
REVIEW

Functional diversity and pharmacological profiles of the FKBPs
and their complexes with small natural ligands

Andrzej Galat

Received: 9 May 2012 / Revised: 24 October 2012 / Accepted: 25 October 2012 / Published online: 8 December 2012

� Springer Basel 2012

Abstract From 5 to 12 FK506-binding proteins (FKBPs)

are encoded in the genomes of disparate marine organisms,

which appeared at the dawn of evolutionary events giving

rise to primordial multicellular organisms with elaborated

internal body plan. Fifteen FKBPs, several FKBP-like pro-

teins and some splicing variants of them are expressed in

humans. Human FKBP12 and some of its paralogues bind to

different macrocyclic antibiotics such as FK506 or rapa-

mycin and their derivatives. FKBP12/(macrocyclic

antibiotic) complexes induce diverse pharmacological

activities such as immunosuppression in humans, antican-

cerous actions and as sustainers of quiescence in certain

organisms. Since the FKBPs bind to various assemblies of

proteins and other intracellular components, their complexes

with the immunosuppressive drugs may differentially per-

turb miscellaneous cellular functions. Sequence–structure

relationships and pharmacological profiles of diverse FKBPs

and their involvement in crucial intracellular signalization

pathways and modulation of cryptic intercellular commu-

nication networks were discussed.

Keywords FKBP � Tacrolimus � Sirolimus � FK506 �
Rapamycin � PPIase

Abbreviations

AAC Amino acid composition

BMP Bone morphogenetic protein

CaN Calcineurin

CsA Cyclosporin A

CyP Cyclophilin

ECM Extracellular matrix

ER Endoplasmic reticulum

ID Sequence-similarity score

FKBP FK506-binding protein

FKBD FK506-like binding domain

MSA Multiple sequence alignment

NFAT Nuclear factor of activated T cells

pI Piezoelectric point

RBD Rapamycin-binding domain

Rpm Rapamycin

TGF Transforming growth factor

TOR Target-of-rapamycin

TPR Tetratricopeptide motif

Introduction

The superfamily of peptidylprolyl cis/trans isomerases

(PPIases) consists of several discrete groups of proteins,

namely cyclophilins, trigger factors, FKBPs, and Pin1 with

parvulin-like proteins (see Figs. Fs1–2, supplementary

material). The name ‘‘FK506-binding proteins (FKBPs)’’ was

coined after the discovery, which has revealed that a cyto-

solic mammalian protein has the capacity to bind at a high

affinity to the metabolites having immunosuppressive activ-

ity such as FK506 (tacrolimus) or rapamycin (sirolimus)

[2, 3]. The FKBP that binds FK506 or rapamycin may be

called immunophilin. The nominal mass of a monodomain
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mammalian FKBP is about 12 kDa, whereas the large mul-

tidomain FKBPs are fusions consisting from one to four

consecutive FK506-like binding domains (FKBDs) and

diverse sequence motifs such as calmodulin-binding, nuclear

localization signal (NLS), EF-hand and Ca2? binding, leu-

cine zipper, transmembrane (TM), tetratricopeptide repeat

(TPR), WH1, DNA binding, and myosin-like tail (Fig. 1) [4].

Figure Fs3 (supplementary material) shows a multiple

sequence alignment (MSA) of 25 FKBDs from the human

FKBPs and FKBP-like gene products. The overall sequence-

similarity score (ID) calculated from the MSA25 is about

30 %, and similar values were obtained from analyses of the

MSAs of the FKBPs encoded in various genomes [4]. In the

often-applied nomenclature, the name FKBP is followed

with the nominal mass of the protein in kDa, namely

FKBP12 is a 12-kDa protein. The major drawback of this

nomenclature is due to the lack of mass conservation of the

FKBPs, which are expressed in various organisms. Thus, it

would be more informative to correlate the FKBP with the

gene encoding it and which has its orthologous forms

expressed in disparate organisms [4]. For example, the

abbreviation hFKBP12A is equivalent to hFKBP12, because

the fkbp12A gene encodes it.

FKBP12, the principal intracellular binder of FK506 [2,

3], was purified from a cytoplasmic fraction of mammalian

organs just several years after the macrocyclic hydrophobic

antibiotic had been isolated from the strain Streptomyces

tsukubaensis found in a soil sample from Japan [5]. Rapa-

mycin (Rpm) is an antibiotic structurally related to FK506,

which was isolated from the bacterial strain Streptomyces

hygroscopicus found in a soil sample from Easter Island

(Rapa Nui) [6]. It was shown that rapamycin has the

capacity to inhibit the development and proliferation of

malignant cells [7]. Since then, several structurally related

molecules have been isolated from natural sources and some

of them were chemically modified, namely ascomycin

(FK520), purified from Streptomyces hygroscopicus var.

ascomyceticus [8, 9], temsirolimus (CCI-779) [10, 11],

everolimus (RAD-001) [12], a synthetic tetrazol derivative of

rapamycin called zotarolimus (ABT-578) [13] (see Fig. 2),

and other macrocycles [14]. Smaller-sized compounds

mimicking the binding patches of FK506 or rapamycin (called

peptidomimetics) have been synthesized and shown to bind

to hFKBP12A but with a somewhat weaker affinity then the

macrocyclic antibiotics [15, 16].

The hydrophobic macrocycles, which are shown in

Fig. 2, are soluble in diverse organic solvents such as

DMSO, chloroform, or ethanol. They are sparsely soluble in

aqueous solution. If a soluble sample of any of these anti-

biotics is added to aqueous solution containing the

hFKBP12A, the macrocycle is quickly sequestered by the

immunophilin and the complex remains water-soluble. If

either FK506 or rapamycin is bound to hFKBP12A, it

rigidifies the long loop at the C-terminus [17], which contains

the –AYG– triad (hFKBP12A) whose sequence variants

constitute a hallmark of all the FKBPs expressed in different

phyla [4]. Binding of FK506 to FKBP12A has a negative

enthalpy and a positive entropy due to displacement of two

Fig. 1 Schematic domain’s

organization of the human

FKBPs. FKBDs are indicated as

grey rectangles; the N-terminal

signal domains in the

ER-anchored FKBPs are shown

as violet rectangles; N-terminus

of FKBP51, FKBP52, FKBP38,

and FKBP36 are shown as rose

rectangles; transmembrane

segments in FKBP22P and

FKBP38 are shown as red

rectangles; NLS nuclear

signalization signal,

TPR tetratricopeptide repeat

motif; the C-terminal

AA-tetrads of the ER-specific

FKBPs were explicitly written;

domains of the FKBP133:

pleckstrin homology-like (PH)

domain (70–168 AAs; known as

WH1 domain) is in a blue

rectangle, DNA translocase

FtsK domain (yellow rectangle)

and chromosome segregation

ATPase domain (558–907 AAs;

brown rectangle)
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water molecules bound to the hydroxyl of Y82

(hFKBP12A), the central residue in the –AYG– triad (Fig.

Fs3); about 50 % of the surface of the antibiotic is hidden in

PPIase cleft [18]. Figure 3 shows the X-ray structure of the

hFKBP12A/rapamycin complex with the explicitly shown

amino acid residues in PPIase cleft (AAs, displayed as

spheres) that interact with the drug [19]. Sirolimus or

tacrolimus bind at a high affinity to different mammalian

FKBPs [1, 15], whereas human FKBP36, FKBP133, and

AIP (FKBP-like protein) do not effectively bind the

immunosuppressive antibiotics. The macrocycles also bind

to some FKBPs from lower eukaryotes, for example the

cytoplasmic FKBP12 from baker’s yeasts (Saccharomyces

cerevisiae) is a high-affinity binder of FK506 or rapamycin

[1]. Even some of the prokaryotic FKBPs are strong binders

of immunosuppressive drugs [1, 20].

The FKBPs and the other members of the PPIase

superfamily of proteins have been found in different cel-

lular compartments and organelles such as the cytoplasm,

endoplasmic reticulum (ER), nucleus, mitochondria, poly-

ribosomes, various large molecular assemblies such as

ryanodine receptors, and other membrane-anchored entities

[1]. Here we discuss only some of the principal functional

and structural features of the FKBPs. Firstly, we have

analyzed sequence–structure relationships in the multigene

family of the FKBPs encoded in various genomes starting

from lower eukaryotes, passing through marine organisms

from which vertebrates sprouted, and ending on diverse

functional aspects of the human repertoire of the FKBPs.

Secondly, we have discussed diverse functional attributes

of the FKBPs. Thirdly, we have analyzed several structural

and functional aspects of the FKBP12A/(macrocyclic

antibiotic) complexes, which induce crucial pharmacolog-

ical effects such as immunosuppression, anti-inflammatory

action in some dermatological disorders, anticancer pro-

prieties, and as substances that maintain quiescence of

some organisms. Hypotheses on the morphogen-driven

signalization networks that could be under the control of

the macrocyclic drugs and the FK506-induced protection

of neuronal tissues from ischemia-induced oxidative stress

and regeneration of neurons after ischemia have been also

briefly discussed. An additional list of references grouped

according to diversified functional features of the FKBPs

and some of cellular activities that are controlled by them

can be found in the supplementary material.

Chimerical organization and duplication of genes

coding for the FKBP family of proteins in various

species

Analyses of some sequence attributes of the FKBPs

The following two simple-in-use bioinformatics tools for

sequence analyses were used, namely the BLAST program

[21] for analyses of various genomic databases [22] using

the sequences of the FKBDs from the human FKBPs as

input templates, and the poly-analysis of sequence quota

(PolaSQ) algorithm, which takes into account conservation

levels of several sequence attributes [23] calculated from

the MSAs produced with the ClustalX program [24]. The

algorithm utilizes sequence attribute clustering schema,

which guides formation of discrete groups of proteins that

sustain coherent functional profiles. The algorithm is

especially fitted for analyses of multigene families of

proteins encoded in various genomes provided that some of

the sequence attributes had been conserved during evolu-

tion of species. We use the following sequence attributes

for clustering of proteins’ domains: (1) consensus

sequence; (2) the piezoelectric point (pI); (3) hydropho-

bicity profile; (4) the amino acid composition (AAC); (5)

distribution of AA bulkiness along the polypeptide chain

[4, 23].

Table 1 summarizes the FKBP repertoires encoded in

several different genomes starting from unicellular yeasts,

passing via some marine organisms whose genomic dat-

abases are available via the National Centre of

Biotechnology Information (NCBI) (http://ncbi.nlm.nih.gov)

Fig. 2 Molecular structures of some macrocylic antibiotics, which

bind to diverse FKBPs; FK506 (CAS 104987-11-3; C44H69NO12,

m = 804.0182 g mol–1); rapamycin (CAS 53123-88-9, C51H79NO13,

m = 914,1710 g mol-1); ascomycin (CAS 11011-38-4, C43H69NO12,

m = 792.01 g mol-1); temsirolimus (CAS 162635-04-3, C56H87NO16,

m = 1039.28 g mol-1); zotarolimus (CAS 221877-54-9, C52H79N5O12,

m = 966.21 g mol-1); everolimus (CAS, 159351-69-6, C53H83NO14,

m = 958.224 g mol-1)

b

Fig. 3 X-ray structure of the hFKBP12A (green ribbon) bound to

rapamycin (orange sticks; 2DG3.pdb) with the indicated AAs, which

interact with the antibiotic at distances d B 4.5 Å [19]
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server [22], and ending with the FKBPs encoded in the three

reference genomes, namely the fruit fly Drosophila mela-

nogaster (Dm), the nematode Caenorhabditis elegans (Ce),

and Homo sapiens (h). Due to the provisional nature of the

recently completed genome projects of the marine organ-

isms [25–31], those repertoires may undergo some revisions.

The organisms were ordered from the least complex at the

top of Table 1 to the most developed at the bottom; the order

is based on several phylogeny trees comprising the marine

organisms [25–31]. An MSA of 500 FKBDs from the

FKBPs expressed in various organisms ranging from pro-

karyotes to mammals is shown in the MSA500 file

(supplementary material), whereas in Fig. Fs4 (supplemen-

tary material) is given the information entropy (Ie) graph

derived from it [23]. For 108 sequence positions of the

hFKBP12A used as an arbitrarily chosen reference in the

MSA500, 21 positions have Ie \ 1.0, which indicates that

about 20 % positions of the highly diversified sequences of

the FKBDs remain highly conserved. Those sequence

positions are populated either with G residues or the AAs

forming functional consensus sequence. Even if the –AYG–

triad is in the long flexible loop at the C-terminal part of the

protein (called 80s loop), the physical–chemical profile of

the triad remains well conserved in the multigene family of

the FKBPs. The triad is probably a specific recognition motif

for certain endogenous targets. The overall sequence-simi-

larity score (ID) calculated from the MSA25 comprising the

human FKBDs is lower than its average (IDs 30 vs. 42 %,

respectively) calculated from the MSA500. The MSA500 is

biased by a large number of sequences of the monodomain

FKBPs from disparate organisms, which have a lesser

diversification level [4, 23] than the full set of the FKBDs

from the human FKBPs. Our attempts to make phylogenetic

trees using the sequences of the FKBP12s or their para-

logues that are expressed in the disparate organisms listed in

Table 1 failed to give congruent trees with those published

in the genome sequencing papers [25–31], which is another

example proving that the sequences of the multigene fami-

lies of proteins are not suitable for construction of the tree of

life [32].

Diversification, duplication, and loss of genes encoding

the FKBPs in the genomes of disparate species

The FKBPs are encoded in the genomes of miscellaneous

prokaryotes and archaea [1, 4]. For example, four FKBP-

like proteins are expressed in the Escherichia coli [34],

whereas the lower eukaryote Schizosaccharomyces pombe

(Sp) expresses three FKBPs. Four FKBPs are expressed

in S. cerevisiae (Sc) cells, namely a cytosolic form

(ScFKBP12), a small monodomain FKBP is in the endo-

plasmic reticulum (ScFKBP14), and the remaining two

FKBPs are in the nuclear space, such as ScFKBP43 in theT
a
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nucleolus (NP_013637, GI:6323566) and ScFKBP45 in the

nucleus (NP_013554, GI:6323482) [4, 34]. The FKBPs’

repertoires underwent expansion in the genomes of various

organisms whose developmental level is higher than that of

a unicellular yeast cell. For example, five different FKBPs

are expressed in the multicellular choanoflagellate

Monosiga brevicollis [25], which could have been an

intermediary organism on the developmental pathway to

species with more elaborated internal body plans. The

repertoires of the FKBPs expressed in the placozoan Tri-

choplax adhaerens [26], the freshwater polyp Hydra

magnipapillata [27], the starlet sea anemone Nematostella

vectensis [28], the sea squirt Ciona intestinalis [29], the

Florida lancelet Branchiostoma floridae [30] and the sea

urchin Strongylocentrotus purpuratus [31] are nearly twice

as large as that of the M. brevicollis (Mb), whereas the

number of the FKBPs was tripled in genomes of verte-

brates if compared to the FKBPs encoded in the

choanoflagellate genome. Our analyses revealed that some

rearrangements of the chimerical organization of the mul-

tidomain FKBPs and losses of their genes had taken place

during the evolution of the species. For example, the

numbers of the expressed FKBPs in C. elegans or

D. melanogaster are smaller than those that are encoded in

the genomes of the marine organisms cited in this review.

Monodomain and ER-anchored FKBPs

Genomes of eukaryotic organisms encode at least one

cytosolic and one endoplasmic reticulum-anchored (ER)

form of the FKBP whose PPIase cavity retains a good level

of sequence conservation [1, 4]. A comparable sequence

conservation level was estimated for the PPIase cavity in

the cyclophilin family of proteins [35]. In both families of

proteins, the cavity consists of several polar amino-acid

side chains that are crucial for X-Pro cis/trans isomeriza-

tion activity, and which are surrounded by a hydrophobic

network of aromatic side chains. Even if the monodomain

cytosolic FKBP is a hydrophilic protein, its hydrophobic

PPIase cavity is a good binding site for different

hydrophobic side chains of AA residues, diverse pepti-

domimetics, and some small-sized natural products.

One ER-anchored FKBP is expressed in S. cerevisiae

[34] whereas among the five FKBPs encoded in the

M. brevicollis genome, two of them reside in the ER.

Likewise, two ER-embedded FKBPs are expressed in

D. melanogaster, whereas a larger variety of the FKBPs is

expressed in the ER of C. elegans. Monodomain ER-

anchored FKBPs have a higher hydrophobicity than their

small cytosolic counterparts. Some of the ER-anchored

FKBPs have at their C-terminus additional sequence motifs

such as EF hand or inositol-binding domain, whereas the

large ER-anchored FKBPs are fusions made of two to four

consecutive FKBDs [1]. Each FKBD in the ER-anchored

FKBPs has two well-conserved cysteines that may form a

disulfide bridge [36].

TPR motifs-containing FKBPs

TPR motif-containing FKBPs are fusions consisting of

either one or two consecutive FKBDs and three TPR

motifs, which are followed with an a-helical segment that,

in some cases, may contain calmodulin-binding motif

(CaM). TPR motif-containing FKBPs are encoded in the

genomes of some fungal organisms [37], and in the gen-

omes of all the species discussed herein. For example, one

of the five FKBPs encoded in the M. brevicollis genome

contains N-terminal FKBD followed with three consecu-

tive TPR motifs. The PolaSQ algorithm clustered this

chimerical FKBP with the fkb-6 protein expressed in

C. elegans [38] and with the FKBDs from hFKBP52. BLAST

analyses revealed that the aryl hydrocarbon receptor-asso-

ciated protein (the AIP gene) is encoded in genomes of

various invertebrates, such as T. adhaerens (Ta), N. vect-

ensis (Nv), S. purpuratus (Stp), B. floridae (Bf), C. elegans,

or D. melanogaster (Table 1). All these AIP proteins have

one FKBD, which may have an extra a-helical segment

inserted at the long 80s loop of the FKBD (Fig. 1) whereas

three TPR motifs are at the C-terminus (see Fig. Fs5 in

supplementary materials). PolaSQ analyses showed that the

sequence attributes of the FKBDs in the AIP proteins,

which appeared in some ancestral invertebrates, have well-

conserved sequence attributes throughout the evolution of

the species.

Nuclear FKBPs

The chimerical organization of the nuclear FKBPs expressed

at lower eukaryotes (yeasts and alike) was retained only in

some of the marine organisms analyzed here. For example,

PolaSQ analyses revealed that the FKBD of MbFKBP23 has

similar physical–chemical sequence attributes with the

nuclear FKBPs expressed in baker’s yeasts, namely that its

overall pI is below 7, its FKBD has a basic pI, although its

N-terminal nucleolin-like segment is shorter than those in

the Fpr3 and Fpr4 genes of S. cerevisiae. The latter two

encode negatively charged proteins, which have nucleolin-

like motifs at their N-terminus and one basic FKBD at their

C-terminus. Likewise, a 61-kDa protein from S. purpuratus

(StpFKBP61, XP_0791717), a 47-kDa protein from

B. floridae (XP_002595400), and a 38-kDa protein from

D. melanogaster (DmFKBP38.3) with their nucleolin-like

N-terminus, NLS signals and an FKBD at the C-terminus

have analogous construction to the yeast Fpr3p and Fpr4p

proteins. The proteins encoded by the Frp3 and Frp4 genes

may function as RNA chaperones and foldases that are
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involved in some events controlling the cell cycle [40–44]. It

has been shown that the N-terminal nucleolin-like domain of

SpFKBP39 has an in vitro histone chaperone activity and

has the capacity to silence the ribosomal DNA (rDNA) locus

[40]. However, mutational analyses have revealed that the

C-terminal FKBD of SpFKBP39 also has a crucial contri-

bution to silencing the rDNA locus [40]. Analyses of the

genomic databases indicate that the gene coding for

FKBP25 was probably generated in some marine organisms.

For example, our analyses indicate that C. intestinalis or

N. vectensis express the same set of the FKBPs as the

mammalian organisms [4]. What gain-of-function had been

achieved and which driving force had been involved in the

genetic drift from the FKBPs with nucleolin-like N-terminal

domain towards FKBP25-like protein that has positively

charged unique N-terminal domain remain enigmatic. It is

unknown whether the functional profiles of the Frp3p and

Frp4p in budding yeasts and the products of the orthologous

genes expressed in some invertebrates could have been

retained by the FKBP25s.

A large multidomain nuclear FKBP is encoded in the

T. adhaerens, H. magnipapillata, and C. intestinalis genomes.

It is orthologous to the human fkbp15 gene coding for the

large hFKBP133 [39]. To what extent the domain structure

of the fkbp15 gene in these three marine organisms is

similar to that of their human counterpart will be estab-

lished when their full sequences become available.

FKBP133 seems to be involved in endocytic transport and

microtubule dynamics [33, 39].

Unique genomic constructs containing FKBDs

Our analyses revealed a discrete conservation of specific

functional traits that were inherited by some of the marine

organisms from some prokaryotic species. For example,

HmFKBP23 has a C-terminal typical for the SlyD protein

from E. coli (P0A9L1; GI:71162376) [34] and related

genes in the prokaryotes, whereas MbFKBP49 is a fusion

protein containing a basic FKBD and a SUI1/eIF1 RNA

binding domain; the latter is also known as a density-reg-

ulated protein that appears as a separate gene in

miscellaneous vertebrates. Although the D. melanogaster

genome encodes an orthologue of the Frp4 gene from

S. cerevisiae [4], it is absent in the nematode C. elegans as

well as in many other invertebrates. So far, no orthologues

of the Frp3 and Fpr4 genes were detected in the genomes

of the vertebrates.

Distribution of hydrophobicity versus pIs in the human

FKBPs

PolaSQ analyses of several MSAs comprising the FKBDs

from various species have shown an extraordinary con-

servation of their sequence attributes throughout the

evolution of living species [4, 23]. This could imply that

the genetic drift causing significant alterations of physical–

chemical nature of those attributes in each group of the

FKBPs had been subjected to a strong functional criterion

at the dawn of evolution of multicellular species, which

have been preserved up to the mammalian FKBPs [4, 23].

Figure 4 shows a distribution of the overall hydrophobicity

indexes (HIs) versus the pIs of the FKBDs of the human

FKBPs [4]. The HI indexes (expressed in %) indicate the

number of AAs being in the hydrophobic segments cal-

culated with one of the hydrophobicity scales [48]. The HIs

of the FKBDs considerably differ from each other, namely

an exceptionally high hydrophobicity have the FKBDs of

Fig. 4 Distribution of the

overall hydrophobicity indexes

(HI) versus the pIs calculated

for the FKBDs of the human

FKBPs; all the data are for the

sequences aligned in Fig. Fs3;

the HIs were calculated with a

nine-residue moving frame

using the [48]; the FKBDs of

the ER-anchored FKBPs are

shown as squares; the FKBDs

from cytosolic and nuclear

FKBPs are shown as circles,

whereas the FKBDs from TPRs

motif-containing FKBPs are

shown as diamonds
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FKBP36, AIPL1, FKBP38, and FKBP133, whereas a low

value of the HI was estimated for the FKBD_I of hFKBP52

and FKBP25. FKBP25 has a dual cellular localization

(nuclear/cytoplasm) and is also the most hydrophilic FKBP

with the basic pI, whereas the other FKBPs have from

moderate (HIs from 25 to 40 %) to high hydrophobicity

levels (HIs C 40 %, MSA500.out in supplementary mate-

rials) [1]. The majority of the FKBDs have acidic pIs

(pIs \ 7.0), whereas the FKBDs with the basic pIs have all

the cytoplasmic form of the archetypal FKBP12, the FKBD

from FKBP25, and some of the FKBDs in the ER-anchored

FKBPs. Two FKBPs have a transmembrane segment (TM),

namely hFKBP38 and hFKBP19. Despite the charged

C-terminus of the latter, it is the most hydrophobic FKBP

residing in the ER.

The canonical TPR motifs contain about 34 AA residues

(AAs), which form two amphipathic a-helices [46] linked via

a b-turn [47]. Such helices may contain a leucine-zipper

motif, a characteristic feature having either a Leu or an Ile

residue at every seventh sequence position. Six human

FKBPs are fusions of one FKBD (hFKBP36, AIP, AIPL1,

hFKBP38) or two FKBDs (hFKBP51, hFKBP52), all of

which have three consecutive TPRs [4]. Conformational

polymorphism of the TRP segments has been observed in the

two crystallographic forms of bovine cyclophilin-40 [52] but

it is unknown if such a phenomenon might be a general

in vivo property of the TPR motifs in the FKBPs. Intramo-

lecular interaction patterns within several consecutive TPRs

(a helix bundle) are similar to those of G protein-coupled

receptors (GPCRs) (Fig. Fs6, supplementary material) [48].

Physical–chemical properties of the FKBPs, which consist of

one or two hydrophobic FKBDs and three amphipathic TPR

motifs, might have predisposed them to target different

membrane-anchored receptors, molecular channels, and

other membrane-embedded entities [49–51]. For example, it

has been shown that the only C. elegans TPR motifs-con-

taining FKBP (CeFKBP48) has its highest expression level

in the nervous system of the nematode [38], the tissue that is

rich in membrane proteins. A model illustrating interaction

patterns between TPR motifs-containing FKBP from the

plant Arabidopsis thaliana (AtFKBP42; CAC00654;

GI:9650631) and ABC transporter [53] would suggest that

the hydrophobic domains of the AtFKBP42 interact with the

transporter embedded in the membrane. The FKBP38 has

been localized in the outer mitochondrial and ER membranes

[54]. It has similar domains to those in the AtFKBP42.

Fine interaction patterns in the FKBDs

Structures of diverse FKBPs have been thoroughly analyzed

in several papers [16, 19, 23, 55–63]. Here we compared

intramolecular interaction patterns in the two FKBDs that

have similar HIs but come from two different phylogenetic

kingdoms, namely the N-terminal FKBD from the

AtFKBP42 (2F4E.pdb) [53] and the hFKBP12A (1FKB.pdb)

[55] (Fig. 5a). Intramolecular interaction networks calcu-

lated for the atoms that are not further from each other than

at distances d B 4.5 Å [23] in the FKBD from the

AtFKBP42 (upper triangle) and the hFKBP12A (lower

triangle) are shown on a bi-triangular map (Fig. 5b). Two-

dimensional intramolecular interaction maps are normally

calculated for the pairs of atoms separated by distances

varying from 2.7 to 4.0 Å (hydrophobic atoms) and from

2.7 to 4.5 Å for polar atoms [23]. An extension of distance

computing over the limit of 4.5 Å would create geodesic-

type layers of interaction clusters. Two-dimensional maps

are generated from the lists of distances ordered according

to the sequence alignment of the two domains (shown in

the upper and lower axes of Fig. 5b). Detailed analyses of

intramolecular interaction networks may be useful in dis-

cerning some hidden similarities embedded in apparently

different structures of proteins [65].

Although the sequences of these two FKBDs consider-

ably differ from each other (ID = 27 %), 2D distribution

of the interaction clusters within b-strands (blue arrows)

and a-helices (yellow arrows and ovals) are equivalent in

both triangles, which illustrates a high level of conservation

of the overall FKBD fold. In contrast, the small interaction

clusters formed by the atoms that were brought close in

space via the different-size loops containing b-turns and

short G-type helices are dissimilar in these two folded

domains. For example, the violet squares represent the

interaction clusters between the –AYG– sequence hall-

mark, which is in spatial proximity to a-helix II, the two

short sequence segments that have the highest conservation

levels. These two mini-clusters are not fully equivalent

with each other, which reflects some fine differences in

interaction networks between these two sequence motifs.

Likewise, the intramolecular interaction networks involv-

ing the hydrophobic AAs (indicated in red squares and red

dashed lines) are not equivalent in these two domains,

because their sequences considerably differ from each

other (ID = 27 %). Moreover, the macrolide-binding

cavity in the hFKBP12A is surrounded by an extensive

network of aromatic/hydrophobic AAs that are only to

some extent conserved in the FKBD of the AtFKBP42. As

shown in Fig. 5a (left panel), the innermost part of the

macrolide-binding cavity of the hFKBP12A is filled up

with the side chain of W59 that is in the middle of a short

a-helix, whereas the innermost PPIase cavity of the At-

FKBP42 is filled up with the side-chains of L and Y

residues (Fig. 5a, right panel). The sequence positions

equivalent to W59 of the hFKBP12A are conserved to

some extent in the other FKBPs [4, 23], namely its Ie = 1.0

basing on the MSA500. Some FKBDs have either an F or
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Y in the position equivalent to that of W59 in the

hFKBP12A, which diminish their affinity towards FK506

or rapamycin. The affinity may fall by at least one order of

magnitude or more as compared to the Kis of 0.2–0.4 nM

established for the hFKBP12A/FK506 and hFKBP12A/

Rpm complexes, respectively [1, 19].

Fig. 5 a Crystallographic structures from which the intramolecular

interaction networks were calculated: hFKBP12A (1FKB.pdb; left

panel); the hydrophobic side chain of W59 (red spheres) fills in the

innermost part of PPIase cleft, which is surrounded by the aromatic

side chains of Y26, F36, F46, F48, Y82, and F99 [55]; the highly

conserved triad A81–Y82–G83 is at the bottom of PPIase cleft; the

FKBD of AtFKBP42 (2F4E.pdb; right panel) [53]; its ‘‘PPIase cleft’’

is filled in with the hydrophobic chain of L109 (yellow spheres) and

Y151 (rose spheres); there is a lesser number of aromatic AAs

surrounding PPIase cleft; the sequence equivalent to Y82 of the

–AYG– triad in hFKBP12A is Y132 (orange spheres) at the bottom

part to the cleft. b Two-dimensional distance map (made for

interatomic distances d B 4.5 Å) illustrates intramolecular interaction

networks in the hFKBP12A (lower panel) and the FKBD from the

AtFKBP42 (upper panel). The blue horizontal line at the upper

triangle indicates the beginning of the FKBD in the AtFKBP42. The

structures were made with the MacPyMol program [64]
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Information obtained from analyses of the 2D distance

maps of the FKBDs belonging to the FKBPs expressed in

diverse species suggests that the overall fold remains con-

served. However, AA mutations caused differentiation of

intramolecular interaction networks and fine 3D geometry

patterns of both, the overall fold and PPIase cavity, which in

turn altered some of the fundamental functional features of

the FKBPs, namely their recognition profiles, specificity,

and binding affinity to different in vivo targets and small

molecular mass compounds [23]. Diversified geometrical

features and altered hydrophobicity context within PPIase

cavity cause that some of the FKBPs lack cis/trans isom-

erization activity when using standard peptide-substrate-

based assays and they do not bind the macrocyclic drugs.

Functional aspects of the FKBPs

Table 2 summarizes several fundamental sequence attributes

of the human FKBPs together with some of their functional

profiles. Although PPIase cleft has the capacity to accelerate

cis/trans isomerization of X-Pro epitopes in model peptides

[66], any significance of this activity for functioning of

various cell phenotypes and organisms at different levels of

development requires further explorations. For example, one

study has shown that all eight genes encoding cyclophilin-

like proteins and all four genes coding for FKBP-like pro-

teins are individually and collectively dispensable for the

viability of S. cerevisiae cells [67]. In contrast, the 13th

PPIase gene (ESS1) in baker’s yeast coding for a 170-amino-

acid-long protein (NP_012551; GI:37362669), whose

sequence is homologous to human Pin1, is essential for the

viability of the cell [67].

The monodomain small FKBPs may have two major

functions. Firstly, they may catalyze cis/trans isomeriza-

tion of X-Pro epitopes, which is a crucial functional input

into protein folding and assembly of multimolecular com-

plexes. It is noticeable that three small and two large

FKBPs are embedded in the ER of mammalian cells [4].

Secondly, the small FKBPs function as molecular chaper-

ones, namely their binding to certain targets may alter

some of the physical–chemical attributes within the com-

plex, which in turn lead to fine-tuning of its functional or

structural features [1]. The large multidomain FKBPs,

however, may function as restructuring chaperones, which

create novel conformational assemblies via fine spatial re-

positioning of domains in target complexes. This action

creates unique spatial interaction networks, which thus

induce a maximal functional adequacy in given molecular

assembly. For example, a 33-kDa human cyclophilin

(CyP33) is a two-domain protein consisting of a RNA-

binding domain and a C-terminal PPIase domain [68],

which is similar to the domain’s structure of the FKBP25.

CyP33 modifies the conformation of the mixed lineage

leukemia 1 (MLL1) gene product, which facilitates the

binding of its RNA-binding domain (RRM) to the MLL1-

PHD3 (Plant Homeo Domain 3) segment [69]. Allosteric

effect [70, 71] induced via binding of the multidomain

PPIases to integral membrane proteins, spliceosomal

complexes, polyribosomes, or mitochondria could be an

indispensable control input to functional features of some

components within these supramacromolecular entities.

Molecular targets of immunophilin/

(immunosuppressive drug) complexes

Studies on suppression profiles of T cells, which were

treated with CsA, FK506, or rapamycin, led to the propo-

sition that the hFKBP12A is the principal intracellular

carrier (immunophilin) for the immunosuppressive drugs

FK506 or rapamycin with one of the following events

being sufficient for inducing T-cells anergy and immuno-

tolerance in humans [73]. Firstly, formation of the ternary

complex of the serine-threonine phosphatase calcineurin

consisting of the globular subunit A (CaNA), Ca2?-binding

calcineurin B (CaNB), and the Ca2?-binding protein cal-

modulin [56, 57, 73] associates with the hFKBP12A/

FK506 complex, which in turn blocks dephosphorylation

of cytosolic form of nuclear factor of activated T cells

(NFATc) and hinders its rapid transport to the nucleus

where it should form a transcriptional complex with the

AP1 transcription factor (Fig. Fs7, supplementary material)

[78]. Similar effects can be induced by cyclosporin-A

(CsA) whose complex with cyclophilin-A (CyPA) binds

and inhibits calcineurin A (reviewed in [35]). Secondly, the

hFKBP12A/Rpm complex binds to mammalian target-of-

rapamycin (mTOR), also known as mechanistic TOR [58,

79–83] and blocks its kinase activity, which in turn breaks

down signal transduction networks emanating from IL2

receptor [73]. Both of these two enzymatic entities have

some vital functions in the lower eukaryotes such as S.

cerevisiae [79, 83–85], Cryptococcus neoformans [86, 87],

or Candida albicans [88], where both immunosuppressive

and nonimmunosuppressive macrocycles bound to the

yeast’s orthologue of the hFKBP12A perturb their phos-

phatase and kinase activities, respectively. Yeast cells,

however, do not express any homologue of the NFATc,

which is a pivotal transcription factor involved in FK506-

or CsA-induced immunosuppression in humans, thus the

toxic effects of these drugs are transmitted via other net-

works of proteins [81, 82]. It has been suggested that

ancestral NFAT1c was formed from a fusion of the

invertebrate Rel gene with a nuclear translocation signal

domain, which probably was a step among many other

necessary recombination steps for the transformation of

invertebrates into primordial vertebrates [89].
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A recent study on the influence of FK506 on various

cellular processes in S. pombe cultures has revealed that 72

deletion strains were sensitive to the drug. Various intra-

cellular processes are controlled by FK506, such as

membrane trafficking, chromatin remodeling, cytokinesis,

ribosomal proteins, etc. [90]. Surprisingly, it has been

shown that even if the S. pombe cells express TOR1 and

TOR2, the strain itself was insensitive to rapamycin [91,

92]. Since the above-mentioned models of drug-induced

immunosuppression were derived from the results of

in vitro experiments made on T cells or their extracts [72–

75], it remains to be established whether the described

molecular targets and their accompanying factors remain

equally operational in humans with all the competing tar-

gets for the drugs, their toxic side effects affecting different

organs, and diverse immune cells’ phenotypes [76],

including stem and progenitor cells [77].

Is the archetypal FKBP12 involved in morphogen-

driven signaling pathways?

Analyses of the repertoires of the FKBPs encoded in various

genomes have shown that the gene coding for the archetypal

FKBP12 had conserved its functional features throughout

the evolution of disparate species [1, 4]. Moreover, it was

estimated that about 80 % of genes expressed in C. intesti-

nalis are homologous with their functional counterparts in

H. sapiens. These two organisms belong to deuterostomes

superphylum of animals. This high level of conservation of

functional traits in evolutionary distant organisms may

imply that some of the functional features of macromolec-

ular assemblies being under the control of PPIases, which

are vital for mammalian organisms, could have been already

coined in some primordial multicellular marine organisms.

For example, it has been shown that the hFKBP12A may

control activity of mammalian TGFb type I receptors [65,

99, 100]; the X-ray structure of the hFKBP12A bound to the

intracellular part of the bone morphogenetic protein (BMP)-

receptor type 1B (3MDY.pdb) is displayed in Fig. 6 [59]. It

is an exquisite example illustrating that an X-Pro dipeptide

(where X is any AA) is not the only sequence motif that can

be accommodated within PPIase cavity. W59 (rose sphere)

and Y82 (pink sphere) in the PPIase-binding cleft of the

hFKBP12A (orange ribbon) are in close proximity to L194

(cyan) and L195 (violet) of the BMP-R1B intracellular

domain, which is composed of a short GS sequence segment

that is phosphorylated by TGFb type II receptor and which

is linked to the C-terminal kinase domain (red ribbon).

Although the functional significance of interactions between

the hFKBP12A and the TGFb type I family of receptors

remains controversial (SupRef.list_A in supplementary

material), if such a complex had crucial in vivo input, it

would imply that a vital gain of function for the archetypal

immunophilin FKBP12 could have been acquired at an early

evolutionary stage of multicellular organisms. It is worth

mentioning that all the multicellular organisms discussed

here had gained the capacity to express various activin and

TGFb family of receptors and their ligands such as inhibins,

BMPs, or activins [101]. In mammalian organisms, the

latent encapsulated form of the TGFb morphogen is stored

in the extracellular matrix (ECM), and if activated by the

furin protease, can bind to the TGFb superfamily of recep-

tors, and initiate diverse morphogen-driven intracellular

signalization pathways [102]. Whether binding of the

archetypal FKBP12 to the GS domain of TGFb type I

receptors could have controlled complex signaling pathways

and could have had a fundamental impact on development

of multicellular organisms and their differentiation remain

enigmatic.

Recently, it has been communicated that FK506 and

CsA have the capacity to release activated factors from

latent TGFb stockpiles, which appears to be a critical step

that could be responsible for kidney fibrosis in patients

treated with one of these drugs [103]. Rapamycin also has

an influence on the TGFb-induced signaling pathways

[104]. Those results would suggest that the immunosup-

pressive macrocyclic drugs, due to their high

hydrophobicity, may physically perturb the storage vesicles

of diverse growth hormones in the ECM and induce vari-

ous cascades of pivotal intercellular signalization pathways

involving networks of cytokines, proteases, and other sig-

nalization protein assemblies. In mammals, an aberrant

Fig. 6 The X-ray structure (3MDY.pdb) of a binary complex

(hFKBP12A/BMP-RIB) [59]; some backbone of the intracellular

domain of the human BMP receptor type IB, comprising GS and

kinase domains, is shown as red and green ribbons, FKBP12A is

shown as orange ribbon with the side chain of W59 (rose spheres)

and Y82 (violet spheres) from the –AYG– triad; the interacting side

chains of L194 and L195 of the BMP-RIB are shown as blue spheres.

GS domains form a helix–loop–helix structure and are found only in

type I TGFb class of receptors; its name comes from the sequence,

namely –TTSGSGSGLPLL– (human TGFb-RI; P36897; GI:547777),

which is N-terminal to intracellular kinase (ALK5 in the TGFb-R

type I) and in which Ser are phosphorylated by type II receptors
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activation/deactivation of morphogens-driven signaling

pathways may be a pivotal step leading to formation of

malignant cells and solid tumors [65, 105, 106]. If the

extracellular pool of the injected macrocyclic immuno-

suppressive drug would release diverse growth factors

encapsulated in the ECM-anchored storage vesicles con-

taining preforms of morphogens, which in turn should

activate some signalization networks controlled by those

morphogens, cytokine receptors, ionic channels, or GPCRs,

then the integral outcome of such actions could be decisive

for inducing T cell anergy or other immune responses.

Some of these actions should precede the formation of

‘‘intracellular immunosuppressive complexes’’ containing

either FK506 or rapamycin bound to the hFKBP12A.

FKBPs are associated with large molecular channels

The FKBP12A and FKBP12B (also known as FKBP12.6)

were found to be associated with different large molecular

assemblies such as the ryanodine receptors (RyRs), namely

muscle-specific RyR1, myocardium-specific RyR2, and

neuron-specific RyR3, which constitute the major intra-

cellular factors of calcium-induced calcium release system

[107]. The FKBP12 binds to the inositol 1,4,5-trisphos-

phate receptor [108], whereas FKBP52 was found to be

associated with the Ca2? transient receptor potential cation

channel subfamily V member 5 (TRPV5) channel [51].

Whether some of the immunophilins are essential factors

controlling physiological activity of various ionic channels

and some organs such as the heart in mammals is still under

debate, since some alternative models concerning molec-

ular and functional aspects of the myocardium-specific

RyR2-FKBP12.6 complex and its significance for different

functions of the heart have been discussed (SupRef.list_B

in supplementary materials).

Functions of the dual-compartment FKBPs

FKBP25 has a positively charged N-terminus and PPIase

domain at its C-terminus [109, 110], a domain organization

that is analogous to that of the small nuclear cyclophilin

CyP33 [35]. Mammalian FKBP25s interact with various

intracellular proteins such as casein kinase II and nucleolin

[111], high-mobility group II nonchromosomal protein

[112], the transcriptional silencer and enhancer YY1

belonging to GLI-Kruppel class of zinc-finger proteins,

histone deacetylase [113], and MDM2 (Murine Double

Minute oncogene) that is a crucial negative regulator of p53

tumor suppressor protein [114, 115]. All these proteins may

have crucial inputs to chromatin remodeling. FKBP25 has

also been detected in centrosomes [116], RNA granules

[117], cellular differentiation and proliferation processes

[118, 119], and some developmental stages of neurons

[45]. As the mammalian FKBP25 is a strong binder of

rapamycin (Kd B 1 nM) [109], thus in vivo it must com-

pete with the hFKBP12A for the injected drug. The

FKBP25/rapamycin complex may influence some cellular

processes, which are not controlled by the hFKBP12A/

Rpm complex.

Mammalian FKBP133 starts from N-terminal WH1

domain also known as pleckstrin homology-like (PH) domain

that binds Pro-rich regions (see Fig. Fs8, supplementary

materials), and is followed by several domains, namely a

hydrophobic FKBD, DNA translocase unit, a chromosome

segregation ATPase domain, and a myosin-like C-terminus.

However, even if the FKBD from the hFKBP133 has the

highest hydrophobicity level among the human FKBDs, the

protein is a hydrophilic species. The hFKBP133 has been

associated with myosin endocytosis [39], growth cone mor-

phology [33], and some perinuclear functions [39].

The ER-anchored FKBPs

The ER-associated small FKBPs have an FKBD at the

N-terminus, which is followed with several minidomains.

A fusion of four consecutive FKBDs is a typical feature of

the large ER-anchored FKBPs, which are expressed in

plants and vertebrates [4]. It has been shown that the ER-

associated FKBPs in the nematode C. elegans are vital for

cold shock and knock down of their genes causes some

defects in the ECM [120, 121]. The FKBP65 seems to aid

the folding of collagens [127] and is overexpressed toge-

ther with some ECM proteins [128], whereas its plant

orthologue is crucial in some developmental processes

[129]. Mutations in the sequence of FKBP65 (polymor-

phism of the fkbp10 gene) may cause the recessive

osteogenesis imperfecta and Bruck syndrome [130, 131].

The former, however, has already been correlated with an

AA mutation in the PPIB gene coding for the ER-anchored

cyclophilin-B [132]. The ER-residing FKBPs are probably

essential for protein-folding fidelity and transport of folded

assemblies of proteins to the Golgi apparatus and secretion

vesicles. These functions could be dependent on the oxi-

dation/reduction status of the disulfide bond that is

conserved in the FKBDs of all the small and large

ER-embedded FKBPs.

Diversified functions of the TPR motifs-containing

FKBPs

Several different forms of the TPR motifs-containing

FKBPs are expressed in vertebrates [4]. Those FKBP

consist of either one FKBD or two FKBDs, which are

followed with three consecutive TPRs and a C-terminal

a-helix (Fig. 1). The coding exons for a 36-kDa TPR

motifs-containing FKBP (hFKBP36) are in the genomic
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segment on human chromosome 6, whose deletion gives

rise to Williams syndrome [133]. FKBP38 is bound to the

outer mitochondrial and ER membranes and controls the

apoptotic Blc-2 protein [135, 136], whereas FKBP51 and

FKBP52, which are fusions of two FKBDs with three

consecutive TPR motifs, are associated to glucocorticoid

receptor [140–143]. FKBP51 may have some functional

inputs in the mitochondria and nucleus [141].

Our analyses show that distant orthologues of the human

TPR motifs-containing FKBPs are encoded in disparate

invertebrates (Table 1). A sequence alignment of the

hFKBP12A with four human TPR motifs-containing

FKBPs is shown in Fig 7a; the AtFKBP42 is orthologous

to the hFKBP38. Putative leucine zippers in TPR-II and

TPR-III with a putative CaM-binding domain were

explicitly indicated. There is only about 54 % sequence

Fig. 7 a MSA of the TPR motifs-containing FKBPs. The AAs

forming PPIase cavity in the hFKBP12A are in cyan, W59

(hFKBP12A) and its equivalent positions in the other sequences are

in green, the –AYG– triad (hFKBP12A) is in pink. FKBD-I is

indicated with a violet arrow, FKBD-II is as a light brown arrow,

TPR-I (light blue), TPR-II (orange), and TPR-III (brown) are

followed with a putative CaM-binding domain and transmembrane

segment in the hFKBP38 and AtFKBP42 (blue); AAs participating in

leucine zippers in TPR-II and TPR-III are in blue color. b X-ray

structure of the human FKBP51 [62]. The cysteine residues are in

yellow; W90 in the innermost part of PPIase cavity of FKBD-I (cyan)

is flanked at the top with the –AYG– triad (Y113–G114 are shown in

dark blue), whereas in the innermost cavity of FKBD-II is I202 (pink)

that is flanked at the bottom with the –GFG– triad (F225–G226 are

shown in blue). Linkers L1 (green) and L2 (violet) join FKBD-I with

FKBD-II, and FKBD-II with the TPR motifs, respectively

Functional diversity of the FKBPs 3259

123



similarity for the hFKBP51/hFKBP52 pair, which may

indicate that their fine functional features differ from each

other despite the fact that they are co-chaperones of cor-

ticosteroid receptors. For example, in Fig. 7b is shown the

X-ray structure of hFKBP51 [62]. The two SH of the Cys

residues in the FKBDs-I of hFKBP51 and hFKBP52 are

hidden in the hydrophobic interior of the domain and are

distant from each other (hFKBP51, 1KTO.pdb, C103–

C107, d = 8.8 Å). In contrast, one Cys out of three resi-

dues in FKBP-like domain II (FKBD-II) of hFKBP51 is

solvent-exposed and might form a disulfide bridge with an

accessible Cys from another protein. There is no Cys res-

idue in the FKBD-II of hFKBP52. The FKBD-II in

hFKBP51 and hFKBP52 has neither PPIase activity nor

FK506 binding capacity.

A series of sophisticated gain-of-functions has been

tentatively assigned to the TPR-containing FKBPs, some of

which are functionally bound to glucocorticoid-driven

transcription of genes and probably are crucial elements in

several syndromes such as altered states within the nervous

system or some testicular functions (SupRef.list_C_D_F_G

in supplementary material). Whether diverse complex

diseases such as bipolar disorder, Parkinson disease, or

increased recurrence of depressive episodes (sections F and

G in SupRef.List) are under the control of the FKBP51 or

FKBP52 bound via heat shock proteins to steroid receptors

need further explorations [1]. Likewise, if a genuine syn-

ergy is created by the binding of the TPR motifs-containing

FKBPs to some yet-unidentified targets in neuronal tissues,

which could be nullified due to polymorphism or loss of

one of the genes encoding these two proteins, and in turn

cause the above-mentioned syndromes still remain for fur-

ther explorations. A possibility of involvement of FKBP52

and FKBP51 in neuron regeneration after ischemic shocks

and related phenomena has been explored [145, 147, 148,

166], but due to the intricate nature of such processes

involving cascades of various molecular events, the obtained

results require further experimental refinement.

Detection of any of the TPR motif-containing FKBPs in

samples obtained from either in vitro generated or genuine

in vivo sources, which were subjected to such phenomena

as oxidative stress, drug-suppressed or altered gene tran-

scription, altered functions of neuronal circuits and their

integrated forms [145–148], localized or systemic diseases

including cancer and its metastases [155–158] may be due

to their constitutive mode of expression rather than to any

crucial functional input that may control these complex

processes/diseases. For example, recent studies on probable

origins and metastases of cancer cells have revealed that

large sets of genes are involved in these processes [155].

Thus, whether a particular immunophilin, which is consti-

tutively expressed in normal as well as in cancer cells, may

have a pivotal impact on formation of primary tumor cells

and their metastases to other organs needs to be scrutinized

using multiple criteria. Even if a given FKBP could have a

capital significance at any stage of given syndrome or dis-

eases, its selective targeting remains problematic.

Molecular aspects of pharmacological activity

of the macrocyclic drugs vectored via the FKBPs

FK506 (tacrolimus)

Probable scenarios for in vivo modus vivendi of cyclosporin

A (CsA), FK506, and rapamycin have been described in

many papers and reviews [1, 72–76, 79–82, 173–175].

Those far-reaching propositions and hypotheses were based

on in vitro-created experimental constraints and conditions.

For example, a ternary complex comprising subunit A of

calcineurin (CaNA), its subunit B (CaNB), and calmodulin

was shown to bind to affinity gels consisting of glutathione S

transferase (GST) fusions with one of the following immu-

nophilins bound to their respective ligands, namely GST-

hFKBP12A/FK506 [72], GST-hCyPA/CsA [72], or GST-

Fig. 8 X-ray structures of two ternary complexes: a (CaNA/CaNB)/

(bFKBP12/FK506) (1TCO.pdb) [56]; the four Ca2? atoms bound to

CaNB (violet ribbons) are shown as red-brown balls, N-terminal

myristyl group is in blue spheres; CaNA (yellow ribbon), Zn2? (red

ball), Fe3? (violet ball) and a phosphate group (green spheres) bound

at the active site; bFKBP12 (orange ribbon) and FK506 (rose sticks)

are bound in a shallow groove formed by the CaNA–CaNB complex;

b (CaNA–CaNB)/(CyP–CsA) (1MF8.pdb) [171]; CaNA and CaNB

are colored as above, whereas cyclophilin A (orange ribbon) with its

CsA bound to it (rose spheres) blocks the CaN entity in a similar

fashion as it is in the bFKBP12/FK506 complex
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mCyPC/CsA [168]. Since either CsA or FK506 controls an

early stage of signals emanating from T cell receptor (TCR),

and their respective complexes with the immunophilins

inhibit phosphatase activity of calcineurin A, it seemed to be

reasonable to assume that this is the step leading to T cell

anergy, provided that a vital part of the intracellular pool of

the CaN entity (CaNA ? CaNB) is effectively blocked by

‘‘the immunosuppressive complex’’. Moreover, it has been

suggested that a strict correlation exists between the inhi-

bition of T cell signaling and the in vitro-observed, FK506-

induced inactivation of calcineurin A [74, 75].

At least three isoforms of the CaNA are expressed in

humans, namely its a-isoform (521 AAs; NP_000935.1;

GI:6715568; pI = 5.5; Fig. Fs9 in supplementary materials),

b-isoform (524 AAs; NP_066955.1; GI:11036640; pI = 5.6),

and c-isoform (512 AAs; NP_005596.2; GI:2136129;

pI = 6.5), which have about 80 % of sequence similarity

with each other. Mouse with knockout gene for the a isoform

was fully immunosuppressed after treatment with either CsA

or FK506 [169], which would imply that the other calci-

neurin’s isoform was probably blocked by the

immunosuppressive complex [170]. Moreover, at least two

isoforms of the CaNB are expressed in the human body,

namely type 1 (NP_000936.1; GI:4506025; pI = 4.5) and

type 2 (NP_671709.1; GI:22212896; pI = 4.6), which have

about 84 % sequence similarity with each other. In the human

genome are also encoded calcineurin B homologous protein 2

(196 AAs; NP_071380.1; GI:11545811; pI = 5.8) and cal-

cium-binding protein p22 (195 AAs; NP_009167.1;

GI:6005731; pI = 4.8), which have significant sequence

similarity to the above two isoforms of the CaNB as well as

to calmodulin (149 AAs; NP_001734.1; GI:4502549;

pI = 3.9) and various Ca2?-binding proteins. It should be

noted that an effective abolishment of calcineurin A activity

could be only achieved if nearly all of its cellular content

becomes engaged by the immunophilin/drug complex, which

is far from being the case in many human cell phenotypes,

which express a high level of the CaN entity.

Figure 8a and b show the X-ray structures of the (CaNA–

CaNB)/(bFKBP12A-FK506) [56, 57] and (CaNA–CaNB)/

(CyPA–CsA) complexes, respectively [171, 172]. A com-

posite of several different structures comprising the CaN

entity is shown in Fig. Fs10, whereas a summary of inter-

molecular interaction patterns in these two complexes can be

found in the Dist.comp file (supplementary material).

Each of the immunophilin/immunosuppressant com-

plexes is bound at a large and shallow space formed by the

myristylated (Myr) CaNB subunit with its four Ca2? cat-

ions bound (red-brown spheres), which interacts with the

C-terminal a-helical segment stretching out from the

globular part of the CaNA subunit, where its phosphatase

active site is shown in deep blue. These two subunits have

an extensive set of intermolecular interactions with each

other (there are 453 atomic contacts at d B 4.5 Å, Table

Ts1 and Dist.comp in supplementary materials). Likewise,

numerous atoms of the bFKBP12A have van der Waals

(vdW) interaction spheres with the CaN entity; at d B 4.5

Å there are 63 and 99 contacts for CaNA/bFKBP12A and

CaNB/bFKBP12A, respectively. Some atoms of FK506 are

in vdW distance with the AAs of the CaNA (79 contacts at

d B 4.5 Å involving W352, S353, P355, F356, and E359)

and with the CaNB (19 contacts at d B 4.5 Å involving

M118 and V119). The solvent-exposed hydrophobic side

chains of the drug are shielded in the ternary complex and

form a network of intermolecular interactions with the CaN

entity. Quasi-similar interaction patterns were calculated

for the (CaNA–CaNB)/(CyPA–CsA) complex with a few

more AA residues being engaged on the CaNA subunit

(L312, Y341, W342, P344, W352, S353, and F356) and the

CaNB subunit (M118, V119, N122, and L123). The above

data show the CaN entity has an extensive interaction

pattern with each of the immunophilins. It was not sur-

prising that some of the FKBPs alone bind to the CaN

entity, namely hFKBP51 [176], hFKBP38 [177], or

ScFKBP12 [178]. The complexes of FK506 with either of

the following immunophilins FKBP13, FKBP25, FKBP51,

FKBP52, or FKBP38 bind to the CaN entity but at a lesser

Kd than the hFKBP12A/FK506 complex [177]. For

example, hFKBP13/FK506 or hFKBP25/FK506 inhibit

calcineurin A at the Kds C 1 lM [167].

It has been proposed that the immunophilin/drug com-

plex hinders access to the active site of the CaNA for some

large substrates such as the phosphorylated N-terminal

domain of the NFAT1c, which causes its retention in the

cytoplasm of T cells treated with one of the calcineurin’s

inhibitors (CNI) such as CsA or FK506 [1]. Curiously, the

CaNA bound to the bFKBP12A/FK506 complex is more

active than its free form in cleaving the phosphate group in

small organic substrates (reviewed in [173–175]). Two

different sequence motifs of the NFAT1c bind to the

CaNA, namely the PVIVIT peptide from NFAT1c binds to

the b-strand on the globular domain of the CaNA [179–

181], whereas YLAVP peptide patch and alike from the

series of NFATs binds at a different site on the CaNA

[182]. Figure 9a and b shows a composite of two structures

roughly oriented in the same fashion, namely in the upper

panel is shown the X-ray structure of the CaN entity bound

to the bFKBP12/FK506 complex [56], whereas at the lower

panel is shown the NMR-derived structure of GPHPVI-

VITGPHEE-NH2, a sequence fragment from human

NFATc1, which is bound to a fragment of the globular

domain of the CaNA [183]. It illustrates that these two

binding sites are entirely different, namely the bFKBP12/

FK506 complex binds at the b-strand stretching out of the

globular domain of the CaNA and hinders the access to its

active site, whereas the peptide derived from NFATc1
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binds to a b-strand, which is close to the active site. It is

worth noting that the patches of the human NFATs that

target the CaNA have a low degree of sequence conser-

vation (Fig. Fs11, supplementary material). It has been

shown that interactions between NFAT1c and CaNA can

be disrupted with small molecules [184, 185]. Moreover,

the cytoplasmic HOMER scaffolding proteins compete

with the CaNA for binding to the NFAT1c and as such are

negative regulators of T cell activation [187]. Thus, it

would be interesting to explore if some peptides mimicking

the patches of the NFAT1c and its homologues, which have

the capacity to bind at high affinity to the CaNA, could

neatly target T cells and induce immunosuppression. CaNA

controls activity and translocation of a plethora of intra-

cellular proteins. For example, the scaffold A-kinase

anchoring protein (AKAP79) recruits the CaN entity to

L-type of Ca2? channels and creates an influx of Ca2? to

the cell’s interior. The X-ray structure of a complex com-

prising a small peptide patch from the ATKP79 bound to

the CaNA has been recently established [186] and is shown

in Fig. 9c. The hydrophobic peptide binds to b-strand

spanning from V328 to F334 of the CaNA globular domain

and forms a parallel b-sheet in a similar fashion as PVIVT

peptide from the NFAT1c (Fig. 9b).

Rapamycin (sirolimus)

About two decades ago, two isoforms of TOR kinase have

been cloned [79] from S. cerevisiae budding yeast (TOR1

and TOR2) whose sequences have about ID = 39 % with

the human TOR [79, 80] (Fig. Fs12, supplementary mate-

rials). In the budding yeast, TOR1 can be inhibited with the

ScFKBP12/Rpm complex (TOR1, 2470 AAs; P35169.3;

GI:1174744), whereas TOR2 (2474 AAs; P32600.3;

GI:122066477) is insensitive to rapamycin inhibition

[188]. ScTOR1 forms two different supramacromolecular

assemblies [188–190], namely ScTOR1 bound to RAPTOR

(mTORc complex 1) via the N-terminal HEAT (Hunting-

tin, elongation factor 3 (EF3), protein phosphatase 2A

(PP2A), and the yeast PI3-kinase TOR1) repeat domains is

sensitive to the hFKBP12A/Rpm complex, whereas the

complex of RICTOR–MAPKAP1 bound at the same

HEAT domains of ScTOR1 is rapamycin-insensitive

(ScTOR1 complex 2); sequence alignment comprising

Fig. 9 a X-ray structure of the (CaNA–CaNB)/bFKBP12/FK506

complex [56] and b NMR-derived structure (2JOG.pdb) of a fragment

of the CaNA (yellow; AAs from 21 to 347) bound to 1-GPHPVI-

VITGPHEELE-NH2 peptide (violet) with G1 in orange and E16 in

red [183]; c dimeric form (A ? B and C ? D chains) of the CaN

entity with the bound peptide EPIAIIITDTE from AKAP (violet,

AKAP5_HUMAN, AAs from 336 to 346, 3LL8.pdb) [186]. Calci-

neurin A (PP2BA_HUMAN, chains A and C, AAs from 14 to 70 AAs

are in yellow/orange); Zn (red ball) and Fe (blue ball) are bound to

the phosphate (cyan sphere), and calcineurin B (CANB1_HUMAN,

chains B and D, AAs from 16 to 170 AAs, are in deep violet/pink)

with Ca2? cations indicated as green balls
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ScTOR1 and human TOR is shown in Fig. Fs13 (supple-

mentary material). In mammalian cells, TOR kinase

controls different processes such as autophagy, protein

synthesis, cell size, and growth of muscle cells [189]. Some

of the downstream and upstream targets of this vital kinase

have been characterized (SupRef.list_H, supplementary

material). Human TOR (2549 AAs; NP_004949.1;

GI:4826730) [80, 81] and its homologue (AAC50405;

NP_001175.2) [191] share about 66 % sequence similarity

with each other (Fig. Fs14, supplementary material).

Figure 10 shows an X-ray structure depicting the inter-

action network within the rapamycin-binding domain

(RBD) from the human TOR bound to the hFKBP12A/

Rpm complex [192]. Rapamycin is bound to the

hFKBP12A in the same fashion as in the binary complex

shown in Fig. 3, whereas the part of the RBD containing

the hydrophobic and aromatic AAs (L120, F128, W190,

Y194, F197) and the following hydrophilic AAs (E121,

S124, G129, T187, D191; Dist.comp, supplementary

materials) are in van der Waals contact with the atoms of

the solvent-exposed atoms of rapamycin (107 contacts at

d B 4.5 Å). There are 77 atomic contacts (d B 4.5 Å)

between the RBD and hFKBP12A (F46, K47, and the AAs

in 80s loop). It is noticeable that the aromatic AA residues

in the RBD domain are fully conserved in the human TOR,

ScTOR1, and ScTOR2 (Figs. Fs11–Fs13, supplementary

material). It would probably be worth to investigate in a

more thorough manner the extent to which chemical

modifications of rapamycin alter the inhibition profile of

mTOR [193–195].

The presence of two isoforms of TOR kinase in S. cere-

visiae and other yeasts’ strains would suggest that the

signalization pathways controlled by this type of kinase

were coined at an early stage of eukaryotic cell develop-

ment. However, the cytosolic FKBP12 could fully vector

the toxic effects of rapamycin in S. cerevisiae via its

interaction with ScTOR1 [79], provided that the remaining

three FKBPs, which are expressed in baker’s yeast cells, do

not bind rapamycin. If the remaining three FKBPs, how-

ever, would bind rapamycin, then what impact might this

cause in the cell? In contrast to yeast cells, mammalian

organisms express several strong binders of rapamycin [1,

Table 3 Some pharmacological effects and clinical applications of several macrocyclic drugs, which can be vectored via their complexes with

the FKBPs

Macrocycle Cellular targets/carrier vector Outcome/applications Reference

FK506

Fujimycine

Tacrolimus

hFKBP12A-mediated inhibition of the CaNA–

CaNB–calmodulin complex

T cell anergy

Immunosuppression

Cutaneous lupus erythematosus and eczema

[1, 56, 57, 73,

173–175]

[212–214]

Pimecrolimus SDS

ASM 381

hFKBP12A-mediated inhibition of CaNA–CaNB–

calmodulin complex

Treatment of cutaneous lupus erythematosus

Atopic dermatitis (eczema)

[212–214]

[215]

Rapamycin

Sirolimus

hFKBP12A/rapamycin inhibition of the RBD in

mTOR

T cell receptor signaling blocked, which in turn

causes immunosuppression

Tuberous sclerosis

Restenosis

[58, 80–82]

[216, 217]

[200, 218]

Everolimus (RAD-

001)

hFKBP12A-mediated inhibition of the RBD in

mTOR

Immunosuppression

Anticancer

[12]

[199, 220, 221]

Zotarolimus ABT-

578

hFKBP12A-vectored inhibition of the RBD in

mTOR

Prevention of restenosis

Antiproliferative activity

[221]

[203]

Temsirolimus CCI-

779

hFKBP12A-vectored inhibition of the RBD in

mTOR

Anticancer [197, 222, 223]

Fig. 10 Fragments of the X-ray structure (4FAP.pdb) of rapamycin-

binding domain (RBD, green ribbon) from human TOR bound to

hFKBP12A/rapamycin (yellow ribbon) [192]; rapamycin (Rpm) is in

deep-violet sticks while the side chains of several AAs in close

proximity to the antibiotic were explicitly shown; the pipecoline ring

interacts with W59 (orange sticks) and Y82 (red sticks) from the

hFKBP12A is at the bottom (orange sticks), whereas the other part of

Rpm interacts with I56 (green sticks), and E54 (blue sticks) of the

hFKBP12A (yellow ribbon); S124, F128, W190, Y194, and F197 are

the side chains of the AAs from the human TOR interacting with Rpm
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4, 109], and thus not all of the net effect of the drug may be

assigned only to its complex with the archetypal FKBP12

and its allosteric inhibition of mTOR kinase. Moreover, it

has been shown that rapamycin does not entirely inhibit

mTOR complex 1 (mTORc1) [196, 197]. Whether the

other members of the FKBPs bound to rapamycin may alter

decisive signalization pathways in T cells that have been

exclusively assigned to the hFKBP12A/Rpm complex

remains to be determined. Some rapalogs bound to the

FKBP12A via allosteric inhibition of mTOR kinase exhibit

anticancer activity [197–199]. If kinase activity of mTOR

could be blocked with a specific and safe inhibitor, then it

would probably be a significant step in fighting some

cancers [201–206].

Macrocyclic drugs vectored via FKBPs for treatments

of various diseases

Structural diversity of macrocyclic metabolites produced

by different strains (tacrolimus, sirolimus, and related

rapalogs) has been explored only to a limited level of

natural niches harboring diverse prokaryotes on earth [207,

208]. Some intricate functional features of the FKBPs

associated with diverse targets or their complexes with

small ligands could have already been coined in diverse

multicellular organisms during their long evolutionary

odyssey. For example, it has been suggested that subn-

anomolar concentrations of FK506 have neuroprotective

effects during ischemia-induced oxidative stress and may

induce neuronal regeneration [49, 159, 209, 210]. This

extraordinary effect could have a reasonable base provided

that some of the FKBPs would effectively control [59, 60]

functional features of the receptors of the TGFb family of

proteins [105]. Whether a conjunction of TGFb-driven

signalization pathway with another receptor embedded in

the extracellular membrane, which are controlled by the

FKBPs, could be vital for the protection and regeneration

of neurons, remains for further explorations [166].

Table 3 summarizes some of the pharmacological pro-

files of the macrocyclic drugs shown in Fig. 2, which are in

phase III or pharmacological treatment of different dis-

eases. Even if various natural and synthetic ligands of the

FKBPs are applied in medical treatment of several

pathologies such as Lupus erythematous, eczema

[212–215], restenosis [200, 218], tuberous sclerosis [216,

217, 219], graft-versus-host disease [76], or antitumor

actions [220–223], the full spectrum of their positive

physiological actions and molecular mechanisms causing

side effects remain to be established. In such a complex

setting as the human body, one needs to take into consid-

eration that both the intracellular content of the FKBPs and

its extracellular counterpart, if present, must compete for

the free drug that was administered in given pharmaco-

logical intervention with the final outcome being

diversified due to the fact that the hydrophobic macrocycle

and its hydrophilic carriers (FKBPs) control many multi-

factorial processes.

It has recently been suggested that at l-molar concen-

trations, CCI-779 inhibits mTORc1 in an FKBP12A-

independent fashion with a considerable slowing of protein

synthesis on the ribosomes [198]. It has already been

shown, however, that rapamycin binds to prokaryotic

ribosomes [211], whereas the endogenous FKBP25 and its

complex with rapamycin bind to DNA [110], but what

implications may those diverse interactions have for vital

cellular signalization networks? Even if the hFKBP12A is

the principal hydrophilic intracellular carrier for the mac-

rocyclic drugs, because of their very low solubility in

aqueous solution and their affinity to membranes and other

hydrophobic moieties, the drug being at l-molar concen-

trations may be nonspecifically bound to different proteins.

Although about a quarter of a century has passed since the

discovery of the immunosuppressive macrolides [5–9], the

quest for novel natural and synthetic compounds that bind to

the diverse FKBPs has been evolving since then [224–234].

Firstly, novel synthetic or natural compounds could have

better pharmacological indexes for treatment of given disease

as compared to the compounds shown in Table 3. Secondly, if

given FKBP would have a unique and vital function in a

specific set of cells, then its selective targeting by nonimmu-

nosuppressive derivatives of the drugs could become of a

paramount utility to fight pathologies originating from those

cells. Thirdly, novel direct inhibitors of the CaNA phospha-

tase or the mTOR kinase could bring sizeable solutions to

treatments of some diseases in humans. For example, a

BLAST search of the human genomic database using the

sequence of the kinase domain of the human TOR revealed

that it has a low sequence similarity (BLAST max iden-

tity B 37 %) with several other domains of different kinases

such as its homologue (NP_001175.2); DNA-dependent

protein kinase catalytic subunit isoform (NP_001075109.1) or

Rad3-related kinase (NP_001175) (ATM.search, supple-

mentary material). Such a low sequence similarity to the other

human kinases may considerably increase the chances for the

discovery of novel selective inhibitors of mTOR.

A number of direct inhibitors of phosphatase activity of

the CaN entity are shown in Fig. 11a (reviewed in [234]).

Likewise, small-sized synthetic inhibitors of kinase

activity of mTORc1 and mTORc2 complexes [235–238]

have recently been described. For example, mTOR kinase

can be directly inhibited with different small compounds

such as Ku-0063794, which inhibits both mTORc1 and

mTORc2 at an IC50 of about 10 nM [235], TORKinibs

[236], or WYE-125132 [237], and some others [238]

(Fig. 11b). Derivatives of sirolimus that are modified at
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–C40–OH, such as ridaforolimus and other rapalogs

modified at the same site (Figs. 2 and 11b) have better

solubility indexes, which may probably decrease their

side effects. If some safe and direct inhibitors of the CaN

entity or mTOR kinase could effectively suppress T cells,

then they could probably become useful immunosup-

pressive drugs.

Even if the involvement of mTOR and CaN in various

cellular processes have been under investigation during

the last two decades, some novel functional features of

them have been recently unraveled [239–248]. For

example, recent studies have shown that rapamycin has

the capacity to prolong the lifespan of some organisms

such as C. elegans or mouse [249, 250], but molecular

mechanisms leading to such an extraordinary effect

remain elusive. However, it has been reported that sirol-

imus may also accelerate the senescence of epithelial cells

by shortening the telomeres [254]. Several hypotheses

were proposed to link the longevity effect induced by

sirolimus in mice with the suppression of kinase activity

of mTORc1, which in turn would influence multiple

signalization pathways in the cell. For example, it has also

been suggested that sirolimus induces clearance of prog-

erin, a protein causing aberrant mitosis and shortening of

telomeres, leading to p53 expression and altered cell

cycles, which would be perennial for an extension of life

expectancy [251]. Those still enigmatic molecular effects

would be capable of reversing senescence (aging) to

quiescence (resting unchanged) of some organisms. In

consequence, rapamycin-induced slowing down of senes-

cence coupled to calorie restriction should also diminish

the risk for ageing-related onset of cancers [252–260].

Quiescence of organisms [255–258] or suppression of

development and metastases of cancer [100, 105, 147,

260] are complex multifactorial phenomena that cannot be

solely dependent on mTORc1 and its allosteric inhibition

by rapalogs vectored via FKBP12A [259], or other pi-

comolar inhibitors of its kinase activity [235–238, 258].

Moreover, multiple clinical studies have revealed that the

prolonged usage of tacrolimus, sirolimus, and their

derivatives in transplant patients may cause some haz-

ardous side effects [1, 248, 261–266].

Fig. 11 a Chemical structures of several different molecules that

inhibit the CaNA. Calyculin A is a toxin isolated from the marine

sponge Discodermia calyx (CAS 101932-71-2, C50H81N4O15P

m = 1,009.2 g mol-1); endothall is a herbicide (CAS 145-73-3,

C8H10O5, m = 186.162 g mol-1); myriocin was isolated from the

thermophilic fungi Mycelia sterilia (CAS 35891-70-4, C21H39NO6,

m = 401.54 g mol-1); okadaic acid was isolated from the marine

sponge Halichondria okadai (CAS 78111-17-8, C44N68O13,

m = 805 g mol-1); microcystin LR was isolated from cyanobacteria

(e.g., Microcystis aeruginosa) and is a powerful cyanotoxin (CAS

101043-37-2, C49H74N10O12, m = 995.17 g mol-1). b Novel mole-

cules that inhibit mTOR. Ridaforolimus (deforolimus, rapalog) with

the IC50 of 0.2 nM for mTOR, (CAS 572924-54-0, C53H84NO14P,

m = 990.21 g mol–1); pimecrolimus (CAS 137071-32-0,

C43H68ClNO11, m = 810.453 g mol-1). Synthetic direct inhibitors

of mTOR: Ku-0063794 with the IC50 *10 nM for mTORC1 and

mTORC2, respectively; (CAS: 938440-64-3, C25H31N5O4,

m = 465.54 g mol-1); GSK-2126458, Ki’s for mTORC1 and

mTORC2 are 0.18 and 0.3 nM, respectively; (CAS 1086062-66-9;

C25H17F2N5O3S, m = 505.5 g mol-1)
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Conclusions

Analyses of genomic databases of disparate marine organ-

isms [25–31], yeast cells, and various prokaryotes [1, 4, 20,

34, 37] suggest that the chimeric genes coding for the large

FKBPs underwent shuffling, fusion, or deletion of domains

at some early evolutionary stages of multicellular species.

Moreover, the repertoires of the multidomain FKBPs are not

fully equivalent in the genomes of the analyzed marine

organisms, which indicate that those different species

inherited specific functional traits from the FKBPs encoded

at lower eukaryotes and prokaryotes. The diversity of the

FKBPs’ repertoires expressed in the marine species probably

reflects some discrete functional features that had been vital

for each organism at its evolutionary niche.

Among different effects that are controlled by macrocy-

clic drugs, such as immunosuppression [1–3, 55–58, 72–75,

79–82, 173–175], quiescence of organisms [247, 249, 250,

257, 269, 270], anticancer activity [241–245], the morpho-

gen-driven signalization networks [271–274], the protection

of neurons from ischemia-induced oxidative stress or

regeneration of neurons [275–278] might also be influenced

by hidden modus vivendi of extracellular communication

networks [267, 268, 271–273] and its modulation by the

macrocylic drugs. In humans, little is known about the

impact that the immunosuppressive drugs (Fig. 2) have on

diverse intracellular signalization pathways, which are not

under the control of the CaNA or mTOR.

There are more than 2,500 papers describing the isola-

tion, physical–chemical and biochemical characterization

of various FKBPs and their complexes with natural and

synthetic ligands, whereas several thousands of papers

describing pharmacological properties and clinical appli-

cations of sirolimus, tacrolimus, and their diverse

derivatives are accessible via the PubMed server at the

NCBI [22]. To date, only a small number of contradictory

results have been published on the rather intricate impli-

cations of the FKBPs in diverse regulatory mechanisms of

cellular processes or on physiological impacts of the FKBPs

and their small ligands (SupRef.list, the supplementary

material). Those apparent or real controversies could be due

to the fact that the FKBPs form a multigene family of

proteins starting from prokaryotes and ending with mam-

malian organisms, which would imply that some of their

cellular functions may be seemingly common to several

members of the FKBPs family. Moreover, the FKBP-driven

fine-tuning of interacting interfaces in macromolecular

complexes could be quasi-infinite in a sequence–structure

context. This effect may have a unique impact on each of

the FKBPs’ targets, which in turn may cause equally unique

cell-phenotype-dependent functional outputs. Thus, for the

multigene family of the FKBPs, one has to precisely dis-

cern: (1) which functional contribution does given FKBP

make in a particular cellular or physiological context; (2)

how does the given FKBP control conformations and

functions of each of its targets; and (3) to what extent may

the given macrocyclic ligand alter particular cellular func-

tion that is controlled by one of the FKBPs, and whether it is

dependent on its binding to this particular FKBP or it is

rather a sum of outputs from the actions driven by the

diverse FKBP/(immunosuppressive ligand) complexes.
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