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Abstract Accumulating evidence implicates mitochon-

drial and metabolic pathways in the establishment of

pluripotency, as well as in the control of proliferation and

differentiation programs. From classic studies in mouse

embryos to the latest findings in adult stem cells, human

embryonic and induced pluripotent stem cells, an increas-

ing number of evidence suggests that mitochondrial and

metabolic-related processes might intertwine with signal-

ing networks and epigenetic rewiring, thereby modulating

cell fate decisions. This review summarizes the progresses

in this exciting field of research. Dissecting these complex

mitochondrial and metabolic mechanisms may lead to a

more comprehensive understanding of stemness biology

and to potential improvements in stem cell applications for

biomedicine, cell therapy, and disease modeling.
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Introduction

Living entities, from individual cells to pluricellular organ-

isms, need to obtain energy and to use it to perform their

biological functions. Energy metabolism defines the highly

coordinated mechanisms by which energy is used to produce

and transform the molecular constituents in order to maintain

cellular integrity and allow the generation of daughter cells

and complex organisms. Nonetheless, these basic functional

properties have only recently been started to be investigated

in the context of stem cells and regenerative medicine.

Here, we review these recent developments with a main

focus on the human system. We describe the properties of

mitochondria and metabolism in relation to stemness,

development, and differentiation, and discuss the implica-

tions of mitochondrial and metabolic restructuring occurring

during the process of reprogramming somatic cells to pluri-

potency. Addressing how the manipulation of mitochondria

and metabolism can influence the induction of pluripotency

might shed light on the mechanisms regulating cell fate

identity and conversion and possibly contribute to novel

advances in stem cell-related biomedical applications.

Stem cell biology and biomedical applications

Properties and features of stem cells

Stem cells are the originating cells of all tissues in an

organism, both during embryonic development and adult

life, and are defined by two key properties: self-renewal

capacity, indicative of the proliferating features, and

potency, which refers to the ability to generate progres-

sively differentiated progeny of cells through a hierarchical

process. The differentiation and self-renewal programs are
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tightly regulated through (epi-)genetic control and envi-

ronmental stimuli [1]. When committed toward a

differentiation pathway, stem cells give rise to precursor

cells, which proliferate before differentiation and are

therefore also called transit-amplifying cells or progenitor

cells [2].

With respect to potency, different types of mammalian

stem cells can be distinguished. Totipotent stem cells are

capable of giving rise to an entire organism, essentially

fertilized eggs and cells in embryos until 4 days of devel-

opment. Pluripotent stem cells (PSCs) have the potential to

differentiate into any type of cell, but not to give rise to

whole organisms, because they lack the capacity to gen-

erate the extra-embryonic tissues required for mammalian

development. This is the case of embryonic stem cells

(ESCs), derived from the inner mass cells of the blastocyst

of mice [3] and humans [4], and induced pluripotent stem

cells (iPSCs), which are differentiated cells forced back to

a stem cell state through the process of ‘‘nuclear repro-

gramming’’ (see below). Finally, adult stem cells comprise

the undifferentiated cells residing within adult differenti-

ated tissues still retaining the ability to differentiate into a

limited number of cell types of their own lineage. These

multipotent stem cells include long-term hematopoietic

stem cells (HSCs), mesenchymal stem cells (MSCs), and

neural stem cells (NSCs) [2, 5].

The isolation of stem cells, both embryonic and adult,

had a great impact on biomedical research, mainly due to

their potential use for regenerative medicine. Given their

recognized capability to give rise to virtually any cell type

of the body [6], PSCs appear as the most promising can-

didates for cell-replacement therapies. However, ethical

controversies hamper the use of human ESCs (hESCs). The

discovery that adult somatic cells can be reprogrammed to

an embryonic stem cell-like state, bypassing the need for

human embryos, opened new avenues in stem cell research.

iPSCs were first generated from mice in 2006 [7] and from

humans in 2007 [8, 9]. This was originally achieved by the

ectopic expression of stem cell inducing transcription fac-

tors, such as OCT4, SOX2, KLF4, and c-MYC (known as

the Yamanaka factors) [7], or OCT4, SOX2, NANOG, and

LIN28 (the Thomson factors) [8, 9].

Since then, vast progress has been made with respect to

methodology. Today, iPSCs can be generated avoiding the

integration of transgenes in the host genome and the

associated risk of insertional mutagenesis and malignant

transformations [9]. This can be accomplished using

excisable vectors and non-integrative strategies, such as

episomal plasmids, RNA-based viruses, minicircle vectors,

or RNA, proteins, and microRNA delivery methods [10–

14]. Several small molecules have also been shown to

improve reprogramming efficiency and even reduce the

reprogramming factors required for iPSC generation,

mainly through the modulation of epigenetic mechanisms

[15, 16], signaling pathways [17, 18] and cellular metab-

olism (see below) [19, 20]. Pure ‘‘chemical iPSCs’’ have

also been obtained from mouse fibroblasts using solely a

cocktail of small molecule compounds [21].

Finally, the highly anticipated derivation of somatic cell

nuclear transfer (SCNT)-based human PSCs has been

recently accomplished [22–24]. However, SNCT-PSCs are

more cumbersome to derive and still requires the use of

human eggs, and controversies exist whether they might

bear lower levels of nuclear and epigenetic abnormalities

compared to conventional iPSCs [25, 26].

Biomedical relevance of stem cell research

The generation of patient-derived PSCs has extremely

interesting biomedical applications, as they can function as

model systems for human diseases in which the cellular

pathogenic mechanisms can be investigated at the molec-

ular level [27]. The selection of one specific strategy or

reprogramming approach will greatly depend on the pur-

pose of the study and the starting cell material. For

example, in vitro disease modeling or drug screening may

not require as stringent quality controls as cell-based

regenerative therapies in humans.

A growing number of disease-specific iPSCs have been

successfully generated from patients affected by a wide

variety of pathological conditions, including neurologic

[28, 29], cardiac [30, 31], and metabolic diseases [32].

iPSC-derived cells have been found to exhibit disease-

related phenotypes and therefore appear as promising

model candidates for the discovery of novel therapeutic

strategies. Furthermore, iPSC-derived hepatocytes or

cardiomyocytes may be used for in vitro toxicology

screenings, since unpredicted metabolism in human tissues

is one of the main drawbacks in the current pharmaco-

logical pipeline [33].

Several stem cell-based therapies for regenerative pur-

poses have been tested at subclinical and clinical levels.

Within the website clinicaltrials.gov, the search for ‘‘stem

cells’’ retrieves more than 4400 entries, indicating the

current interest of stem cell application in biomedicine.

Embryo-derived and PSC-derived NSCs have been shown

to promote functional recovery when transplanted into rat,

mouse and non-human primate models of spinal cord

injury [34–37]. ESC-based therapy for spinal cord injury

was brought to Phase I Clinical Trials in 2010 [38]. After

its cancelation in 2011 [39], the trial will be resumed soon

as announced by the California Stem Cell Report. MSCs

are at present being tested in clinical trials for immune,

neurodegenerative, cardiovascular, gastrointestinal, and

blood disorders, and for the regeneration of bone and car-

tilage [40–43]. Finally, iPSC-derived cells are currently
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being employed in clinical trials of cell-replacement ther-

apies in age-related macular degeneration [44, 45].

Mitochondria and metabolism during proliferation

and development

Mitochondria and mtDNA

Mitochondria within eukaryotic cells are double-membrane

organelles that generate energy in the form of ATP through

the process of oxidative phosphorylation (OXPHOS). In

addition, they exert crucial functions in various cellular

processes, including programmed cell death (apoptosis),

calcium homeostasis, reactive oxygen species (ROS) sig-

naling, and detoxification.

Mitochondrial function is tightly regulated by quality

control mechanisms [46]. The failure of this apparatus is

implicated in the development of several neurological

diseases [47]. The network of cellular mitochondria is

rather dynamic, as the organelles undergo constant fusion

and fission events that are balanced in a coordinated

fashion in order to match the specific needs of the cells,

such as control of cell cycle progression, differentiation,

cell death, and metabolism [48]. Mitochondria and

metabolism exhibit distinct features depending on the cell

type, thus implying that cell-specific biochemistry might

intimately be linked to cell function specifications.

Due to their endosymbiotic origin, mitochondria main-

tain a vestigial genome. The mitochondrial DNA (mtDNA)

in humans is a circular molecule of 16.5 kb coding for 13

polypeptides, forming part of the complexes of the electron

transport chain, for 22 tRNAs and 2 rRNAs, which are

necessary for mtDNA translation, with only 600 non-cod-

ing nucleotides [49]. Even if the information encoded by

mtDNA is much smaller than that present in the nuclear

genome, mutations in mtDNA are the cause of many

human pathologies [50, 51] and can also arise somatically

upon aging and neurodegeneration [52, 53].

mtDNA is transmitted mainly by maternal inheritance.

Although mitochondria present in the sperm cell can enter

the cytoplasm of the oocyte during fertilization, there exist

several mechanisms that eliminate paternal mtDNA from

fertilized oocytes [54]. Given the existence of multiple

copies of mtDNA per cell, a genomic variation may occur

only in a portion of these genomes. This situation is known

as heteroplasmy, which defines the presence of different

mtDNA genotypes into the same cell. mtDNA sequence

variants emerged in the female germline give rise to a

transient heteroplasmic state that often segregate in a few

generations in cattle [55, 56], with a more complex pattern

in humans, where both slow and rapid segregation have

been observed [57]. The mitochondrial bottleneck

hypothesis seeks to explain the changes in heteroplasmy

levels observed between mothers and their progeny [58]. In

summary, it proposes that mitochondria carrying different

genotypes are segregated due to a physical ‘‘bottleneck’’ in

mitochondrial number both in primordial germ cell popu-

lation and during development until after the blastocyst

stage, although mechanisms as selective replication or

degradation of particular mitochondrial genotypes, or the

organization of mtDNA into homoplasmic segregating

units, have also been proposed [59–61].

Energy metabolism and redox maintenance

Mitochondria and energy metabolism are central in sup-

porting the specialized functions of cells. Through multiple

and complex mechanisms, they enable the production of

building blocks and energy, coordinate signaling pathways,

and control regulation of gene expression [48]. Anabolic

pathways branching out from glycolysis and the pentose

phosphate pathway (PPP) provide essential intermediaries

needed for the synthesis of macromolecules, such as amino

acids, lipids, and nucleotides [62, 63]. Therefore, metabolic

remodeling could have important downstream effects at the

functional level.

Cellular metabolism is intertwined with redox homeo-

stasis. ROS are indeed a common by-product of

mitochondrial respiration [64]. When their production is

increased, functional oxidative damage can take place,

resulting into protein, lipid, or genomic aberrations and

eventually apoptotic cell death [65]. To counteract these

effects, cells possess fine-tuned machineries that balance

radical species with reducing equivalents. The maintenance

of this equilibrium is required for genome integrity and is

thus critical for cells both in steady states and during

adaptations to different conditions. In fact, decreased

OXPHOS and tricarboxylic acid (TCA) cycle activity

result into lower radical generation. At the same time,

enhanced flux through the PPP can support the synthesis of

the reducing equivalent NADPH, needed for antioxidant

detoxification [63, 66].

ROS can also act as second messengers therefore

exhibiting also a physiological role. They can modulate

genetic and epigenetic modifications, by altering the

expression of genes or their epigenetic control [67].

Therefore, ROS may be important in regulating not only

cell death but also cellular proliferation and differentiation.

A ROS rheostat has been therefore proposed to be at the

center of stem cell function [68]. Among the important

players of the ROS rheostat, the FOXO (insulin-forkhead

box O transcription factors) family and FOXO3 in partic-

ular, may be central. They are activated, amongst other

stimuli, by oxidative stress and starvation, and can coor-

dinate the expression of genes involved in metabolism,
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autophagy, proteostasis, and response to oxidative damage,

including the superoxide dismutase (SOD) and catalase

[69, 70].

Metabolic adaptations of proliferative states

Regulation of energy metabolism represents a necessary

mechanism for the adaptation to a different cellular state

characterized by modified anabolic requirements. During

proliferative conditions, such as malignant transformation

or embryonic development, the necessity for anabolic

growth increases and cells undergo metabolic transforma-

tion events culminating in an enhanced rate of glycolysis

and reduced entry of pyruvate into mitochondria [71].

The benefits derived from this metabolic shift are

diverse. Due to the expression of different enzyme iso-

forms, the carbon flux through glycolysis is accelerated and

the entry of pyruvate into the mitochondria is reduced. This

energy re-routing outside of the mitochondria avoids the

production of free radicals and makes glucose-derived

carbons available for entry into the anabolic pathways

branching out from the glycolytic route and the PPP,

thereby providing essential intermediates for cell growth.

In this context, mitochondria acquire a role as anaplerotic

sources of metabolic precursors for macromolecular bio-

synthesis [72].

Oxygen is a key regulator of metabolism. Under con-

ditions of oxygen deprivation, cells rely less on OXPHOS

and exhibit increased conversion of glucose to lactate, a

phenomenon known as the ‘‘Pasteur effect’’ [73]. However,

proliferative cells rewire their metabolic signature to

respond to higher cellular demands and therefore shift to

glycolysis-based metabolism even in the presence of high

level of oxygen, a phenomenon known as aerobic glycol-

ysis or ‘‘Warburg effect’’ [74]. This metabolic adaptation

endows proliferative cells with the critical advantages of

biomass growth and redox balance.

The pathways downstream of oxygen modulation

include the hypoxia-inducible factors (HIF) 1 and 2 [75].

HIFs are heterodimers consisting of a constitutively

expressed b subunit and an oxygen-regulated a subunit,

which is physiologically degraded when oxygen is plenty.

Under hypoxia, a proteins escape degradation and translo-

cate into the nucleus, where they can set into motion a

complex gene expression reconfiguration. HIF1a target

genes include glucose transporters, which increase glucose

uptake, and pyruvate dehydrogenase kinases (PDK1-3),

which shunt pyruvate away from the mitochondria through

the inhibition of pyruvate dehydrogenase [76–78]. HIF1a
also interacts with the enzyme pyruvate kinase isoform M2

(PKM2), known to catalyze the conversion of phospho-

enolpyruvate (PEP) into pyruvate in the last step of the

glycolytic cascade. Upon oxidation, PKM2 may lose

activity, thereby reducing pyruvate formation and diverting

the glycolytic flux into the PPP [66, 79]. Therefore, oxygen-

mediate modulation of energy metabolism has critical

effects also at the level of redox homeostasis regulation.

Other critical metabolic checkpoints include AMPK

(the AMP-activated protein kinase), which responds to

reductions in the cellular energy state through switching

off ATP-consuming anabolic biosynthetic pathways [80,

81], and the mammalian target of rapamycin (mTOR), a

metabolic and stress sensor involved in the coordination

of growth and metabolism [82]. mTOR can interact with

members of nutrient-sensing signals such as the phos-

phatidylinositol-3,4,5-triphosphate kinase (PI3 K) and its

activated kinase AKT [83]. This PI3 K/AKT/mTOR axis

triggers a cascade of responses, from cell growth and

proliferation and is thus instrumental during adaptations

to different metabolic states.

In the context of malignant proliferation, the relative

contribution of glycolysis and OXPHOS to energy pro-

duction may depend on tumor type and microenvironment

[84–86], but the metabolic reprogramming is believed to

represent a key cellular adjustment supporting macromo-

lecular synthesis, essential for cell growth and division, and

redox balance [71, 87, 88]. A similar metabolic shift is in

fact observed also in normal highly proliferating cells, such

as enterocytes or lymphocytes [89].

Mitochondrial and metabolic reconfiguration

during mammalian development

Mitochondria undergo distinct conformational and meta-

bolic changes during development, where embryos evolve

from the relatively metabolically inactive egg at ovulation

to rapidly metabolizing tissues at and after implantation

(Fig. 1).

During the first week of development, the embryo

increases in cell number, but not in size, and it seems that

cells derive energy from protein catabolism by autophag-

ocytosis, with a decrease in protein levels of around 26 %

from the one cell stage to the morula formation [90]. In the

pre-implantation embryo, the Krebs cycle and OXPHOS

are used as the main energy source, with pyruvate as the

more prominent energy substrate in most species during

first cleavage (with some exceptions, such as porcine

embryos), as shown under in vitro conditions [91]. Other

major substrates used until the blastocyst stage includes

lactate, amino acids, and triglyceride-derived fatty acids

[91]. Until the morula stage, glucose uptake and usage is

low, although it is necessary as a cell-signaling agent for

the development up to the blastocyst stage [92, 93]. Indeed,

high concentrations of glucose can inhibit early embryo

development [94]. At the morula stage, glucose oxidation

increases to rates similar to those of pyruvate [95].
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In mice, from the fertilized egg up to the blastocyst stage

(between 0 and 4.5 days postcoitum), the early embryo

undergoes cell division without a concomitant net repli-

cation of mtDNA before implantation [61]. As a

consequence, after every round of division, mtDNA is

reduced in the daughter cells by around 50 % [96]. Con-

sequently, ATP levels and ATP/ADP ratio decrease during

this phase, while the NADH/NAD? ratio remains relatively

high [97], [98]. It has been suggested that this drop in ATP

may play a role in the activation of glycolysis at the

blastocyst stage, since ATP is an inhibitor of the rate-

limiting glycolytic enzyme phosphofructokinase 1 (PFK1)

[99].

In mouse embryos, from zygote to two-cell stage,

mitochondria adopt a dumb-bell shape with concentrical

cristae, while from the four-cell to the morula stage,

mitochondria elongate, cristae relocate in a transverse

manner, and a proportion of mitochondria seems to be

vacuolated [100]. During these stages, cells exhibit struc-

turally immature mitochondria, with spherical shape, few

cristae and a matrix of high electron density. By the end of

early embryogenesis, mitochondria elongate and develop

cristae containing a matrix of low electron density,

accompanied by an increase in inner mitochondrial mem-

brane potential (DWm) [101]. In several mammals (such as

hamster, mouse, human, and monkey), mitochondria have

been observed to arrange around the cell nucleus in cleave-

stage embryos [102–105]. Several benefits have been

speculated to culminate form this peri-nuclear arrange-

ment, such as more efficient transport of polypeptides into

mitochondria, improved energy transfer for nuclear trans-

port across nuclear pores, and buffering the nucleus from

Ca2? fluctuations in the cytoplasm [106] (Fig. 1).

This first differentiation event within the blastocyst is

characterized by differential expression profiles in the inner

cell mass and trophectoderm and associated key signaling

pathways related to cell growth, proliferation, differentia-

tion, and, interestingly, metabolic pathways [107]. In fact,

blastocyst formation is accompanied by an increase in

growth and metabolic activity. There is an initial burst in

glucose uptake due to the expression of glucose trans-

porters GLUT1 and 3 [108], followed by an increase of

glycolysis and lactate production [95]. All these events are

accompanied by an increase in oxygen consumption and

OXPHOS, mainly due to the mitochondrial activity of cells

within the trophectoderm [101].

It is important to note that the increase in glycolysis

observed at this stage might be the result of an experi-

mental artifact resulting from the removal of embryos from

their natural environment for in vitro analyses [109].

However, while mitochondria of the trophectoderm are

elongated and present both higher O2 consumption and

membrane potential, the ICM mitochondria within the

inner cell mass are spherical, depolarized and with low

Fig. 1 Cell metabolic

preferences and mitochondrial

morphology during mammalian

development. Mitochondria

within unfertilized oocytes and

pre-implantation stage embryos

exhibit an immature structure.

This is mirrored in vitro in adult

stem cells and PSCs. Energy

metabolism evolves from

relatively quiescent in oocytes

to highly active cells during

embryonic development.

Overall, stem cells share a

preference for glycolysis, with

variances in the case of adult

stem cells. The fetus and the

adult organism undergo a

predominantly oxidative

metabolism, with exceptions

depending on the tissue type and

physiological conditions
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oxygen consumption, thereby supporting the hypothesis of

reduced OXPHOS capacity of the cells of the inner cell

mass, which are used for the derivation of embryonic stem

cells [4, 100, 110].

During gastrulation, the mitochondria content is aug-

mented to match the OXPHOS demands of differentiating

cells [111]. Concurrently, there is decreased glycolysis

coupled with an increase in mitochondrial oxidation of

fatty acids and glucose-derived pyruvate [112]. Mito-

chondrial ultrastructure as well as distribution are also

altered, as manifested by mitochondria enlargement and

cristae enrichment [111] as well as by loss of peri-nuclear

localization [113] (Fig. 1).

Mitochondrial and metabolic features of pluripotent

stem cells

Mitochondrial ultrastructure in PSCs

Peri-nuclear distribution of mitochondria has been proposed

as a ‘‘stemness’’ marker in stem cell populations [113].

Mitochondria within PSCs are few, with peri-nuclear dis-

tribution and round-shaped, non-fused morphology [114–

116]. The cristae structure is considered as an indicator of

OXPHOS function, as the electron transport chain compo-

nents including the F1FO ATP synthase, crucial for OXPHOS

activity and mitochondrial ATP synthesis, reside within the

inner membrane of mitochondria [117]. Thus, the morpho-

logical features of PSC mitochondria suggest a potential

metabolic preference of these cells for glycolysis [118].

Indeed, numerous studies have shown that both ESCs and

iPSCs undergo glycolysis at higher rates when compared to

their differentiated counterparts [19, 115, 118–126].

DWm is increased in mouse PSCs compared to somatic

cells and this hyperpolarization seems to occur early in

the reprogramming process [115]. Human PSCs also

maintain an elevated membrane potential that diminishes

during differentiation [127–129]. It has been proposed that

this high membrane potential might support PSC in an

energetically-primed state that could allow rapid respon-

ses to increments in energy demands associated with

differentiation [130, 131]. Moreover, since mitochondrial

fusion is dependent on mitochondrial depolarization [132],

the high DWm might contribute to determine the frag-

mented non-fused morphological features of mitochondria

within PSCs.

Metabolic switch upon reprogramming to pluripotency

Several lines of evidence demonstrate that a metabolic

switch from OXPHOS to glycolysis occurs during the

reprogramming of somatic cells to pluripotency [115, 118,

122, 125]. This metabolic reconfiguration may play an

important role in the adjustments required by repro-

grammed cells to meet the burden imposed by the

increased demand for the synthesis of macromolecules,

needed to support the enhanced proliferative capacity, and

for the maintenance of redox equilibrium [71, 131, 133].

To this aim, the re-routing of energy flux toward the PPP

may be of critical importance [63]. Accordingly, elevated

expression of genes involved in the non-oxidative branch

of the PPP have been detected in mouse iPSCs [115] and

human PSCs [122, 134], together with the accumulation of

the key PPP metabolite glucose-6-phosphate [134]. Addi-

tional key features of the iPSC-associated metabolic

reconfiguration include increased expression of PDK1-3

and PKM2 [123, 134], indicative of reduced OXPHOS flux

and enhanced glycolytic metabolism (Fig. 2).

The metabolic reconfiguration of reprogrammed cells

resembles the Warburg effect associated with tumor for-

mation. Indeed, many similarities can be seen with respect

to the metabolic features of PSCs and cancer cells. None-

theless, key mitochondrial differences exist. In particular,

unlike tumor cells, PSCs are highly sensitive to apoptosis

due to a mechanism called ‘‘mitochondrial priming’’,

which involves the maintenance of a high ratio of pro-

apoptotic to anti-apoptotic proteins, close to the apoptotic

threshold, making PSCs more sensitive to DNA damage

[129, 135]. Accordingly, the maintenance of genome sta-

bility, which is not essential for cancer cells, is necessary

for stem cells [136].

It is plausible that the initial forced expression of the

reprogramming factors triggers the metabolic changes that,

in turn, establish a positive feedback loop enhancing the

expression of endogenous stemness-associated factors

necessary to complete the reprogramming process. Indeed,

several of the reprogramming-inducing factors may be able

to potentiate the glycolytic shift. KLF4 has been shown to

promote glycolysis through the induction of the platelet

isoform of phosphofructokinase (PFKP) in breast cancer

cells [137]. c-MYC is a well-known inducer of glycolysis

and a driver of ‘‘glucose addiction’’ in cancer [138]. LIN28

mediates let-7 microRNA repression, hence regulates glu-

cose metabolism in stem cells via the insulin-PI3 K-mTOR

signaling pathway [139, 140]. Finally, OCT4 activity is

regulated by HIF signaling and may interact for tran-

scriptional regulation with PKM2 [141, 142].

There is an apparent controversy regarding the mito-

chondrial oxidative competence in pluripotent stem cells.

Despite PSCs exhibiting a preference for glycolysis and

being characterized by under-developed mitochondrial

cristae, the cells consume O2 at their maximal capacity

[122, 124, 125, 134]. Indeed, oxygen consumption nor-

malized to mitochondrial mass appears equivalent in both

PSCs and somatic cells [124]. The low respiratory capacity
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in PSCs may potentially be due to their overall reduction in

mitochondrial copy number [118, 127, 143]. Importantly,

the mitochondrial use of oxygen seems to be uncoupled

from ATP synthesis (which occurs mainly through gly-

colysis) due to the expression of the uncoupler protein

UCP2 [124]. Mitochondrial ATP synthase may thus func-

tion in a reverse manner, hydrolyzing the ATP produced in

the cytoplasm through glycolysis [124]. The uncoupled

function of the ETC would allow the conversion of NADH

into NAD?, thereby facilitating the high glycolytic rate of

these cells and maintaining an optimal membrane potential,

which is essential for the flux of carbons through the TCA

cycle needed for anaplerotic reactions. This would ulti-

mately enable PSCs to feed biosynthetic growth through

lipid synthesis from citrate and amino acid synthesis from

oxalacetate and a-ketoglutarate (aKG) [144].

Fig. 2 Metabolic restructuring upon the induction of pluripotency.

Key metabolic players are differentially expressed in hESCs (green)

compared to somatic fibroblasts (gray) and undergo a drastic

reconfiguration upon reprogramming to iPSCs (orange). This suggest

that in order to adapt to a novel state, cellular metabolism needs to

acquire a different profile characterized by reduced flux toward the

mitochondria and enhanced glycolysis and PPP activity. The data

were previously obtained in two human control fibroblasts (BJ and

HFF1), two hESC lines (H1 and H9) and four iPSC lines (two from

BJ fibroblasts and two from HFF1 fibroblasts) (see references [118,

123, 134])
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Modulation of reprogramming via metabolic

manipulations

The Warburg-like metabolic shift may represent an early

reprogramming event, preceding the expression of genes

controlling pluripotency and self renewal in both mouse

[115, 145] and human cells [123, 126]. Accordingly, it has

been suggested that the induction of pluripotency occurs in

two waves [146]. Metabolic changes can occur during the

first wave, while the establishment of the pluripotency

network takes place in the second wave. Thus, bioenergetic

restructuring may not be a simple secondary consequence

of the induction of pluripotency but it may exert an

important modulatory role.

In agreement with this concept, it has been demonstrated

that conditions stimulating a glycolytic reconfiguration

enhance reprogramming efficiency. Low oxygen (3–5 %)

prevents premature differentiation of hESCs and improves the

conversion of fibroblasts into iPSCs [147, 148]. Indeed,

HIF1a might be essential for the early induction of the gly-

colytic shift during reprogramming, as somatic cells in which

HIF1a is knocked-down are remarkably less efficiently

reprogrammed into iPSCs [123, 126]. HIF2a has also been

found to specifically induce the expression of OCT4 in mouse

and human ESCs [141, 149]. However, within the context of

iPSC derivation, HIF2a seems to be beneficial only during

the early phase of reprogramming and not in later stages

[126]. mTOR down-regulation by SOX2 may also represent

an important factor for reprogramming initiation [150].

Small molecules regulating mitochondria and energy

metabolism have been found to elicit significant effects on

reprogramming. In particular, inhibition of glycolysis or

HIF1a activity leads to impaired iPSC formation [19, 115,

124, 125, 148]. The same is true for AMPK activation,

which may repress reprogramming through the transcrip-

tional repression of OCT4 [151]. An inhibitor of

mitochondrial fission also disrupts iPSC conversion, sug-

gesting that the establishment of non-fused fragmented

mitochondria might represent an important element of the

induction of pluripotency [152].

On the other hand, small molecule stimulating glycol-

ysis, HIF1a, or PDK activity has been found to enhance

iPSC formation [19, 115, 123–126]. Accordingly, inhibi-

tion of OXPHOS may be beneficial for the maintenance of

PSCs [153]. Chemical inhibition of mTOR can also lead to

improved reprogramming efficiency [154], further high-

lighting the importance of metabolic sensors and regulators

in the path toward pluripotency.

Finally, the addition of vitamin C has been shown to

improve the reprogramming process and lead to better

quality iPSCs through both its antioxidant role and its ability

to modulate epigenetic processes by the control of DNA-

modifiying dioxigenases [155]. Therefore, it is interesting to

notice that procedures modulating mitochondrial-related

pathways might influence both the efficiency and the quality

of reprogrammed cells [156, 157] (Fig. 3).

Nutrients and lipids in PSC metabolism

Recent studies have highlighted the implication of nutrient-

sensing signaling pathways in the establishment and

maintenance of pluripotency [158]. Within the FOXO

family, FOXO1 regulate the expression of OCT4 and

SOX2 in hESCs, and its activity may be crucial for the

maintenance of pluripotency in human and mouse ESCs

[159]. Instead, FOXO4 regulates the proteasome activity in

hESCs [160]. mTOR regulation also seems fundamental

for mouse and human ESC self-renewal and pluripotency

[161, 162], as its activity is augmented upon differentiation

[163, 164] and negatively affects the generation of iPSCs

[154, 165]. Overall, although more studies are warranted in

this area, it appears that energy-sensing involved in the

coordination of metabolic and proliferative responses

might be central for the acquisition and maintenance of

stem cell properties [158] (Fig. 3).

The relevance of lipid metabolism in the control of

‘‘stemness’’ and differentiation in multipotent NSCs and

HSCs has been recently described [166, 167] (see below).

However, the possible roles of lipids have not been

extensively investigated in PSCs. It has been shown that

culture medium supplemented with albumin-associated

lipids promoted hESC self-renewal [168] and that addi-

tion of sphingosine-1-phosphate to hESC culture medium

suppresses apoptosis and promotes proliferation of these

cells, while decreasing pluripotency-associated gene

expression [169, 170]. Chemical inhibition or siRNA-

mediated down-regulation of stearoyl-CoA desaturase

(SCD1), a key enzyme needed for the synthesis of

monounsaturated fatty acids (MUFAs), has been found to

selectively cause ER stress and cell death selectively in

hESCs and iPSCs, and the supplementation with oleic

acid, the product of the reaction catalyzed by SCD1,

prevented these effects [171]. This demonstrates the

importance of the MUFAs biosynthetic pathway for

human PSCs. The enzymes acetyl-CoA carboxylase

(ACC) and fatty acid synthase (FASN), both of them

crucial players in fatty acid synthesis, are up-regulated in

iPSCs when compared to differentiated cells, possibly

due to the inactivation of AMPK [172]. In fact, impair-

ment of de novo fatty acid synthesis during

reprogramming greatly reduces the efficiency of iPSC

formation [172]. These findings imply a relevant role of

lipid synthesis in cell fate reprogramming. In light of

these studies, it may be worth investigating in more

detail the lipid-associated signaling and metabolism in

the maintenance of pluripotency.
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Metabolism-epigenetic crosstalk in PSCs

The fact that metabolic reconfiguration could precede the

establishment of the pluripotency regulatory networks

[115, 123, 126, 173, 174] suggests that modulating energy

metabolism might have downstream effects at the epige-

netic level (Fig. 3).

Several enzymatic players of epigenetic control need

distinct metabolites as cofactors or substrates, thus mak-

ing epigenetics sensitive to the metabolic status of the cell

[175]. In particular, acetyl-CoA derived from the activity

of ATP-citrate lyase (ACL, the enzyme responsible of the

first step in fatty acid synthesis from citrate) is necessary

for the activity of histone-acetyl transferases (HATs) in

mammalian cells [176]. Sirtuins are NAD?-dependent

class III histone deacetylases (HDACs). Both CoA/acetyl-

CoA and NAD/NADH ratios are indicators of the cellular

energetic status. Therefore, the lysine acetylation level of

histones (and so their ability to bind DNA) is linked to

the availability of acetyl-CoA and NAD? in the cells

[177].

Energy metabolism can exert epigenetic regulation in

PSCs that may depend on the type of nutrient substrates.

Indeed, glucose-dependent chromatin O-GlcNAcylation

Fig. 3 Regulating the metabolic identity of pluripotent stem cells.

The metabolic state of PSCs is drastically divergent from that of

somatic cells and relies on enhanced flux through the glycolysis (in

blue) and the PPP (in green). This energy re-routing bears the crucial

advantage of maintaining low oxidative stress levels through reduced

OXPHOS-mediated ROS production and increased PPP-derived

NADPH. Consequently, mitochondria within PSCs exhibit unique

morphological organization and sensitivity to apoptosis (also known

as mitochondrial priming). In order to induce and sustain this

metabolic configuration, specific mechanisms must therefore be in

place. Among these, master metabolic regulators such as AMPK,

mTOR, HIF1a, and PKM2 (in red) may influence the efficiency of

reprogramming to pluripotency. The importance of bioenergetic

metabolism for cell fate conversion is further highlighted by the

evident crosstalk between central carbon metabolites and epigenetic

regulation (red arrows). Finally, nutrients and external substrates

including oxygen might function as further upstream modulators

(yellow arrows). This effect may be at the level of metabolic route

decisions (oxygen, glucose, galactose, fatty acid, lactate, and

glutamine), antioxidant protection (vitamin C), or epigenetic control

(vitamin C and acetate). Further studies are needed to clearly

elucidate this complex interplay between cellular environment and

specification of cell fate identity
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has been found to transcriptionally activate core compo-

nents of the pluripotency network, as low glucose

concentration in the media resulted in reduced repro-

gramming efficiency of mouse iPSCs [178]. Another

example is the dependence on the threonine (Thr) metab-

olism in mouse ESCs. Thr -derived carbons are used to

generate acetyl-CoA for the TCA cycle and diverse acet-

ylation reactions, and 1-carbon equivalents for the folate

pool [179]. The synthesis of 5-methyl-tetrahydrofolate

modulates the metabolism of S-adenosylmethionine

(SAM), the major methyl donor for DNA and histone

methylation, linking the metabolism of Thr to the epige-

netic control of growth and differentiation in mouse ESCs

[145]. In accordance, Thr regulation significantly influ-

ences the efficiency of mouse somatic cell reprogramming

[180]. In humans, however, threonine dehydrogenase, the

enzyme responsible for the first step of Thr catabolism, is

expressed as a non-functional pseudogene [181]. Interest-

ingly, it has been recently shown that methionine (Met),

and not Thr, is essential for SAM synthesis and cell via-

bility in human ESCs and iPSCs [182]. Met is the substrate

for SAM synthesis through the action of methionine ade-

nosyltransferases (MATs). Met deprivation leads to a rapid

decrease in SAM levels in human PSCs, which in turn

results in changes of epigenetic patterns and modification

of signaling pathways leading to cell differentiation, while

prolonged Met deprivation results in pluripotent cell death

[182].

Also the cellular redox status may be important for the

epigenetic remodeling, as ROS can regulate the activation

of methionine adenosyltransferases, the enzymes respon-

sible for the synthesis of SAM, which is the methyl donor

for DNA methylation [183]. Oxidation of cysteine residues

in some methionine adenosyltransferases leads to their

inhibition [184], consequently causing a decrease in SAM

levels and changing epigenetic patterns in cancer cells

[183].

Histones can also be modified by the addition of uridine

diphosphate-N-acetylgluocosamine (UDP-GlcNAc), a

product of the hexosamine biosynthetic pathway branching

from glucose-related flux [185]. Finally, the TCA cycle

intermediate aKG is a cofactor of dioxygenases like ten-

eleven translocation (TET) DNA hydroxylases and Jumonji

C histone demethylases (JHDM) [186] and its elevated

concentration has been found beneficial for the epigenetic

maintenance of naı̈ve mouse ESCs [187].

Metabolic restructuring upon PSC differentiation

Multiple studies have shown a complex involvement of

mitochondria during stem cell differentiation. During

spontaneous differentiation of hESCs there is an increase in

mitochondrial mass, oxygen consumption, mitochondrial

proliferation, mtDNA transcription, ROS production, and

synthesis of antioxidant molecules, such as SOD and per-

oxiredoxin [111, 188]. In accordance, the oxidation of

unsaturated fatty acids by ROS and concomitant produc-

tion of eicosanoids trigger the differentiation of mouse

ESCs [189].

The conversion of hESCs and iPSCs into fibroblast-like

cells is also accompanied by higher mitochondrial activity

represented by increased mtDNA copy numbers, morpho-

logical maturation of mitochondria, and increased levels of

ATP and oxidative damage [118]. The regulation of

mitochondrial dynamics may indeed be involved in cell

differentiation [48]. Mitochondrial fusion promotes pro-

liferation allowing Cyclin E accumulation and entry in the

S phase [190], while mitochondrial fission supports the exit

from cell cycle and commitment toward differentiation

[191].

The manipulation of mitochondria-related pathways

may also be relevant for regulating differentiation along

specific lineages. The promotion of mitochondrial bio-

genesis and OXPHOS can enhance the differentiation of

hESCs into the mesendoderm lineage [192]. Moreover,

inhibition of PPP may specifically trigger endodermal

differentiation [193, 194]. Sustained expression of pro-

hibitin 2 (PHB2), a protein-lipid scaffold at the

mitochondrial inner membrane (MIM), inhibits the differ-

entiation of mouse and human PSCs into the ectodermal

and endodermal lineages, but not into the mesodermal

lineage [195]. The inhibition of mitochondrial permeability

transition pore (PTP) promotes the differentiation of mouse

and human PSCs into cardiomyocytes due to an increase in

mitochondrial oxidative metabolism, and this cardio-

myogenyc effect is enhanced by the addition of

antioxidants [196]. Taken together, these examples dem-

onstrate that mitochondria exert a pivotal role in the

process of differentiation, and further efforts are needed to

clarify all the facets of this intricate influence.

Mitochondrial and metabolic features of multipotent

stem cells

HSCs and MSCs

Most adult stem cells are quiescent cells, slowly cycling to

prevent stem cell exhaustion (that would risk life-long

capacity for tissue renewal), the accumulation of mutations

during successive cell divisions (that would favor onco-

genic transformation) [197], and cellular damage by

OXPHOS-derived ROS [198]. Both hematopoietic stem

cells (HSCs) and mesenchymal stem cells (MSCs) reside in

hypoxic niches, and, consequently, seem to rely on gly-

colysis more than OXPHOS, when compared to more
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differentiated cells in their respective lineages [198, 199].

The hypoxic environments of adult stem cells could be a

physiological adaptation to prevent oxidative stress.

Numerous studies have shown the sensitivity of HSCs to

ROS, which, at high levels, trigger responses such as dif-

ferentiation, senescence, loss of stem cell function, or

apoptosis [200–202].

In accordance with their preference for anaerobic

metabolism, mitochondrial oxidative capacity in adult

HSCs is down-regulated by the induction of the tran-

scription factor HIF1a [203]. HIF1a leads to elevated

expression of CRIPTO, that, in turn, non-cell autono-

mously activates its receptor GRP78, thereby inducing the

expression of glycolytic genes, including PDKs [140]. The

induction of PDKs has been postulated as a metabolic

checkpoint able to modulate cell cycle progression and

function of HSCs [204]. On the other hand, fatty acid ß-

oxidation under the influence of PPARd seems to play a

crucial role in the control of the switch between asym-

metric/symmetric cell division in HSCs [166], which

indicates that mitochondrial oxidative metabolism is

extremely relevant for these cells beyond the usage of

glucose-derived substrates. In the case of MSCs, when

expanded in normoxic conditions are able to efficiently use

OXPHOS with high O2 consumption, and their prolifera-

tive and colony formation capacity is increased, but this is

accompanied by induction of senescence [205, 206]. These

results are in accordance with the notion that location into

hypoxic environments may protect adult stem cells from

oxidative stress and preserve their long-term self-renewal

capacity.

NSCs

NSCs depend on low oxygen tensions to remain quiescent in

their stem cell state. In the adult brain, NSC population within

the thin subventricular zone (SVZ) give rise to immature

progenitors of various lineages, which can produce migrating

neuroblasts as well as glia. Low concentrations of oxygen

(\1–8 %) in the SVZ are comparable to the hypoxic niches of

HSCs (1–6 %) and MSCs (2–8 %) [207].

ROS levels are linked with NSC maintenance. Indeed,

increased production of radicals, formed under normoxic

conditions, induces differentiation of NSCs to a more

proliferative progenitor state, contributing to a process

designated as ‘‘stem cell priming’’ [208]. In addition to

antioxidants, FOXO3 promotes quiescence in NSCs, as its

deficiency results in loss of self-renewal and differentiation

capacity [209]. Another important component of the NSC

redox rheostat is the kinase ataxia telangiectasia mutated

(ATM), which is activated in response to oxidative stress as

well as DNA damage and is believed to be required by

NSCs to avoid genomic aberrations [210].

Additional signaling events, especially nutrient-sensing,

can also modulate NSC proliferation. As a phosphatase

inhibiting PI3 K-AKT signaling, depletion of PTEN in

NSCs aberrantly increases proliferation [211]. Overall, the

hypoxic niche, deprived of ROS but also with low activation

of nutrient-sensitive mTOR pathway, is essential in provid-

ing an appropriate environment for quiescent NSCs [140].

NSCs across several species were found to be glycolytic

[212, 213], especially more glycolytic than their neuronal

progeny. Nevertheless, there is uncertainty about the met-

abolic state of the progenitors resulting from NSCs upon

differentiation. While specific granular progenitor types

seem to up-regulate glycolysis via induction of Hexoki-

nase-2 (HK2) [214], a key enzyme of glucose conversion,

other cerebellar progenitors seem to heavily rely on ATP

generated via OXPHOS [215] for proliferation and sur-

vival. The switch from glycolysis to OXPHOS has been

shown to terminate the NSC state in Drosophila, thus

leading to differentiation phase via Mediator [216]. The

conserved mammalian system might fulfill a similar func-

tion. Hence, a specific metabolic signature of the NSC-

derived progenitors may exist according to their sub-

sequent cellular fate. More data, particularly in the human

context, are needed to resolve this issue.

The mitochondrial ultrastructure in human PSC-derived

NSCs is generally much more mature compared to PSCs

displaying densely folded and compact cristae [212].

However, mitochondrial biogenesis and mitochondrial

copy number remain low within PSC-derived NSCs and

increase only upon terminal neuronal differentiation [212],

potentially indicative of the more quiescent phenotype of

NSCs [217]. Besides glucose and oxygen, fatty acid

metabolism might meet the requirements of stem cells and

their progeny. In particular, FASN has been recently found

as a key catalyzer of lipogenesis in adult NSCs [167].The

dependence on lipogenesis may be explained by their

requirement of high amounts of membrane material, but a

more detailed analysis of fatty acid metabolism is needed.

Summary and outlook

Bridging the gaps: the importance of metabolic

restructuring for cell fate conversion

As described above, metabolic plasticity is the foundation

for development in multicellular organisms and for tissue

organization. The observation that only 40–57 % of the

mitochondrial proteome is shared between different tissues

[218] illustrates the enormous functional diversity of these

organelles in fulfilling numerous environment-specific

tasks. Most striking is the recently discovered reconfigu-

ration of mitochondria and related metabolic signature

Metabolism and cell fate 1769

123



during cellular reprogramming. Further knowledge is

warranted to decipher the mechanisms underlying the

restructuring of metabolism and redox balance, in order to

improve strategies safeguarding the genome, given that

genomic aberrations are an obvious hurdle for safe medical

application of iPSCs [219].

The importance of master regulators of energy metab-

olism in cellular reprogramming still needs to be fully

evaluated. Hypoxia-inducible factors are postulated as

clear promising candidates, as a great proportion of the

metabolic genes induced during reprogramming are related

to hypoxia [123, 126]. Besides, several signaling pathways

controlling proliferation and differentiation are also

involved in the regulation of metabolic processes [220].

This orchestrated regulation may be operating to control

the cell fate, and more studies are therefore needed to

clarify the interplay between these various signaling

networks.

The metabolic-driven epigenetic control of cellular

identity also warrants further investigations. Given the

potential impact that the metabolic switch experienced by

cells during reprogramming can exert in epigenetic control

of gene expression, further efforts are required to clarify

the interplay between metabolism and epigenetic during

cell fate conversion.

Another interesting aspect to address would be the

analysis of the mitochondrial and metabolic changes

occurring during direct reprogramming (also known as

trans-differentiation). This phenomenon exists in vivo but

can also be induced by over-expression of lineage-specific

pioneer transcription factors [221, 222]. The influence of

environmental metabolic factors in this process has not

been clearly shown so far. Thus, a detailed assessment of

the mitochondrial and metabolic changes occurring upon

direct reprogramming might elucidate the necessary pre-

requisites for making cells amenable to be coaxed directly

into other terminal fates.

Finally, the importance of cellular environment and

substrate usage in the regulation and induction of stem-

ness still have to be fully elucidated. The metabolic

demands associated with the acquisition of pluripotency

maintenance or differentiation result into changes in the

preference for specific carbon sources (Fig. 2). This might

be achieved by the control of metabolic flux through

transcriptional and post-transcriptional regulation of rate-

limiting enzymes and metabolite transporters and by

spatiotemporal organization of metabolic pathways,

including changes in mitochondrial morphology [158].

More information is needed in order to understand how to

take advantage of these processes for the generation of

iPSCs, the differentiation into specific cell lineages, and

for the modulation of cell behavior in pathophysiological

contexts.

In conclusion, growing evidence implicate mitochondria

and energy metabolism in the modulation of cell fate

decision making. The nuclear-centric view of stemness is

no longer sufficient and we are moving toward the reali-

zation that epigenetic control of cell fate requires a

complex integration of external and internal metabolic

stimuli, whose modulation appears crucial for enabling

cellular plasticity.
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