation and differentiation of hepatic progenitor 
cells (HPCs). As with the intestinal lining, Notch and wnt 
signalling have opposing effects on the differentiation of 
HPCs, with Notch signalling promoting cholangiocyte dif-
ferentiation and wnt signalling driving cells into the hepat-
ocyte lineage [131]. Interactions are also seen between the 
two pathways, with wnt signalling promoting hepatocyte 
differentiation, in part by inducing the expression of Numb, 
which inhibits Notch signalling and prevents cholangiocyte 

formation [131]. However, it has become clear recently that 
an imbalance between these pathways during liver regener-
ation can lead to liver disease. In acute necrotising hepati-
tis and the cirrhosis that follows hepatitis C virus infection, 
there is an excess of wnt signalling promoting hepatocyte 
differentiation [131, 132]. In contrast, excessive Notch 
signalling occurs in primary biliary cirrhosis and primary 
sclerosing cholangitis driving cholangiocyte differentia-
tion [131, 132]. Consequently, rebalancing the interactions 
between the two pathways is likely to significantly influ-
ence the treatment of these debilitating diseases.

Interactions between the pathways also play an impor-
tant role in other human pathologies. In both breast and 
colorectal cancer, there is a recurrence of the common 
interaction seen during development whereby wnt signal-
ling activates Notch by inducing Notch ligand expression 
[122, 133]. Furthermore, the transformation of breast epi-
thelial cells by wnt signalling does not occur in the pres-
ence of Notch inhibitors, suggesting the requirement for 
wnt/Notch interactions in disease progression [122, 133, 
134]. However, the situation is more complicated in colo-
rectal cancer. In this case, the activation of Notch signal-
ling with wnt causes many more adenomas to develop and 
at an earlier age [135]. On the other hand, the progression 
of these adenomas is limited, with the adenomas arising 
when both Notch and wnt are active being of a lower 
grade [100]. This raises the interesting possibility that an 
intermediate level of Notch signalling rather than a high 
level will drive colorectal cancer, as it will enhance tumour 
initiation but not interfere with progression. The interac-
tions between the pathways may also ensure that this 
normally happens, as the induction of Jagged1 by wnt 
signalling will activate the Notch pathway [122], but the 
crosstalk between Dishevelled and Notch will limit its 
strength [6].

Lastly, the interactions between the pathways should 
influence how we target the pathways therapeutically. For 
example, in cases where disease initiation or progression 
are reliant on wnt activation with the concomitant inhibi-
tion of Notch signalling mediated by crosstalk, treating 
with an inhibitor at the level of the wnt ligand may be 
advantageous as wnt–Notch crosstalk will be lost (leading 
to increased Notch signalling [6, 88] ) as well as the wnt 
signal. In contrast, an inhibitor of the wnt transcriptional 
response [136, 137] may not be as useful as there will 
only be a loss of wnt-driven transcription and no effect on 
direct Notch crosstalk. Alternatively, drugs such as gamma-
secretase inhibitors, which inhibit signalling by reducing 
Notch cleavage, may also result in the advantageous inhi-
bition of β-catenin signalling by increasing the amount of 
membrane-bound Notch protein that is able to interact with 
and inhibit β-catenin [138]. Thus, given appropriate knowl-
edge of the signalling context, the mimicking of inhibitory 
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crosstalk opens new avenues for therapeutic drug develop-
ment by offering the promise of specificity in targeting sig-
nalling pathways.
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