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Abstract The method of choice for the development of

new vaccines is to target distinct dendritic cell subsets with

antigen in vivo and to harness their function in situ to

enhance cell-mediated immunity or induce tolerance to

specific antigens. The innate functions of dendritic cells

themselves may also be targeted by inhibitors or activators

that would target a specific function such as interferon

production, potentially important in autoimmune disease

and chronic viral infections. Importantly targeting dendritic

cells requires detailed knowledge of both the surface phe-

notype and function of each dendritic cell subset, including

how they may respond to different types of vaccine adju-

vants, their ability to produce soluble mediators and to

process and present antigens and induce priming of naı̈ve T

cells. This review summarizes our knowledge of the

functional attributes of the human dendritic cell subsets in

the steady state and upon activation and their roles in

human disease.
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Ag Antigen

CTL Cytotoxic T lymphocyte

DC Dendritic cells

ESAM Endothelial cell-selective adhesion

molecule

Flt3 Fms-like tyrosine kinase 3

Flt3L Fms-like tyrosine kinase 3 ligand

HCV Hepatitis C virus

IFN Interferon

IFN-I Type I interferons

IFN-III Type III interferons (also known as

IFN-k)
LC Langerhans cells

MoDC Monocytes-derived dendritic cells

Necl2 Nectin-like protein 2

NET Neutrophil extracellular trap

PDC Plasmacytoid dendritic cells

PAMPs or DAMPs Pathogen or damage associated

molecular patterns

PBMC Peripheral blood mononuclear cells

Poly I:C Polyinosinic:polycytidylic acid

PRR Pattern recognition receptors

SLE Systemic lupus erythematosus

SNP Single nucleotide polymorphism

TGF Transforming growth factor

TLR Toll-like receptor

TSLP Thymic stromal lymphopoietin

TNF Tumor necrosis factor
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Introduction

Dendritic cells (DC) are sentinels of the immune system

that initiate and direct immune responses. They are rare

cells normally constituting 1 % or less of total

haematopoietic cells of any lymphoid organ or blood. DC

continually sample their environment, presenting antigen

(Ag) to T cells and co-operatively directing tolerance or

immunity, depending on their activation state. All DC are

not the same and differ depending on the organ in which

they are located, the danger signals they recognize and the

type of soluble molecules they produce.

DC are activated by the sensing of danger in the form of

pathogen or damage associated molecular patterns (PAMPs

or DAMPS, respectively). Sensing of PAMPs and DAMPs

is achieved through ligation of pattern recognition recep-

tors (PRR) that are differentially expressed by DC subsets.

Thus, the ability of a particular DC to respond to any given

danger signal is dependent upon the PRR they express and

their different and distinctive abilities to produce various

cytokines and interferons (IFN). They endow DC with the

ability to induce specific CD4? and CD8? T cell responses,

including the CD8? cytotoxic T cell (CTL) and CD4? T

helper (Th) 1 responses essential for driving immune

responses against intracellular pathogens and cancer, CD4?

Th2 responses required for immunity against parasitic

infections, CD4? follicular helper T cells important for

humoral responses and CD4? Th17 responses important for

counteracting bacterial and fungal pathogens. DC also play

an essential role in maintaining tissue homeostasis and

immune tolerance, and dysregulation of such responses

results in the pathogenesis of many diseases, including

autoimmunity and allergy.

The phenotype and function of DC subsets in the mouse

has been well characterized and recently reviewed [1]. The

last 5 years has seen enormous progress in the phenotypic

and functional characterization of human DC subsets [2, 3].

Here, we provide a comprehensive overview of human DC

subsets and function, focussing on the key discrepancies

between human DC and their murine counterparts, and

their contribution to human disease pathology and immune

regulation.

Human dendritic cells

Human DC can be found in most lymphoid and non-lym-

phoid tissues; however, studies on human DC have largely

focused on blood as the most accessible source of tissue.

They comprise approximately 1 % of circulating peripheral

blood mononuclear cells (PBMC) and are classically

defined as Ag-presenting leukocytes that lack other

leukocyte lineage markers (CD3,14,15,15,19,20,56),

express high levels of major histocompatibility complex

(MHC) class II (HLA-DR) molecules (lineage-HLA-DR?)

and have potent allo-stimulatory capacity [4, 5]. Like

mouse DC, these can be broadly categorized into plasma-

cytoid (p)DC (defined as CD11c-CD123? in humans) and

conventional (c) DC (defined as CD11c?CD123-). Con-

ventional DC in humans can be further divided into CD141

(BDCA-3)?, CD16? DC and CD1c (BDCA-1)? DC sub-

sets [6–9].

Human DC arise from CD34? haematopoietic precur-

sors in the bone marrow that develop into monocyte-DC

progenitors with the capacity to develop into monocytes, or

the common DC progenitor [10]. The common DC pro-

genitor gives rise to pDC and pre-cDC that migrate through

blood and peripheral lymphoid tissues. The pre-cDC

exclusively differentiate into CD1c? and CD141? DC

subsets [11]. Other types of DC, collectively termed

monocyte-derived DC (MoDC), differentiate separately

from monocytes, particularly in response to inflammation.

As many of the markers used to define human DC are

not expressed by mouse DC subsets and markers used to

define DC in mice are not expressed by human DC (e.g.,

CD8), aligning mouse and human DC has been challenging

for many years. Neither CD141 nor CD1c is exclusively

expressed by the DC subsets they represent, further con-

founding definitive phenotypes and function. However, the

identification of new subset-specific molecules, transcrip-

tome and functional analyses have now identified the

CD141? cDC subset as the human equivalent of the mouse

CD8?/CD103? cDC, and the CD1c? cDC subset as the

equivalent of the mouse CD11b? DC [9, 12–14] (Table 1).

Human pDC, CD1c? DC, CD141? DC and MoDC have

unique gene expression profiles, predicting they each have

specialized functions. However, the functional analyses on

these subtypes are only just beginning and highlight simi-

larities as well as key differences with their mouse

counterparts.

The human CD1411 DC subset

Human CD141? DC are found in blood, lymph nodes,

spleen, tonsil, liver, lung, skin and intestine [8, 12, 15–18].

Detailed functional analysis of this subset, especially in

peripheral tissues, has been limited due to their rarity

(0.03 % of PBMC) and access to human tissue. Tran-

scriptional analysis suggests high conservation of function

between blood and tissue-derived CD141? DC and their

mouse CD8?/CD103? counterparts [9, 12, 14, 19].

CD141? DC express fms-like tyrosine kinase 3 (Flt3) and

they can be differentiated by Flt3 ligand (Flt3L) from

human CD34? progenitors in vitro [18, 20] and in vivo

[21], suggesting a dependence on Flt3L for development,
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like their mouse counterparts. The requirement for tran-

scription factors is less clear. Although they express Batf3

and require it for their development in vitro, CD141? DC

can develop independently of Batf3 in vivo [16, 17]. They

also express interferon regulatory factor 8 (IRF8) and were

found to be dramatically reduced in patients with IRF8

mutations, suggesting a critical role for IRF8 in their

development [22].

PRR expression and cytokine secretion by CD1411

DC

CD141? DC express high levels of toll-like receptor

(TLR) 3, which recognizes dsRNA [9, 23], and uniquely

express the C-type lectin CLEC9A [24–26], nectin-like

protein 2 (Necl2) [27] and chemokine receptor XCR1 [19,

28]. Unlike their mouse counterparts, CD141? DC do not

produce high levels of IL-12 [12, 16, 18, 29]. Mouse CD8?

DC are most effective at producing IL-12 following TLR4

or TLR9 ligation whereas human CD141? DC lack

expression of these TLRs [29, 30], which may explain the

discrepancy between these species. CD141? DC also

express TLR8 but do not produce appreciable amounts of

IL-12 or other cytokines in response to TLR8 ligation [29,

31] and produce only low or undetectable levels in

response to a variety of stimulatory cocktails, including

TLRs that synergistically enhance IL-12 production or

secondary T cell-mediated signals [16, 18, 29, 31].

CD11b- cDC of human thymus (not co-stained with

CD141 but presumed as the equivalent thymic subset)

have been shown to produce IL-12 in response to CD40

ligation [32]. Thus, although there remains the possibility

that CD141? DC may produce IL-12 in response to as yet

unidentified factors, the considerable available evidence

suggests they are not major producers of this cytokine.

New insights into the function of CD141? DC have

been gained by the observation that these DC are major

producers of type III IFN (IFN-III or IFN-k) in response to

TLR3 ligation, similar to their mouse CD8? DC counter-

parts [33]. The IFN-III family in humans consists of four

members IFNL1 (IL-29), IFNL2 (IL-28A), IFNL3 (IL-

28B) and IFNL4 which are structurally related to the IL-10

family but functionally related to type I IFNs (IFN-I) [34].

Several studies have demonstrated a critical role for IFN-

III in protection against viruses that exhibit strong

epithelial cell tropisms (e.g., rotavirus, norovirus), which

cannot be compensated for by IFN-I [35, 36], and single

nucleotide polymorphisms (SNPs) in the IFN-lambda3

gene, leading to IFNL4 expression, have recently been

linked with spontaneous and treatment-induced clearance

of hepatitis C virus (HCV) infection [37, 38]. The precise

function of IFNL4 and how this affects viral immunity is

as yet unknown. Interestingly, CD141? DC numbers areT
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enriched in human liver [39, 40]. Although whether their

numbers increase or decrease in liver disease is currently

under debate [39–41], it is clear that lung and blood-

derived CD141? DC are major producers of IFN-III in

response to HCV or polyinosinic:polycytidylic acid (poly

I:C) [33, 39, 40]. Thus, CD141? DC-derived IFN-III may

play a crucial role in HCV infection and subsequent liver

disease and cancer.

The role of CD1411 DC in CD81 T cell responses

Human CD141? DC and mouse CD8? DC share features

endowing them with the capacity to induce CD8? CTL

responses that are essential for the eradication of tumors

and many viruses including HCMV and HIV [16, 18, 19,

28]. Like their mouse CD8? DC counterparts, CD141?

DC are efficient at cross-presentation, the process by

which CD8? T cell responses are generated against

tumors and pathogens that infect cells other than DC.

CD141? DC particularly excel at cross-presentation of

cellular Ag, immune complexes and Ag specifically tar-

geted to late endosomes [12, 16, 19, 21, 28, 42, 43].

This is facilitated by their expression of CLEC9A, a

receptor for dead cells, and TLR3, both of which are

known to regulate cross-priming [44–48]. Cross-presen-

tation of soluble protein by blood CD141? DC is

enhanced after ligation with the TLR3 agonist, poly I:C

[12, 16, 49], but the requirements of activation for cross-

presentation by tissue CD141? DC is less clear. Skin

CD141? DC can cross-present in the absence of acti-

vation and this can be enhanced with poly I:C alone or

combined with additional stimuli [12]. In contrast, cross-

presentation by splenic CD141? DC is not enhanced by

poly I:C [49]. Lymph node CD141? DC also do not

appear to require activation for cross-presentation but the

effect of poly I:C was not examined in this study [50].

Optimal generation of CTL responses is also facilitated

by exclusive expression of XCR1 by CD141? DC [19,

28]. The XCR1 ligand, XCL1, is secreted by activated

CD8? T cells, acting as a powerful chemoattractant [51].

These features and their similarities to mouse CD8? DC

point to a role for CD141? DC in the generation of anti-

tumor and anti-viral CTL responses where cross-priming

is considered crucial. Mouse CD8? DC are known to

play a crucial role in anti-tumor immunity and accu-

mulate in regressing tumors [52, 53]. Similarly,

transcripts associated with CD141? DC in some human

tumors positively correlate with patient outcome, pro-

viding the best correlative transcriptome signature with

cancer patient survival to date [52]. This provides a

strong rationale for specifically targeting the CD141?

DC subset in particular for immunotherapeutic vaccines

for cancer [30, 54].

The role of CD1411 DC in CD41 T cell responses

CD141? DC are potent stimulators of allogeneic (donor

MHC mis-matched) CD4? T cell proliferation in vitro, and

are similar to CD1c? DC in this regard [14, 16, 29, 49, 55].

CD141? DC have the capacity to polarize CD4? T cells

towards a Th1 phenotype, particularly after ligation of

TLR3 [16, 29, 56, 57]. However, a number of these studies

have reported that CD141? DC and CD1c? DC activated

with a variety of stimuli are similarly effective in their

ability to induce Th1 responses. Thus, unlike their mouse

counterparts, there is not yet clear evidence to suggest that

CD141? DC possess a specialized capacity to induce Th1

responses. This is perhaps not unexpected given the

importance of IL-12 in Th1 induction and the findings that

CD141? DC are not major producers of this cytokine.

CD141? DC are superior to CD1c? DC at inducing Th2

responses after stimulation with live-attenuated influenza

virus [55], an observation that would not have been pre-

dicted from mouse studies, where the CD11b? DC are

more efficient in promoting Th2 responses. Differences in

Th differentiation between human and mouse systems may

be explained by the models and assays used. In humans,

stimulation of allogeneic CD4? T cells in vitro is the

standard means of assessing CD4? T cell priming and

polarization by human DC, but may not accurately reflect

the role of DC in autologous Ag-specific CD4? T cell

priming induced by pathogens and other insults. In the few

studies where responses to autologous memory CD4? T

cells have been examined, CD141? DC and CD1c? DC

were similar in their capacity process and present Ag to

autologous memory CD4? T cells [16, 42] and to promote

Th1 responses following activation with Aspergillus fumi-

gatus [56].

A number of studies have pointed to a role for mouse

CD8? DC in the induction of central and peripheral tol-

erance [1] but a similar role for human CD141? DC is yet

to be described. Although skin CD141? DC were originally

reported to exert tolerogenic function [58], these DC were

also CD14? and subsequently identified as being cells of

monocyte origin rather than bonafide CD141? DC [59].

This reinforces the need for careful phenotyping of clas-

sical CD141? DC, particularly given the promiscuous

expression of the CD141 molecule.

The human CD1c1 DC subset

Human CD1c? DC can be found in lymphoid and non-

lymphoid tissues, including blood, lymph nodes, tonsils,

spleen, skin, liver, kidneys, lungs and gut [12, 14, 49,

57, 60–65]. Transcriptome analysis demonstrates a clear

relationship between CD1c? DC in these different tissues
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with mouse CD11b? DC and therefore suggests a high

likelihood of conserved function [12–14]. However, there

are also considerable tissue-specific discrepancies, indi-

cating that CD1c? DC are more readily influenced by

local environmental cues and may have different spe-

cialized functions in various organs [14]. Examples of

these are CD1a expression by dermal CD1c? DC and

CD103 expression by intestinal CD1c? DC. CD1c? DC

in human blood are characterized by expression of

CD11c, CD11b, CD1c, MHC-II, CD45RO and SIRPa
(CD172a) [6, 7, 49]. Unlike their mouse counterparts,

human CD1c? DC do not express endothelial cell-se-

lective adhesion molecule (ESAM). The marker CD1c

does not exclusively identify this DC subset as it is also

expressed on a subpopulation of B cells and can be

induced on other cell types, including MoDC and

CD141? DC [6, 18, 21]. CD1c? DC are often difficult to

discern from human MoDC due to similar expression

patterns of MHC-II, CD11c, CD11b and CD1c [64].

Thus, some functions assigned to CD1c? DC, particu-

larly in inflamed tissues, may need re-evaluation with

new markers such as expression of Flt3 and IRF4 [56,

61, 63], and the absence of the monocytic marker, CD64

(FccR1) [66–68], that now allows more precise segre-

gation of bonafide CD1c? cDC from MoDC.

Transforming growth factor (TGF)-beta induces the

expression of Langerin on CD1c? DC in human tissues

and all DC expressing Langerin in human tissues are

CD1c?. This is an important distinction with the mouse

DC network, where Langerin expression is restricted to

the CD8?/CD103? DC and Langerhans cells [69].

Like their mouse counterparts, CD1c? DC numbers

expand in response to Flt3L [11, 21, 70–72]. Their high

IRF4 expression is consistent with a requirement for this

transcription factor for development of their mouse

counterparts. Human subjects with IRF8 mutations are

deficient in CD1c? DC, providing evidence that this

transcription factor is essential for their development

[22]. Although the K108E IRF8 mutation results in the

loss of all DC subsets and a dramatic reduction in

monocytes, the T80A IRF8 mutation is selectively defi-

cient in CD1c? DC. Both mutations result in increased

susceptibility to mycobacterial infection, implying a role

for CD1c? DC in anti-mycobacterial immunity. Further

supporting this, CD1c? DC, but not CD141? DC or

pDC, engulf Mycobacterium tuberculosis (Mtb) and

produce IL-6 and tumor necrosis factor (TNF) [73]. The

CD1c molecule itself is a human-specific non-classical

MHC that presents mycobacterial glycolipid Ag to T

cells [74]. CD1c-restricted Ag-specific T cells are found

in patients with Mtb infection but not healthy controls,

but the role of CD1c? DC in inducing these responses is

yet to be examined [74].

PRR expression and cytokine production by CD1c1

DC

Unlike CD141? DC, receptors specifically expressed by

CD1c? DC which might provide further insights into their

function are yet to be identified. CD1c? DC express most

TLR at low levels, with the exception of TLR7 and TLR9

[29]. In contrast to their mouse counterparts, accumulating

evidence suggests that CD1c? DC are major producers of

IL-12, particularly in response to stimulation via TLR8, an

endosomal receptor that recognizes bacterial and viral

ssRNA. Although CD1c? DC and CD141? DC express

similar levels of TLR8 mRNA and upregulate costimula-

tory molecules after stimulation with TLR8 ligands [29,

75], only CD1c? DC produce IL-12p70, IL-1b, TNF and

IL-6 in response to TLR8 ligation [22, 29, 75–78]. CD1c?

DC also produce IL-12 after stimulation with mycobacteria

and IFN-c [77] but not after mycobacterial stimulation

alone [73], which highlights their dependency on additional

stimuli for optimal IL-12 production. Stimulation with a

broad range of other PRRs have failed to induce significant

amounts of IL-12 by CD1c? DC [16, 29, 31, 75]. However,

TRIF-coupled TLRs such as TLR3 or TLR4 act in synergy

with TLR8 to dramatically enhance IL-12 production by

CD1c? DC [31, 78]. This contrasts with their mouse

CD11b? counterparts, which are not known to produce

high IL-12 and suggests a role for CD1c? DC in the gen-

eration of Th1 responses.

Concomitant with IL-12 production following TLR8

ligation or mycobacterial stimulation of CD1c? DC is

secretion of IL-23 [76–78] and lung CD1c? DC constitu-

tively express IL-23p19 [56]. Furthermore, specific

production of IL-23 but not IL-12p70 upon TLR4 and

TLR7/8 stimulation was observed in intestinal CD1c? DC

[76]. This suggests that CD1c? DC may also have the

capacity to induce Th17 immune responses that are

important in responses against a range of bacterial and

fungal pathogens, similar to their equivalent mouse

CD11b? DC subset.

TLR8 ligation and production of IL-12 and IL-23 by

CD1c? DC could play a role in autoimmunity where

pathogenesis is driven by self-RNA autoantibody com-

plexes, which are also recognized by TLR8 [79, 80].

Despite mouse TLR8 being poorly characterized and

unresponsive to human TLR8 ligands, there is emerging

evidence in both species to support a key role for TLR8 in

autoimmune pathogenesis [81–83], although a precise role

for CD1c? DC is yet to be established.

The role of CD1c1 DC in CD41 T cell responses

Accumulating evidence suggests that mouse CD11b? DC

are specialized in the induction of CD4? T cell responses
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and in particular, Th2 and Th17 responses. Various studies

have shown that CD1c? DC can induce Th1, Th2 and Th17

responses, suggesting remarkable functional plasticity and

potentially important roles in a variety of human condi-

tions. CD1c? DC express higher levels of genes associated

with MHC Class II processing such as Ifi30, HLA-DMA,

cathepsin H and cathepsin S [16], supporting a role for this

subset in CD4? T cell responses. As mentioned, the few

studies performed to date suggest a similar capacity for

CD1c? DC and CD141? DC to process and present Ag to

CD4? T cells, induce CD4? T cell proliferation and

polarize Th1 responses [16, 29, 55]. However, in these

studies, CD1c? DC were not stimulated under conditions

in which they optimally produce IL-12, where superior Th1

responses might be expected. Both subsets harbor the

capacity to induce production of the Th2 cytokines, IL-4

and IL-13, by allogeneic CD4? T cells [16, 29, 55, 57], and

in the intestine both subsets can polarize CD4? T cells to

produce the Th17 cytokine, IL-17 [14]. Thus, the capacity

of human DC to polarize CD4? T cell responses does not

appear to be restricted to a particular subset and is likely to

be influenced by the environmental stimuli. There are a few

studies pointing to a role for CD1c? DC in CD4? T cell

responses using autologous T cell models. CD1c? DC

infected with mycobacteria induce Th1, Th17 and regula-

tory T cell signatures in autologous naı̈ve CD4? T cells

[73]. Whilst lung CD1c? DC and CD141? DC activated

with Aspergillus fumigatus induce similar levels of IFNc
by autologous CD4? T cells, CD1c? DC are superior at

inducing IL-17 production [56]. This is consistent with

their ability to produce IL-23 and also with the role of their

mouse CD11b? counterparts in the induction of Th17

immunity to counteract bacterial and fungal pathogens [56,

63, 76, 78].

Mouse CD11b? DC are major drivers of Th2 responses

in allergy and asthma and emerging evidence suggests that

CD1c? DC may be involved in this process [67]. CD1c?

DC numbers are significantly increased in circulation of

allergic rhinitis patients [84] and after allergen challenge in

asthmatic patients [85], supporting a role for these DC in

driving allergic pathology. The epithelial cytokine, thymic

stromal lymphopoietin (TSLP), is upregulated in the air-

way mucosa of allergic rhinitis patients and promotes

allergic inflammation correlating with the induction of Th2

responses [86, 87]. CD1c? DC in human airway mucosa

are the main DC subset constitutively expressing the TSLP

receptor (TSLPR) [85], and this is upregulated on CD1c?

DC in the blood and airway mucosa of allergic asthmatic

patients [88]. Furthermore, blood CD1c? DC from allergic

patients pulsed with TSLP, house dust mite or grass pollen

allergens induce autologous allergen specific T cell pro-

liferation and Th2 cytokine production [85, 89]. PDC are

limited in their capacity to induce autologous allergic Th2

responses [85, 89] and although CD141? DC were not

examined, the lack of significant numbers of CD141? DC

in the mucosa of allergic patients before or after allergen

challenge and their weak expression of TSLPR argues

against a major role for this subset [85]. Mouse models

have shown that both CD11b? DC and MoDC contribute to

the allergic response [67]. Although exclusion of CD14?

cells was used to distinguish bonafide CD1c? DC from

cells of monocyte origin in one of the human studies [85],

revisiting CD1c? DC phenotype in allergic patients with

the inclusion of more definitive markers such as Flt3,

CD64, and IRF4 will be required to more precisely delin-

eate the contributions of CD1c? DC and MoDC in human

allergic tissue.

Induction of CD81 T cell responses by CD1c1 DC

There is considerable evidence to demonstrate that CD1c?

DC have the capacity to induce CD8? T cell responses.

Depending on the nature of Ag, the DC location and

activator, numerous studies have shown CD1c? DC to be

equivalent to CD141? DC in their capacity to stimulate

Ag-specific CD8? T cells [16, 31, 42, 49, 57]. Examples of

this include direct Ag presentation by peptide loading or

viral infection and cross presentation of long peptides,

soluble protein or Ag targeted to early endosomes. These

observations are not dissimilar to the mouse where there

are numerous examples demonstrating that CD11b? DC

are efficient at direct- and cross-presentation of certain

types of Ag [90]. Blood CD1c? DC stimulated with

combinatorial TLR4/8 agonists are especially potent at

stimulating CD8? T cells in an IL-12 dependent manner

[31]. Lung CD1c? DC are specialized in their ability to

instruct naı̈ve and memory CD8? T cells to acquire

CD103, facilitating their migration and retention in

peripheral tissues [91]. Thus, the generation of CD8? T cell

responses does not appear to be restricted to any particular

human DC subtype, and more thoroughly defining the roles

of different DC subsets in different aspects of CD8? T cell

immunity is an important area for future investigation.

The role of CD1c1 DC in immune regulation

A number of studies point to a role for CD1c? DC in

regulation of immune responses and maintaining tissue

homeostasis, similar to their mouse CD11b? counterparts.

Intestinal CD1c? DC express CLEC4A (DCIR) [14], a

negative regulator of DC expansion that plays a crucial role

in maintaining homeostasis and prevention of autoimmu-

nity [92]. CD101, an immune regulatory molecule whose

dysregulation is associated with autoimmune disease in

humans [93], is also expressed by intestinal CD1c? DC

[14]. Other genes involved in immune regulation expressed
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by CD1c? DC include inhibitory receptors PILRA and

TGFBR2; IRAK3, a negative regulator of TLR signaling;

and VSIG4, a negative regulator of T cell activation [14].

CD1c? DC also express genes involved in regulating IL-22

signaling, suggesting a role in the regulation of the

pathological responses promoted by this cytokine in the

intestine [14]. These genes implicate CD1c? DC in the

regulation of a diverse array of immune regulatory

responses.

A role for CD1c? DC in immune regulation is further

supported by studies demonstrating that CD1c? DC secrete

IL-10 concomitantly with little or no pro-inflammatory

cytokines in response E. coli or LPS and are effective at

inducing T cells with immunosuppressive function [15,

94]. This feature is more prominent in CD1c? liver DC,

suggesting they may be particularly important for main-

taining tolerance in this organ [15]. Intestinal CD1c? DC

are also effective inducers of regulatory T cells [14].

Intestinal epithelial cells produce factors such as TSLP and

TGF that drive regulatory T cell induction by CD1c? DC

[95]. All-trans-retinoic acid (RA) production is catalyzed

by retinal dehydrogenase (RALDH2) and plays a critical

role in maintaining intestinal immune homeostasis in mice

by promoting the induction of gut-homing regulatory T

cells. CD1c? DC express high levels of RALDH2, partic-

ularly in response to known immunosuppressive factors

such as, 1a,25-dihydroxyvitamin D3 (Vitamin D3) and this

is exacerbated by RA, which is also expressed by intestinal

epithelial cells [96]. RALDH2 expressing CD1c? DC

induce naı̈ve CD4? T cells to produce high IL-4, IL-5, IL-

13 and IL-10 in vitro, although suppressive capacity of

these cells could not be confirmed [96]. High expression of

regulatory molecules ILT4, ICOS-L and PD-L1, produc-

tion of IL-10 and differentiation of IL-10 secreting

suppressive T cells by CD1c? DC may be a driving force

behind the immune suppression observed in patients with

chronic obstructive pulmonary disease (COPD) [97]. Col-

lectively these observations suggest that environmental

cues in non-lymphoid tissue likely precondition CD1c? DC

towards an immune-regulatory phenotype in the steady

state. Thus, CD1c? DC may be crucial for maintaining

immune homeostasis and dysregulated function would,

therefore, drive autoimmune responses or contribute to

immunosuppressive conditions.

Human pDC

In the steady state pDC are found in blood and lymphoid

organs and are rare in healthy nonlymphoid tissue [98].

Their transcriptomes, phenotype and function are largely

conserved between mouse and humans. The pDC were

originally defined by function- as the ‘natural IFN-

producing cells’ of human blood [98]. Indeed human pDC

have an amazing ability to produce type-I IFN (IFN-I) in

response to TLR7 or 9 ligation [99]. The pDC also produce

large amounts of IFN-III important in mucosal anti-viral

responses [40, 100]. The production of IFNs in response to

TLR7 and 9 ligation is tightly conserved between mouse

and human pDC. Given their major production of IFNs the

pDC are considered important in anti-viral immunity but

their role in immune responses extends beyond responses

to viruses.

Unlike mouse pDC, human pDC lack expression of

CD11c and can be defined as Lineage negative, CD11c--

CD123?HLADR?BDCA2?BDCA4?CD45RA? cells [98,

101]. Also unlike the mouse pDC, human pDC have an

improved ability to stimulate naı̈ve T cells although they

are generally not as proficient as cDC [102].

CD2 can be utilized to further define two subsets of

human pDC, both in blood and in tonsils [103, 104]. Both

CD2hi and CD2lo subsets produce large amounts of IFN-I

in response to viral stimulation. Both subsets are also

capable of producing multiple pro-inflammatory cytokines

including MIP-1a and IP-10 but only the CD2hi pDC pro-

duced IL-12p40 in response to influenza infection.

Moreover, CD2hi pDC are more efficient at stimulating

naı̈ve CD4? and CD8? T cells than the CD2- cells [104].

Both subsets of pDC express Granzyme B but CD2? cells

additionally express lysozyme, suggesting that they may be

superior in lytic activity than their CD2lo counterparts

[104]. The data generated to date do not support that CD2

defines different differentiation states of pDC but rather

distinct functional subsets.

A human pDC subset expressing CD56? has recently

been characterized. These CD56?-pDC-like cells also

express CD2, CD46, CD13 and CD33. Present at much

lower numbers than pDC in peripheral blood, the authors

propose these cells are an immature form of pDC [105].

Others propose these cells are potentially more closely

related to cDC [106], whilst another group has reported that

CD56 expression can be upregulated on pDC activated

with FSME, a preventive vaccine for tick-borne

encephalitis virus infections [107]. These activated CD56?

pDC displayed enhanced T cell stimulatory and tumorici-

dal activity. Given the similarity in phenotype to an

aggressive cancer, blastic plasmacytoid dendritic cell

neoplasm (reviewed in [108] and [109]), thought to derive

from pDC, it is important to determine exactly what the

CD56? pDC-like cells correspond to, whether these are a

differentiation state of pDC or cDC or whether they may

correspond to a distinct cell type. It is of note that a pDC-

like cell with the ability to display pDC and cDC functions

has been described in mice that appears to correspond to a

pDC-like cell that acquires cDC attributes upon inflam-

matory stimulus, including GM-CSF [110, 111], an
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attribute shared by the cells described by Osaki et al. [105].

Further clonal studies in mouse will be required to further

define the precursor nature of these cells.

pDC and immunity to pathogens

The production of large amounts of IFN has solidly

placed the pDC as important players in anti-viral

responses. Indeed human pDC have been shown to

respond to numerous human pathogenic viruses with

high level IFN production. In particular, the pDC

response to HIV has been widely studied [112]. Human

pDC are excellent conduits for the virus due to the

expression of the HIV receptors CD4, CCR5 and

CXCR4 on this DC subset [113] or highly responsive to

it with IFN-I production in vitro [114]. Furthermore,

HIV-infected pDC are poor presenters of viral Ag to T

cells [115], resulting in the induction of regulatory T

cells via production of IDO [116].

Human pDC also produce high levels of IFNs in

response to non-viral pathogens. The human fungal

pathogen Aspergillus fumigatus induces IFN-I production

by pDC in a Dectin-2 dependent manner [117]. The

responses of pDC to BCG, in particular granzyme B

secretion, and cross-talk with human cDC are thought to

be important for optimal CD8? T cell responses to BCG

vaccine [102]. Moreover, priming and expansion of

CD4? T cells by CD1c? cDC in Mycobacterium patients

is enhanced by the presence of granzyme-B producing

pDC [73]. Michea et al. [119] have elegantly shown that

both blood and tonsillar pDC are activated by various

gram positive and negative bacteria, resulting in pro-

duction of IFNa and inflammatory cytokines and to

priming of CD4? naı̈ve T cells. Interestingly this study

showed that soluble products produced by epithelial cells

could greatly reduce the cytokine and IFN response of

the pDC in response to bacteria, without affecting their

upregulation of co-stimulation markers and their ability

to prime naı̈ve T cells. The authors suggested that

epithelial cells at mucosal surfaces may restrict the pDC

local inflammatory response to bacteria but support their

ability to induce an adaptive immune response [119].

The ability of activated pDC to upregulate CCR6 or

CCR10 and migrate to mucosal and/or skin epithelia

[120] certainly gives them the tools to tackle bacterial

infections and is relevant for their role in autoimmune

disease.

The response of pDC to non-pathogenic bacteria is also

potentially relevant to diseases that are affected by the

microbiota. Yogurt fermented with Lactococcus lactis

JCM5805 was able to activate human pDC in vivo [118],

supporting a potential role of pDC in the immunity

enhancing activity of probiotics.

pDC and autoimmune and inflammatory disease

In correlation with GWAS identifying IFN-I production or

response genes, many SLE patients carry an ‘IFN signa-

ture’ [121], that is, evidence in PBMC of the expression of

IFN-stimulated genes (ISGs) that are dependent on IFN-I

(IFN-a and IFN-b) for transcription. Given the multifac-

torial nature of SLE, the involvement of different organ

systems in different patients, and the relapsing/remitting

nature of the disease, it is perhaps not surprising that not all

patients would always carry an IFN signature, or indeed

any ubiquitous biomarker. In 1979, researchers showed for

the first time that IFN was present in the serum of SLE

patients [122]. In SLE patients, the IFN signature is

thought to be predominantly produced by IFN-I production

by pDC in response to nucleic acid/autoantibody com-

plexes via TLR7 and TLR9 [121, 123, 124], as has been

shown in vitro. Delivery of nucleic acid complexes to pDC

is dependent on FcR that bind anti-nucleic acid immune

complexes [123] or via neutrophil extracellular traps

(NETs). IFN-I production in SLE, or at least the induction

of ISGs, is a major contributor to the etiology of disease

since it enhances activation of DC, self-reactive B cells and

T cells and the production of many other inflammatory

cytokines.

The skin of psoriasis patients carries an IFN signature,

implicating pDC in pathogenesis of this disease. Anti-mi-

crobial peptides including LL37, human beta defensin and

lysozyme produced by keratinocytes of psoriatic patients

all act as carriers to deliver self nucleic acids to endosomal

compartments of pDC to induce high IFN-a levels in the

skin [125].

Wiskott-Aldrich syndrome (WAS) is an X-linked pri-

mary immunodeficiency due to mutations in the WAS

protein (Wasp) and characterized by recurrent infections.

Patients have a clear predisposition to develop autoimmune

conditions. Recently, it has been shown that WASP

patients have elevated IFN-I in the serum and a clear IFN

signature in PBMC [126]. Purified pDC from WAS patients

show a constitutive IFN production and an elevated pro-

duction of IFN-I upon CpG stimulation, pointing to a role

of Wasp in the normal control of IFN production by pDC

and a role of dysregulated pDC IFN-I production in the

propensity of WAS patients to develop autoimmune dis-

ease [126].

LL37 and pDC are increased in artherosclerotic lesions,

raising the possibility of pDC-derived IFN-I driving or at

least contributing to these inflammatory lesions and to the

increase in anti-dsDNA antibodies observed in advanced

artherosclerotic patients [127].

Confounding the role of pDC in autoimmune diseases,

often more prevalent in females, is the finding that

X-chromosome dosage (TLR 7 is encoded on the X
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chromosome) and estrogens, both contribute to enhanced

IFN-I production by pDC from females [128].

pDC and tolerance

Although the pDC have a remarkable pro-inflammatory

function via their IFN-I production, they have also been

associated with protection from allergy [129] and a role in

oral [130, 131] and transplant tolerance (reviewed in [132]

). Mechanisms of tolerance induction and/or immunosup-

pression by non-activated pDC probably include, but are

not limited to, their ability to produce IDO [133] and to

induce regulatory T cells [134, 135]. In mice transgenic for

the human pDC-specific BDCA2 Ag, pDC targeting via

BDCA2 leads to regulatory T cell induction and tolerance

[136]. In a number of clinical transplant settings, an

increase in the pDC:cDC ratio correlates with improved

graft survival (reviewed in [132]). In line with these

observations pointing to a tolerogenic role for pDC, an

increase in pDC number is often associated with a poor

outcome in solid tumor patients [137]. What is clear is that

we need to further understand whether pDC associated with

tolerance are always non-activated or whether radiation-

induced danger signals activate pDC in situ, actively

directing tolerogenic function or whether tumor microen-

vironments actively suppress pDC pro-inflammatory

function. These facts are essential if we are to harness pDC

targeting strategies for anti-tumor therapies [137].

Human monocyte-derived DC

In vitro-derived MoDC

The majority of knowledge gathered over the past two dec-

ades on human DC function has been obtained from DC

derived from monocytes differentiated in vitro by culture

with GM-CSF and IL-4 [138]. The addition or substitution of

cytokines, growth factors and other stimuli to the culture

provides a versatile system for skewing DC with potent

CTL,Th1,2,17 or regulatory functions and these studies have

provided important insights into the functional plasticity of

human DC and the initiation and regulation of human

immune responses. They have also been extensively used in

the clinic, mostly as vaccines to induce anti-tumor immune

responses in cancer patients [30]. Despite some overlap in

phenotype and function, especially with CD1c?DC, this DC

phenotype is genetically distinct from CD1c? DC and

CD141? DC and arises from a different bone marrow pre-

cursor population [10, 12, 13]. Although the physiological

relevance of MoDC is unclear, the alignment of these cells

withDC found in human inflamed tissues suggests them to be

most closely related to inflammatory DC [64].

MoDC in the steady state

Human dermis contains an additional population of DC,

usually referred to as CD14? dermal DC, that are distinct

from CD141? DC and CD1c? DC (sometimes also referred

to as skin CD1a? DC) [61, 139, 140]. CD14? dermal DC

are poor stimulators of allogeneic T cells and instead

secrete IL-10 and IL-6 and induce regulatory T cells [12,

58, 141–143]. They also play a specialized role in the

development of humoral B cell responses by promoting the

differentiation of CD4? T cells into follicular Th cells that

prime naı̈ve B cells to become plasma cells [144]. How-

ever, recent transcriptome analysis has revealed that these

cells more closely resemble tissue resident macrophages

than DC and are most likely to be derived from monocytes

[145]. Another DC subset with a genetically distinct sig-

nature from resident CD141? DC and CD1c? DC subset

has been identified in human intestine as lineage-MHC

classII?CD11c?CD103-Sirpa? [14]. Whilst the tran-

scriptome of this subset more closely aligns with

monocytes, it is considered more ‘‘DC’’ than ‘‘macro-

phage-like’’ on the basis of expression of CD11c, lack of

CD14 and CD64 and potent stimulatory capacity of allo-

geneic T cells. Compared with resident CD141? DC and

CD1c? DC, this DC subset was more effective at inducing

IFN-c by CD4? T cells, suggesting a role in Th1 responses.

These studies highlight the complexity and often overlap-

ping functions of the DC and monocyte/macrophage

networks.

Inflammatory DC

Myeloid DC infiltrate the inflamed tissues of many human

autoimmune diseases including the epidermis and dermis

of psoriatic lesions, synovial fluids of rheumatoid arthritis

patients, and inflamed intestinal tissue in Crohn’s disease

patients [64, 146–151]. They can also be found in the

ascitic fluid of patients with breast and ovarian cancers

[64]. These DC are characterized by an activated pheno-

type, high production of proinflammatory cytokines in

including IL-12, IL-23, and an ability to induce both IL-17

and IFN-c production by CD4? T cells. This dual Th1 and

Th17 phenotype drives autoimmune pathology, suggesting

a key role for infiltrating DC in the pathogenesis of these

diseases [64, 152, 153]. DC derived from human inflam-

matory tissues express CD1a, CD1c, FceR1, CD206,

CD14, CD11b, M-CSFR and ZBTB46 [64]. Although

previously described as ‘‘CD1c? DC’’ in rheumatoid

arthritis synovial fluid [147–149], transcriptome analyses

showed these cells to be most closely related to in vitro-

derived MoDC and of monocyte origin, and therefore the

likely human equivalents of the mouse ‘‘inflammatory’’ DC

[64]. These data provide evidence to suggest that
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inflammatory DC may be the main drivers of many

autoimmune pathologies and may also contribute to tumor

pathogenesis.

Langerhans cells

Langerhans cells (LCs) are the main Ag-presenting cells in

the epidermis of human skin and have been considered as

the classical sentinels that are the forefront of contact with

invading microbial pathogens. Human Langerhans cells are

self-renewing in the steady state but can also be repopu-

lated from bone marrow precursors after inflammation or

bone marrow transplantation [154]. Although LC can be

derived from monocytes in vitro, they can also differentiate

from CD1c? DC [155]. LC are characterized by expression

of langerin (CD207) that functions as a receptor for

microbial pathogens, and E-cadherin, which facilitates

adhesion with nearby keratinocytes [156]. Human LCs are

powerful stimulators of CD4? T cell proliferation and

induce polarization towards a Th2 phenotype [144].

Human LCs can cross-present [157, 158] and are potent

stimulators of naı̈ve CD8? T cells [144], although studies

in mice do not support this [32, 159] . Although LC have

been implicated in the inhibition of inflammation and the

induction of tolerance in mice, these functions are yet to be

addressed in humans.

Concluding remarks

Human DC can now be divided into four major genetically

distinct subclasses defined as CD141? DC, CD1c? DC,

pDC, MoDC. These can be largely aligned with equivalent

subsets in the mouse, defined as CD8/CD103? DC,

CD11b? DC, pDC and MoDC, respectively. However,

there are some key differences, particularly in PRR

expression and cytokine production that require careful

consideration when translating DC biology across species.

Functional specializations of the human DC subsets are

becoming increasingly apparent. Human pDC have long

been known as the major IFN-I producers, playing a critical

role in anti-viral immunity. The CD141? DC subset is a

major producer of type III IFN specifically in response to

TLR3 ligation, implicating them as important mediators

against viruses such as HCV. Their phenotypic and func-

tional characteristics along with the presence of associated

transcripts in human tumors identifies this subset as a key

subset to target vaccines aimed at generating CTL

responses against tumors and many pathogens for which

there are currently no effective vaccines. CD1c? DC are

the main producers of IL-12, a key discrepancy between

mouse and human systems. These DC are now implicated

in the generation of immune responses to mycobacterial

and fungal infections and in Th2-mediated allergic

responses. Both CD1c? DC and pDC are emerging as key

regulators of immune homeostasis and their dysregulation

is implicated in the development of autoimmune diseases.

Despite their unique functions, human DC subsets also

display a remarkable degree of plasticity and overlapping

function. Although it is clear that all human DC are capable

of generating CD4? and CD8? T cell responses, further

subset specialization will likely be revealed temporally in

the context of specific pathogens and other insults. This is

particularly relevant to MoDC, which display considerable

overlap in phenotype and function with CD1c? DC.

CD1c? DC are present in tissues in the steady state where

maintenance of homeostasis and initial priming of immune

responses is important. In contrast, MoDC are rapidly

differentiated from monocytes and infiltrate tissues in

response to inflammation. Their role is therefore likely to

be more specialized in driving local responses such as the

activation of tissue resident effector memory T cells [160]

to expedite and exacerbate immune responses and

immunopathology. The interaction and cross-talk between

different DC subsets will also likely be important in aug-

menting immune responses and is presently uncharted

territory. Comprehensive direct functional comparisons of

human DC subsets in response to different stimuli may also

reveal further subset specializations. Such studies have

been limited and are difficult to perform on rare human

cells in vitro. The development of new models to investi-

gate human DC function, such as humanized mouse

models, in which functional human DC subsets develop

in vivo [18, 21, 55, 75], and new culture systems to gen-

erate human DC subsets from CD34? progenitors in vitro

[11, 18, 161], will greatly facilitate studies to enhance our

understanding of human DC biology.

New insights into these remarkable cells and their role

in human diseases will likely reveal a plethora of new

immunotherapeutic interventions targeting specific DC

subsets or their products, for treatment of a variety of

human conditions including pathogen infections, cancers,

autoimmune diseases and allergy.
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