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presence of proteins which testify to what occurs in the 
anterior chamber. There are six classes of proteins which 
confirm the vascular endothelium nature of the ante-
rior chamber and are the result of the morphofunctional 
trabecular meshwork decay. It is possible that, all or in 
part, these proteins can be used as a signal to the poste-
rior pole.
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TM	� Trabecular meshwork
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Abstract  Primary open-angle glaucoma is a multifac-
torial disease that affects the retinal ganglion cells, but 
currently its therapy is to lower the eye pressure. This 
indicates a definite involvement of the trabecular mesh-
work, key region in the pathogenesis of glaucoma. This 
is the first target of glaucoma, and its functional com-
plexity is a real challenge to search. Its functions are 
those to allow the outflow of aqueous humor and not 
the reflux. This article describes the morphological and 
functional changes that happen in anterior chamber. The 
“primus movens” is oxidative stress that affects trabecu-
lar meshwork, particularly its endothelial cells. In these 
develops a real mitochondriopaty. This leads to func-
tional impotence, the trabecular meshwork altering both 
motility and cytoarchitecture. Its cells die by apoptosis, 
losing barrier functions and altering the aqueous humor 
outflow. All the morphological alterations occur that 
can be observed under a microscope. Intraocular pres-
sure rises and the malfunctioning trabecular meshwork 
endotelial cells express proteins that completely alter the 
aqueous humor. This is a liquid whose functional pro-
teomics complies with the conditions of the trabecular 
meshwork. Indeed, in glaucoma, it is possible detect the 
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Introduction

Glaucoma refers to several disorders having the same clini-
cal features. They are characterized by an optic neuropathy 
in which retinal ganglion cell degeneration leads to a char-
acteristic cupping of the optic nerve head (ONH) associ-
ated with typical visual field defects [1]. Glaucomas have 
been traditionally classified as open-angle, angle-closure 
(referring to the configuration of the iridocorneal angle), 
and congenital. Each subtype has been subdivided into two 
categories: primary, when no cause for the glaucoma can be 
identified; and secondary, when the glaucoma is caused by 
an underlying pathological ocular or systemic condition [1]. 
The majority (60–70  %) of primary glaucomas are open-
angle. Primary open-angle glaucoma (POAG) is the leading 
cause of irreversible blindness in the world [2]. Although 
the precise molecular mechanisms leading to glaucoma are 
far from being understood, three tissues are known to be 
involved in POAG pathogenesis: the trabecular meshwork 
(TM) in the anterior chamber (AC) of the eye [3]; the ONH, 
specifically the retinal ganglion cells (RGCs), in the poste-
rior segment of the eye [4]; and the lateral geniculate nuclei 
and the visual cortex in the central nervous system [5]. Thus, 
we can describe POAG as an ascending disease that begins 
in the anterior segment with increased intraocular pressure 
(IOP) [6], spreads to the posterior segment, and finally trav-
els along the neuronal chain to the visual cortex. Growing 
evidence obtained from clinical and experimental studies 
over the past decade strongly suggests the involvement of 
the reactive oxygen species (ROS) in glaucoma [7] and in 
RGCs death [8]. Free radicals can directly induce neuronal 
death by a protease and phosphatase-gated mechanism [9]. 
In glaucoma, free radicals may damage the TM [10] while, 
in the posterior segment of the eye, exposure of glial cells 
to elevated concentrations of free radicals starts the process 
of apoptotic retinal ganglion cell death [11]. The final neu-
rological damage results in progressive RGCs death, axon 
atrophy, and degeneration, also extending to the brain cor-
tex (visual areas), and finally leading to the characteristic 
optic-cup neuropathy and irreversible visual loss [12, 13]. 
Cell death in the various involved tissues is due to apopto-
sis. Different mechanisms could trigger oxidative damage. 
Retinal ganglion cell death has been related to high nitric 
oxide (NO) levels [14], glutamate excitotoxicity [15], mito-
chondrial damage [16], defective axonal transport [17], and 
glial cell pathology [18]. Visual field defects due to RGC 
degeneration are directly proportional to oxidative damage 
in the TM [19] and are therefore linked to its endothelium 
cellularity [10]. TM tissue alteration has been shown to be 
crucial in glaucoma pathogenesis. TM malfunction, which 
occurs in most open-angle glaucomas, causes IOP increases 
[20]. The relationship between IOP and glaucomatous ONH 
damage is still undisclosed; however, glaucoma therapy 

remains focussed on decreasing IOP. Two theories were 
formulated to explain the glaucoma origin: the vascular one 
and the mechanics one. The first is based on the hypothesis 
that ocular blood flow is reduced [21], while according to 
the second hypothesis, the pressure on the axons develops 
a compression and loss of the neurotrophic support of the 
ganglion cells [22]. Neither theory explains precisely the 
pathogenesis of the glaucoma neuropathy, because the first 
does not justify the role of increased IOP, while the other 
one does not explain the alterations to the circulation within 
the ONH [23]. Indeed, the deformation of the vitreoretinal 
interface does not ncessarily correspond to the deformation 
of the anterior surface of the lamina cribrosa, and the cen-
tral retinal vasculature has surprisingly little effect on ONH 
biomechanics [24]. Thus, scleral thickness, especially near 
the ONH, seems a potential factor of interest in the devel-
opment of glaucomatous optic neuropathy [25]. A recent 
paper suggested that IOP is not only transmitted via the vit-
reous but also via the suprachoroidal space (SCS). Increases 
in IOP could be efficiently applied via the SCS to the most 
external axons of the ONH as they leave the eye. If there 
were no flow in the SCS, pressure in the AC would be trans-
mitted unmitigated to the ONH potentially causing axonal 
loss. Thus, the rate of flow in the SCS determines the frac-
tion of IOP applied to the ONH [26].

Increased intraocular pressure increases create mechani-
cal stress transmitted in an undefined manner to the back of 
the eye damaging the RGCs and their axons (i.e., the optic 
nerves). IOP may be controlled, in part, by genes that are 
expressed in the eye, particularly in the ciliary body and/
or the TM (the ocular sites involved in aqueous production 
and outflow) [27] (Fig. 1). An identified genetic risk variant 

Fig. 1   Aqueous humor (AH), the biological fluid filling both the 
anterior and the posterior chambers of the eye. AH is secreted in the 
posterior chamber by the ciliary body arrives into anterior chamber 
(AC) through the pupil, goes above the anterior face of the iris and 
leaves the AC via two routes: the conventional (anterior) route is the 
through the TM, and the unconventional (posterior) route is through 
the uveoscleral pathway along the ciliary muscle fibers
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for POAG is found in the caveolin gene family, members 
of which are expressed in the TM and RGCs [28]. This dis-
covery suggests that the molecular pathogenesis is similar 
in the two regions, even if the triggering insult is different. 
Lütjen-Drecoll [29] and other authors [30–32] have stated 
that ‘‘common factors are involved in the pathogenesis of 
both the TM and the optic nerve changes’’. Although these 
two structures are distinct, they share a common embryo-
genic origin and are linked by the pathogenetic events that 
determine the beginning of the glaucoma cascade. In glau-
coma pathogenesis, there are two common pathways that 
are involved in the cellular damage to both the TM and 
optic nerve: oxidative stress [33] and vascular damage [21]. 
The purpose of this review is to examine the molecular 
alterations occurring in the anterior segment which activate 
the entire glaucoma pathogenic cascade.

Oxidative stress: endogenous and exogenous sources 
in the eye

Free radicals are chemical species with a single unpaired 
electron. This configuration is highly reactive, as it seeks 
to pair with another free electron. This process results in 
the production of another free radical. The newly produced 
free radical is unstable and may trigger a chain reaction that 
causes damage to macromolecules including DNA, protein, 
and lipids.

Reactive oxygen species and nitric oxide are important 
reactive species in living organisms. They can both initi-
ate events resulting in cellular damage or important physi-
ological signal transducers. Free radicals can have endog-
enous or exogenous sources [34]. The most common ocular 
diseases are mediated by ROS [35]. Oxidative stress is 
the result of an impaired balance between formation and 
removal of ROS.

Excessive ROS levels induce apoptosis in a variety of cell 
types by inducing DNA damage [36]. ROS, as demonstrated 
for H2O2, are messengers for NF-kB activation [37]. ROS 
activates the transcription factor NF-κB, which induces 
expression of a great variety of agents, including pro-inflam-
matory cytokines such as IL-1/6 and TNF-α [38]. Therefore, 
adequate levels of the antioxidant defenses responsible for 
scavenging free radicals are essential for redox homeosta-
sis. At moderate concentrations, NO and ROS play impor-
tant roles as regulatory mediators of signaling processes. 
Normally, the amounts of ROS in the tissues are relatively 
low. The increase of superoxide or NO leads to a temporary 
imbalance constituting the basis of redox adjustment. The 
persistent increase in the production of large quantities of 
ROS or reactive nitrosative species (RNS)  can lead to per-
sistent changes in signal transduction and gene expression 
that can lead to pathological conditions.

Many of ROS-mediated responses actually protect cells 
against oxidative stress and reestablish “redox homeosta-
sis.”, but when ROS generation overwhelms the antioxi-
dant defences, free radicals can interact with endogenous 
macromolecules and alter cellular functions [39]. There is 
an age-dependent increase in the fraction of ROS and free 
radicals that may escape these cellular defense mechanisms 
and exert damage to cellular constituents, including DNA, 
RNA, lipid, and proteins. Signals triggering ROS overpro-
duction may induce the opening of the membrane perme-
ability transition pore in mitochondria and the release of 
cytochrome c and other apoptogenic factors, which ulti-
mately lead the cell into apoptosis [40]. Exogenous ROS 
sources include UV light, visible light, ionizing radiation, 
chemotherapeutics, and environmental toxins. Endogenous 
sources include the activity of peroxisomes, lipoxygenases, 
NADH oxidase, cytochrome P450, and mitochondrial res-
piration [39].

Nitric oxide has physiological functions playing an 
important role in controlling ocular vascular tone and blood 
flow in the human eye [41]. Actually, NO is a potent signal-
ing molecule in blood vessels, where its continuous forma-
tion from endothelial cells acts on the underlying smooth 
muscle to maintain vasodilatation and blood flow. NO is 
synthesized from l-arginine by a family of nitric oxide 
synthase (NOS) isozymes that includes neuronal (n)NOS, 
endothelial (e)NOS, and inducible (i)NOS. nNOS and 
eNOS are constitutive Ca2+ (calcium)/calmodulin-depend-
ent enzymes and are tightly controlled by mechanisms 
regulating physiological intracellular Ca2+ levels, whereas 
iNOS is Ca2+-independent [42]. The human endothelial 
TM expresses mainly the eNOS isoform, with a signifi-
cantly lower amount of nNOS [43]. eNOS physiologically 
regulates aqueous outflow in the eye by maintaining vascu-
lar endothelial cell function.

The interaction between NO and oxygen radicals that 
typically occurs in endothelial tissues produces peroxyni-
trite (ONOO−) [44], which is a potent oxidant that initi-
ates lipid peroxidation, DNA breakage and base modifica-
tion, protein tyrosine nitration and nitrosylation, alterations 
in cell signaling, and cell necrosis and apoptosis in cases 
of severe damage [45]. Peroxynitrite can affect mitochon-
drial respiration, causing cellular energy failure, contrac-
tile dysfunction, and cell death [46, 47]. iNOS expression 
is regulated by signaling pathways that involve molecules 
such as the redox-responsive transcription factor NF-κB 
and MAPK. NF-κB is the nuclear factor kappa-light-chain-
enhancer of activated B cells, which is involved in cellular 
responses to stimuli such as cellular stress and free radi-
cal damages. MAPK are mitogen-activated protein kinases, 
specific protein kinases responding to extracellular stimuli 
and regulating a variety of cellular activities [48]. As shown 
in Fig. 2, an increase in ROS generation results in sustained 
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NF-κB activation, which in turn induces the expression of 
proinflammatory markers, including endothelial leuko-
cyte adhesion molecule-1 (ELAM-1), interleukin (IL)-1α, 
IL-6, and IL-8 [49]. Although short-term activation of these 
mechanisms in the TM can contribute to IOP decrease [50], 
their chronic activation may exert pathological effects on 
the TM and contribute to glaucoma progression [51].

Nitric oxide synthase alterations are another major 
source of molecular damage playing a role in glaucoma 
pathogenesis. A NOS deficit in the TM and Schlemm’s 
canal endothelia occurs in glaucomatous patients and is 
linked to altered contractile cell tone [43]. NO and perox-
ynitrite can affect mitochondrial respiration, causing cellu-
lar energy failure, contractile dysfunction, and cell death. 
ROS produced by mitochondria modulate cell signaling 
[52] inhibiting tyrosine phosphatase [53] leading to cell 
proliferation and translocation and activation of serine/thre-
onine kinases such as protein kinase C [54].

Glutamate has also been shown to modulate NO produc-
tion [55] and mediators released by the ciliary epithelium 
may influence eNOS activity in the cells of the inflow and 
outflow pathways [56].

Oxidative/nitrosative stress is recognized to be a promi-
nent feature of many acute and chronic diseases and of the 
normal aging process [57]. There is much evidence of the 
relationship between aging, increased oxidative damage, 
and mitochondrial dysfunction. Mitochondrial integrity 
declines with age, aged organelles being morphologically 
altered and producing more oxidants and less ATP than 
younger organelles [58]. Generation of ROS is a side effect 

of oxidative phosphorylation which take place  in mito-
chondria. ROS are converted to H2O2 by Mn-dependent 
superoxide dismutase (SOD) in the mitochondrial matrix 
[59]. Thus, mitochondria are the main endogenous source 
of ROS [60]. 8-hydroxy-2′-deoxyguanosine (8-OH-dG) is 
an established biomarker of oxidative DNA damage. The 
amount of 8-OH-dG in nuclear and mitochondrial DNA 
(mtDNA) progressively increases with normal aging. How-
ever, the rate of increase is greater in mtDNA [61–63] 
because of mtDNA proximity to the oxidant source, the 
lack of any protective histone covering, and limited mtDNA 
repair mechanism [64]. Such a high level of mtDNA oxida-
tive damage results in guanosine loss and apurinic site for-
mation, which are very fagile and whose dyruption results 
in the formation of mtDNA deletions. The most typical 
and frequent mtDNA deletion related to oxidative damage 
is the mtDNA 4977 common deletion, causing the loss of 
one-third of the whole mtDNA and of mitochondrial genes 
encoding for enzymes involved in the oxidative phospho-
rylation. Mitochondria bearing this deletion are less effi-
cient in ATP production and release more ROS than intact 
mitochondria [64]. Mitochondria bearing the mtDNA 4977 
deletion have a shorter genome than normal mitochondria, 
thus replicating more quickly and prevailing in the cyto-
plasm throughout time. These mechanisms result in the 
long-term accumulation of high levels of mitochondrial 
damage in aged tissues targeted by endogenous oxidative 
stress, such as the TM [65], and causes an energy deficit 
and tissue atrophy [66].

The relative amount of mtDNA deletions correlates with 
the levels of 8-OH-dG [67]. The level of mtDNA damage 
detected in glaucomatous TMs is remarkably high [16]. 
The bioenergetics consequences of mtDNA and nuclear 
DNA derangements, with the associated mitochondrial 
dysfunction, contribute to the development of POAG [68]. 
MtDNA lesions tend to accumulate with age, possibly 
influencing mitochondrial function [69, 70] and providing a 
link between ageing and glaucoma.

Izzotti et  al. [65] demonstrated that mitochondrial 
deletions specifically accumulate more in POAG and 
pseudoexfoliative glaucoma (PEXG) but not in other 
glaucoma types compared with unaffected control TM 
samples. Similar findings have also been obtained for oxi-
dative damage to nuclear DNA, which was significantly 
increased in POAG and PEXG but not in other glaucoma 
types. By contrast, the total number of cells in the TM 
decreased in all glaucoma types. These findings imply 
that the mechanism causing glaucomatous damage in the 
TM is not identical in all types of glaucoma, even if the 
target tissues are the same. Furthermore, analysing molec-
ular proteomic endpoints in the AH, oxidative and mito-
chondrial damage as occurring in glaucomatous TM has 
also been demonstrated [71].

Fig. 2   Reactive oxygen species (ROS) and nitric oxide (NO) are sig-
nal transducers able to trigger a dramatic cascade of events resulting 
in cellular damage. Physiological NO levels play an important role in 
controlling ocular vascular tone and blood flow in the human eye. An 
enhanced level of ROS could induce an overproduction of NO which 
in turn, reacting with ROS, produces reactive peroxonitrite (ONOO−) 
causing DNA breakage and mitochondrial damage
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The high sensitivity of mtDNA to oxidative damage 
led to the concept of a “vicious cycle” in which an initial 
ROS-induced mitochondrial impairment leads to increased 
oxidant production that, in turn, leads to further mitochon-
drial damage [60]. Oxidative damage to mitochondria 
influences different structural and functional components 
of mtDNA, proteins and membrane lipids. TM cells of 
POAG patients have a decreased activity in the mitochon-
drial respiratory chain complex I [72]. Human trabecular 
meshwork (HTM) cells exposed to 1  mmol of hydrogen 
peroxide show reduced adhesiveness to the extracellular 
matrix (ECM) proteins fibronectin, laminin, and collagen 
types I and IV, with the consequence that the effect of H2O2 
on the adhesion of HTM cells to ECM proteins results in 
a rearrangement of cytoskeletal structures that may lead to 
HTM disruption [73]. Figure 3 reports the oxidant effect of 
H2O2 on the adhesion of TM cells to extra-cellular matrix 
proteins resulting in a rearrangement of cytoskeletal struc-
tures leading to TM disruption. Under physiological con-
ditions, this effect is reversed by reduced GSH, catalase 
and ascorbic acid [20]. The GSH redox system is thought 
to protect ocular tissues from the damage induced at low 
H2O2 concentrations, whereas catalase protects tissues at 
higher H2O2 concentrations [74]. Patients with glaucoma 
have decreased levels of circulating GSH as compared to 
controls [75]. The TM is the most sensitive tissue of the 
anterior chamber to oxidative damage. Indeed, after H2O2 
in vitro exposure of fresh human biopsies, oxidative dam-
age dramatically increased in the TM but not in the cornea 

and iris [76] (Fig.  4). TM sensitivity to oxidative stress 
has been explained by the fact that ocular tissues directly 
exposed to light, i.e. cornea and iris, possess effective anti-
oxidant defence mechanisms that are not activated in the 
TM, which being in the sclero-cornal angle is not directly 
exposed to light [76]. This bears relevance for glaucoma 
therapy, because a direct exposure of TM to light has been 

Fig. 3   Oxidant effect of H2O2 
(hydrogen peroxide) on the 
adhesion of HTM cells to ECM 
proteins results in a rearrange-
ment of cytoskeletal structures 
that may lead to TM disruption. 
a Untreated HTM cells, b HTM 
cells 0 min after treatment with 
H2O2 (400 μM for 15 min), c 
HTM cells after 1 h since H2O2 
treatment, d HTM cells after 3 h 
since H2O2 treatment. Magnifi-
cation ×100

Fig. 4   Different sensibility to oxidative damage of the anterior cham-
ber tissues. Basal damage (blue columns) is greater in cornea than in 
trabecular meshwork and iris. Cornea is the most exposed tissue to 
exogenous ROS sources. After treatment with H2O2 (red columns) the 
most relevant increase in oxidative DNA damage is detected in tra-
becular meshwork (TM), whose natural defences against reactive oxy-
gen species are minimal due to its position repaired from the direct 
action of ROS exogenous sources (data from Izzotti et al. [76])
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demonstrated to activate antioxidant defences in in vitro 
cultured HTM cells [77]. Nerve cells are also quite sensi-
tive to oxidative damage, and the oxidative protein modifi-
cations occurring during glaucomatous neurodegeneration 
increase neuronal susceptibility to damage and lead to glial 
dysfunction [30]. In the aging eye and in several neurode-
generative diseases, there is a decline in the normal antioxi-
dant defence mechanisms, which increase the vulnerability 
of the eye to the deleterious effects of oxidative damage 
[78].

Figure 5 resumes the complex network of mechanisms 
interlacing oxidative stress, mitochondria impairment and 
pathogenic events leading to glaucoma. These mechanisms 
could be at the base of the decrease in the TM cellularity 
and its malfunction in anging and glaucoma but also in 
ONH.

Both oxidative stress and AH antioxidant defences 
plays an important role in glaucoma pathogenesis. Anti-
oxidant enzymes including SOD, catalase, glutathione 
peroxidase, and glutathione reductase display reduced 
activities in the eyes of patients with glaucoma [20, 79]. 
Microarray gene-expression analysis identified antioxidant 
downregulation and endothelial stress-response upregula-
tion as hallmarks of glaucomatous TM [51]. 8-OH-dG lev-
els were significantly higher in the TM of patients affected 
by glaucoma than in the control group [19]. The decline 
in the human TM endothelial cells cellularity is linearly 
related to age and plays a major role in glaucoma patho-
genesis; [80–82], glaucomatous subjects having a lower 

TM cellularity than non-glaucomatous subjects [82], UVB 
light comparable to solar irradiation levels readily causes 
the formation of intracellular ROS in human corneal epi-
thelial cells [83]. In particular, UV induces oxidative stress 
in irradiated cells through the production of ROS by acti-
vating riboflavin, tryptophan and porphyrin, that in their 
turn activate cellular oxygen [84]. Iris surface and corneal 
endothelium are clearly visible and exposed to direct light; 
the TM is hidden between them in the iris corneal corner. 
As a consequence of that, the TME have fewer antioxidant 
defences [85]. Light can cause cell dysfunction through 
the action of ROS on DNA, [86]. Light has a direct oxi-
dising effect that is exerted locally and at a systemic level 
in exposed organisms [87, 88]. At the eye level, the apop-
totic death of photoreceptor cells by light-induced stress 
in retinal degenerative disorders is well documented [85, 
89, 90]. In conjunctiva, UV radiation induces a typical cas-
pase-dependent apoptotic cell death [91]. In the AC, light 
induces the formation of oxidative radicals that can indi-
rectly target the TM by altering the oxidant–antioxidant 
balance in the AH, thus contributing to glaucoma patho-
genesis. This mechanism generates both a decrease in the 
total antioxidant potential of the AC [79] and TM damage 
in terms of 8-oxo-dG formation and DNA fragmentation 
[19], contributing to endothelial dysfunction. Thus, UV 
represents an exogenous ROS source targeting the ocu-
lar structures. As reported in Fig.  6, UV can cause DNA 
lesions directly through the formation of photochemi-
cal products, such as pyrimidine-(6-4) pyrimidone and 

Fig. 5   The complex network 
of mechanisms interlacing 
oxidative stress, mitochondria 
impairment and pathogenic 
events leading to glaucoma
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cyclobutane T–T dymers, or indirectly generating ROS, 
which in turn produce DNA lesions, such as 8-OH-dG 
and oxidized nucleotides. If repair mechanisms are inef-
fective, these damages result in stable DNA damage and 
mutations, which, after a long-term accumulation, are in 
perennial cells, such as those composing TM, a stimulus 
towards apoptosis and cell loss [92].

Anterior Chamber: Functional anatomy 
and antioxidant defences

AC is a space filled by aqueous humor (AH) between the 
inner endothelial face of cornea and the anterior limiting 
layer of the iris, and surrounded peripherally for 360° by 
TM (Fig. 1). AH has an ionic composition very similar to 
the blood plasma and has two main functions: to provide 
nutrients to the tissues surrounding AC and to maintain IOP.

The cornea

The cornea protects inner ocular tissues, such as the lens 
and retina, against external environmental insults as a phys-
ical and biochemical barrier. The human cornea absorbs 
92  % of ultra violet (UV)-B at 300  nm, [93]. UVB light 
comparable to solar irradiation levels readily causes the 
formation of intracellular ROS in human corneal epithe-
lial cells [83]. The cornea contains both low molecular 
weight antioxidants such as ferritin [94], ascorbic acid [95], 
reduced glutathione (GSH) [96], α-tocopherol [97], and 
high molecular weight antioxidants such as catalase, SOD, 

glutathione peroxidase, and reductase [98]. l-Ascorbate is 
present in aqueous compartments (e.g. cytosol, plasma, and 
other body fluids) and can reduce the tocopheroxyl radical; 
it also has a number of metabolically important cofactor 
functions in enzyme reactions, notably hydroxylations. The 
water-soluble antioxidant vitamin C can reduce tocopher-
oxyl radicals directly or indirectly thus supporting the anti-
oxidant activity of vitamin E; such functions can be per-
formed also by other appropriate reducing compounds such 
as GSH [99]. GSH is ubiquitously synthesized in all cell 
types [100] and directly protects cells from ROS through 
the direct scavenging of radicals and acting as a cofactor 
for glutathione peroxidases during the metabolism of H2O2 
and lipid peroxides [101]. GSH plays a fundamental role 
in cellular metabolism, including differentiation, prolifera-
tion, cellular senescence, and apoptosis [102, 103]. In the 
cornea GSH is differentially distributed and the highest lev-
els of GSH are found in the epithelium fivefold higher than 
that in the stroma [104, 105]. Its presence is related with 
its pivotal role in maintaining optimum hydration of the 
cornea [106]. The α-tocopherol is the major peroxyl radi-
cal scavenger in biological lipid phases such as membranes 
or low-density lipoproteins. It can also regenerate other 
antioxidants, including GSH and ascorbate [99]. The syner-
gistic effect between vitamin E and ascorbate significantly 
reduce oxidative stress by preventing lipid peroxidation and 
apoptosis in corneal endothelial cells [107]. Another anti-
oxidant enzyme relatively abundant in the human cornea is 
SOD. SOD isoenzymes exert their actions in their respec-
tive compartments: the CuZn–SOD in cytosol and in extra-
cellular compartments, while Mn–SOD is located in the 

Fig. 6   UV can cause DNA 
lesions directly through pho-
tochemical reaction (6-4 PP 
and CPD) or indirectly through 
redox reaction-generating ROS, 
which in turn produce DNA 
lesions (8-OH-dG and oxidized 
dNTPs). If repair mechanisms 
are ineffective, such damage 
results in stable DNA damage 
and mutations
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mitochondrial matrix [108]. The total level of SOD activ-
ity is much higher in the normal corneal epithelium than 
the activity of catalase and this is higher than the activity 
of glutathione peroxidase [109]. SOD neutralizes H2O2 
producing superoxide anion, which is still a potent ROS 
and need to be neutralized by catalase. Accordingly, SOD 
exerts antioxidant effect only when coupled with catalase. 
Even if catalase is a major enzyme involved in the detoxi-
fication of H2O2 from cells, its expression under oxidative 
stress is not predictable and its activity may be decreased, 
increased, or unchanged [110]. Anyway, H2O2 induces a 
great amount of catalase expression, and smaller increases 
in glutathione peroxidase (GPx) and Mn–SOD expression 
[111]. The regulation of SOD isoenzymes in mammalian 
tissues primarily occurs in a manner coordinated by inflam-
matory cytokines, rather than as a response of individual 
cells to oxidants [112].

UVB modulates corneal epithelial cell expression of 
antioxidants and proinflammatory mediators by distinct 
mechanisms [113]. The suppression of proinflammatory 
cytokines strongly reduces matrix metalloproteinase and 
xanthine oxidase expression in the UVB-irradiated corneal 
epithelium [114]. Modulation of the expression of these 
mediators is important in regulating inflammation and pro-
tecting the cornea from UVB-induced oxidative stress [85].

The glutathione peroxidase catalyzes the reduction 
of lipid hydroperoxides to water or alcohol and H2O2 to 
water and molecular oxygen with concomitant oxidation 
of GSH [115] and is localized predominantly in the epi-
thelium and endothelium of the cornea [116]. This reaction 
thereby minimizes the destructive effects of ROS in these 
corneal tissue layers, preventing the propagation of perox-
ide-dependent chain reactions that result in cell membrane 
degeneration [115]. Antioxidant enzyme activity decreases 
in aged corneas [117]; these enzymes are able to handle 
basal or low levels of ROS, but can be overwhelmed during 
acute stress [116].

The iris

The iris epithelium consists of two monocellular layers. 
The anterior epithelium is highly specialized; it is a myoep-
ithelium that has an epithelial portion and a muscular por-
tion that functions as the radially oriented dilator muscle 
[118]. The posterior epithelium is deeply pigmented to pro-
hibit scattering of light.

Also, the iris tissue contributes to the antioxidant 
defenses of AC, the protective antioxidant system of the 
iris including low-molecular-weight antioxidants that are 
present in this pigmented tissue at high concentrations 
[119]. This tissue contains melanocytes bearing the pig-
ment melanin, whose function is to prevent light scat-
tering. This is a potent antioxidant likely to be a major 

contributor to the poor sensitivity of the iris to hydrogen 
peroxide [76]. Further melanin absorbs UV radiation and 
blue light more efficiently than visible light of longer 
wavelengths [120]. Not much is known about the role of 
the pigment in the glaucoma pathogenesis. Melanin gran-
ules, released from the iris, are present in the circulating 
AH of the human AC in low but quantifiable numbers 
[121] many of the retained granules being phagocytized 
by TM cells [122]. There is little evidence suggesting that 
melanin is digested in situ in TM; it remains within cells 
and gradually leads to pigmentation in the ageing mesh-
work, as can be observed by gonioscopy [123]. Patients 
with POAG have a higher incidence of iris transillumina-
tion defects than controls [124]. Together with melanin, 
the spectral properties of the ECM contribute to the anti-
oxidant activity defending the iris [125]. The opening in 
the iris, the pupil, expands and contracts to control the 
amount of incoming light. Therefore, the iris modulates 
the amount of the damage that the light may cause to the 
posterior segment.

The aqueous humor

The AH is a crystal-clear fluid filling the AC. The con-
cept of the AH as a stagnant liquid was refuted in the early 
twentieth century by Leber, Lauber and Troncoso. In 1923, 
Seidel, working with stains, concluded that there is con-
tinuous AH flow from the AC. In 1965, it was discovered 
that AH passes through the TM and uveoscleral pathways 
[126, 127]. AH is continuously formed from plasma by the 
epithelial cells of the ciliary processes. It is secreted into 
the posterior chamber, passes from the posterior chamber 
through the pupil into the anterior chamber, and is drained 
at the AC angle. There is a small loss of liquid through the 
limbar sclera [128]. AH drainage is also influenced by the 
selective uptake of certain substances by the iris [129]. The 
volume of the AC AH is approximately 0.25  ml, and the 
posterior chamber AH volume is 0.06 ml. It is estimated that 
the daytime flow is approximately 2.5 μl/min in the normal 
eye, and the tonography value of “C” (i.e., the coefficient 
of aqueous outflow facility) is 0.3 μl × min−1 × mmHg−1 
[130]. Approximately 1 % of the AC and 3 % of the poste-
rior chamber volume of AH is replaced each minute [131]. 
IOP in ocular-hypertensive patients is due to a reduced TM 
and uveoscleral outflow, while aqueous production remains 
normal [132]. Conversely, in the healthy aging eye, there 
are both reduced production of AH and reduced drainage 
through the uveoscleral outflow pathway [133]. AH pro-
duction shows an age-related decline that approximately 
amounts to 15–35  % over the age range of 20–80  years 
[133–135]. Also, outflow facility decreases with age. The 
age-related decrease is about 30 % from 40- to 60-year-old 
subjects [134].
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Increased intraocular pressure is associated with 
increased fluorophotometric outflow facility as has been 
demonstrated by administering apraclonidine to patients 
with ocular hypertension [136]. The AH provides nutri-
ents for the avascular lens and cornea and an egress for 
the waste products of these structures. It contains approxi-
mately 1/100 of the serum protein concentration [137] that 
directly enters the AC by diffusion through the root of the 
iris. The aqueous fluid has 0.1–0.2 % the concentration of 
plasma proteins and a higher amino acid concentration than 
plasma. Ascorbate [138], lactate [139], and bicarbonate 
concentrations are also elevated in the AH [140]. Hydro-
gen peroxide, the main oxidant in AH, is normally present 
[141] as a result of reactions of ascorbic acid and trace met-
als [142]. Additional hydrogen peroxide and ROS are gen-
erated by light-catalyzed reactions, metabolic pathways, 
and phagocytic or inflammatory processes [141, 142]. Anti-
oxidant defenses of the aqueous humor include vitamins, 
enzymes, and proteins such as albumins that have a protec-
tive role toward the TM [20, 143]. A high level of ascor-
bic acid in the AH is necessary for maintaining a filter-like 
function against UV radiation in the central corneal epithe-
lium and the AH [138, 144].

The trabecular meshwork and the conventional outflow 
pathways

Anterior chamber inner cornea and trabecular meshwork 
walls are lined with endothelium, while the anterior surface 
of the iris does not have it. During embryologic develop-
ment, the anterior surface of the iris is covered with a con-
tinuous layer of endothelium, which disappears at or soon 
after birth [145]. Anyway, the AC endothelium is constantly 
immersed in AH having both plastic and trophic functions 
[146]. AH is secreted by the ciliary body into the posterior 
chamber of the eye. Aqueous humor cannot traverse the 
intact iris and thus it passes through the pupil to reach the 
AC of the eye. At the iris–corneal angle, the main part of 
this flow enters a pathway composed of the TM, the juxta 
canalicular connective tissue (JCT), the endothelial lining 
of the inner wall of Schlemm’s canal, Schlemm’s canal 
itself, and the collecting channels that lead to the episcleral 
veins and episcleral vessels. This outflow pathway is called 
the “conventional way” to distinguish it from the non-con-
ventional outflow called the uveoscleral way. The posterior 
way or uveoscleral outflow passes through the iris root and 
the anterior face of ciliary muscle in the connective tissue 
interposed between the bundles of ciliary muscle to SCS. 
This pathway carries less than 10 % of the total flow in the 
older adult human eye [147]. The TM resides in the ocu-
lar limbus between the cornea and the sclera and comprizes 
perforated, interlacing collagenous lamellae, called the TM 
beams. These have a core of collagenous and elastic fibers, 

and are covered by flat cells which rest on a basal lamina. 
Although some authors still believe that spaces between the 
beams are occupied only by AH, other authors propose that 
the space between the beams is filled in with ECM where 
the AH filters through [148]. The beams are encapsulated 
by a single layer of endothelial-like cells [149]. The outer-
most JCT or cribriform region has no beams, but rather sev-
eral cell layers which some authors claim to be immersed 
in loose extracellular material/matrix [150]. Between the 
beams of the corneoscleral meshwork and the basal lamina 
of the inner wall of Schlemm’s canal there is the JCT. ECM 
components have a major role in contributing to outflow 
resistance in human eyes. Several ECM proteins may con-
tribute to homeostatic modifications of AH outflow resist-
ance, being up- or downregulated [151]. Low concentra-
tions of oxidized low-density lipoproteins stimulate ECM 
remodeling [152]. An increased fibronectin synthesis in 
ECM could result in concomitant increase of IOP [153]. 
Thus, ECM turnover is important in the regulation of aque-
ous humor outflow facility [154]. Transforming growth 
factors (TGFs) controls the expression of a wide variety of 
ECM genes, including elastin, collagens, fibrillin, laminin, 
and fibulin. Levels of one of its isoform, the TGF-b2, are 
elevated in glaucomatous human AH [155] altering ECM 
metabolism [156]. TGF-b2 is also responsible for anterior 
chamber-associated immune deviation, a mechanism that 
protects the eye from inflammation and immune-related 
tissue damage [157]. TGF-β2 is associated with glauco-
matous neuropathy, primarily via the increased synthe-
sis and secretion of ECM proteins and remodeling of the 
ONH [158]. In TM, ECM production may be modulated by 
vitamin C [159, 160] that stimulate hyaluronic acid synthe-
sis in glaucomatous TM cells [161] and increase outflow 
through the TM reducing the viscosity of hyaluronic acid 
[162]. Thus, it has long been known that high doses of vita-
min C decreases IOP [163].

Other molecules that seem to play a very important role 
in collagen remodeling are the metalloproteinases (MMPs) 
matrix. These calcium- and zinc-dependent extracellular 
endoproteinases degrade ECM proteins [164] and interact 
with cells and their surrounding structures [165], decreas-
ing collagen deposition and increasing AH outflow facil-
ity [3]. Nevertheless, it remains unclear what fraction of 
total resistance is attributable to the JCT and how ECM or 
specific ECM molecules might be involved in the genera-
tion of this resistance [166]. AH mainly crosses the inner 
endothelium wall of Schlemm’s canal by two different 
mechanisms: a paracellular route through the junctions 
formed between the endothelial cells [167] and a transcel-
lular pathway through intracellular pores of the same cells 
[168]. Nevertheless, TM pores contribute only 10 % of the 
aqueous outflow resistance [169] and the density of inner 
wall pores increases with the volume of fixative perfused 
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through the outflow pathway on experimental conditions 
[170]. Anyway, the inner wall and underlying JCT work 
together to regulate outflow resistance [171]. In the conven-
tional aqueous outflow pathway, there are two endothelial 
cell barriers separating the venous circulation from AH, 
which are specialized and positioned in series: the TM 
endothelial cells (TME) and subsequently the endothe-
lial cells that line the lumen of Schlemm’s canal (SCE). 
Between these two barriers, there is the JCT, which con-
tains a loose ECM through which the AH flows [172]. The 
TME cells release factors into the AH that flow downstream 
from TMEs to bind and actively regulate the permeability 
properties of the SCEs. These factors, upon binding to SCE 
cells, increase the permeability of the SCE barrier [173], 
inducing a 400 % enhance in SCE conductivity by means 
of the activation of specific TME genes [174]. In particu-
lar IL-1α and 1β and tumor necrosis factor-α released by 
TME cells induce cell division and migration [175] in the 
cells near Schwalbe’s line, while inducing the release of 
matrix metalloproteinases [176] and an increase of fluid 
flow across ECM tissues near JCT [173]. Therefore, the 
cytokines released by TME cells regulate the permeability 
of the SCE barrier in an active way [173].

Trabecular meshwork cells express aquaporin-1, a mul-
tiple water channel protein transporting water through 
membranes that can modulate cell volume [177] and tis-
sue permeability. Indeed, outflow facility is increased by 
hyperosmotic solutions and decreased by hyposmotic 
solutions [178, 179]. Aquaporins also facilitate cell migra-
tion, [180], hydration, neuroexcitation, cell proliferation, 
fat metabolism, and other  cell functions [181]. In experi-
mental animal models, elevated IOP reduces aquaporin 
expression, suggesting a role for this molecule in the patho-
genesis of glaucomatous optic neuropathy [182]. During 
glaucoma course, accumulated oxidative stress arising from 
the environment, vascular dysregulation, aging and/or the 
pathogenic processes could induce a sublethal damage to 
the outflow pathways [183]. These molecular changes in 
the surviving cells determine the expression of new genes 
[184] dependent on the nature of the damaging stimulus 
and on the other tissue type [185, 186]. In the AC, oxidized 
lipoproteins and free radicals are considered to be major 
causes of tissue stress and serve as local triggers for tis-
sue inflammation [187]. Primary glaucoma is associated 
with an aqueous inflammatory response and is associated 
with changes in the aqueous cytokine profile [188]. A large 
number of inflammatory genes, including genes involved 
in complement activation and inflammatory cytokine/
chemokine production, are upregulated, this in turn caus-
ing abnormal leukocyte–endothelial interactions and ulti-
mately vascular damage [187]. Furthermore, the innate 
immune system in general and monocytes in particular play 
an important role in aqueous outflow homeostasis. Indeed, 

under the influence of chemotactic signals, the monocytes 
circulate through the TM in the normal state and cytokines 
regulate the permeability of Schlemm’s canal endothelial 
cells [189] and monocytes increase aqueous outflow [190].

Glaucomatous eyes exhibit a higher level of TM cell 
loss, than age-matched controls [82]. The decline of human 
TM cellularity is linearly related to age [82]. Noxious 
insults, such as free radical attack, trigger and enhance this 
mechanism [191, 192].

Contractile elements composing TM  help to regulate 
the outflow facility [193]. Human TM cells contain smooth 
muscle-specific α-actin and have been identified as func-
tional contractile cells, and in intact eye, the contractility 
balance between ciliary muscle and TM determines the 
total AH outflow [194]. Therefore, opening or fastening 
its slots, TM can change the quantity of cells involved in 
the passage of AH from AC to SC. As collector channels 
become altered with age or disease, other collector chan-
nels are available to assume the functional burden [195].

Similarity between anterior chamber and blood vessels

From a structural point of view, the AC may be seen as a 
specialized circulatory vessel in which the walls are lined 
with endothelial cells (i.e., corneal and trabecular) and 
the AH acts as the “blood”. Malfunction in this endothe-
lium may lead to outflow deterioration and result in 
increased IOP. The three-dimensional architecture of the 
human TM considerably increases the filtration surface 
between the TME and AH. The adjacent Schlemm’s canal 
is a continuous endothelium-lined channel that drains AH 
to the general venous circulation [150]. These cells dis-
play an endothelial cell-like morphology, are avid phago-
cytes [196], possess a contractile and migratory apparatus 
[197, 198], have the capacity to produce ECM elements 
[199], and can transduce signals after stress-induced pro-
tein kinase C (PKC) attaches to the ECM [200]. The AC 
endothelium (ACE) not only acts as a barrier between AH 
and the surrounding tissues but, like in vessels, is a real 
organ with the function of modulating the tone and the 
flow rate in response to humoral, nervous, and mechanics 
stimuli. Under physiological conditions, the ACE plays 
an active role in cellular interchange, being able to adapt 
functionally and structurally to changes in the environment 
[201]. The normal endothelial function depends on both the 
anatomical continuity of cellular monolayer and its func-
tional integrity [202].

The endothelium plays an important role in AC home-
ostasis. In particular, the TM endothelium plays a funda-
mental role in AH transit from the AC to Schlemm’s canal 
(SC). TM endothelium releases into the media cytokines, 
which increase the SC endothelium barrier permeability 
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upon SC endothelium binding [174] and flow downstream 
with the AH to influence SCE barrier function and regulate 
the egress of AH [172]. When the IOP is greater than the 
venous pressure, the increased tension makes the trabecular 
beams and cords taut, which then triggers the stretch recep-
tors to activate the TM endothelium to release vasoactive 
factors that will increase the flow across SC endothelium 
[174]. The presence of stretch receptor in TM is supported 
by recent literature indicating that epithelial sodium chan-
nel proteins may function as sensors of pressure-induced 
vascular stretch and laminar flow [203]. Indeed, IOP is 
regulated by the transport of AH across epithelial eye struc-
tures, which in turn is associated with ion flux. The specific 
upregulation of epithelial sodium channel proteins acts as 
a protection mechanism against IOP increase [204]. There-
fore, the endothelial cells of the TM and Schlemm’s canal 
constitute a system that governs the outflow through com-
plex interactions. These interactions proceed in both direc-
tions and involve TM–SC mutual relationships [174].

A further element supporting the similarity between AC 
and blood vessel is the presence of protein marker typically 
detected in atherosclerotic vascular lesions. ELAM-1 has 
been detected in TM and its increase observed in POAG 
[205]. Recently, our group discovered in AH the presence 
of several proteins usually linked to the atherosclerotic 
plaque. Levels of these vascular proteins (Table  1) were 
significantly increased in AH of glaucomatous patients 
compared with expression levels in healthy controls [206].

Endothelial dysfunction

Vascular dysfunction is commonly observed in many dis-
eases and is closely related to oxidative stress [207, 208]. 
Higher levels of reactive oxygen and nitrogen species 
occurring in vasculature have been found in hyperten-
sion, hyperlipidemia, atherosclerosis, and diabetes mellitus 

being established that these reactive species induce oxida-
tive damage in vascular tissue [209].

Chronic eye diseases are characterized by decreased 
biosynthesis and/or bioavailability of NO [210], excess of 
superoxide [211], and endothelin production [212]. TNF-
α (tumor necrosis factor-alpha) regulates NOS expression 
and activity, which exert direct effects on NO production. 
TNF-α increases iNOS expression by activating NF-κB. 
Increased TNF-α expression induces ROS production. 
TNF-α also activates NF-κB transcription, which regu-
lates the expression of genes involved in inflammation 
and oxidative stress [213–215]. Glaucoma syndromes are 
characterized by these bio-humoral changes. A balance 
between vasoconstrictors and vasodilators is necessary 
for maintaining the physiological structure and function 
of endothelia [194], modulating the permeability of the 
endothelial barrier, and releasing of ET and NO. This bal-
ance is impaired in glaucoma, with major consequences. 
Cyclic GMP and NO2 concentrations were lower in the AH 
of POAG patients than in normal eyes [216]. NO donors 
decrease IOP by increasing the aqueous outflow facility in 
the TM and/or Schlemm’s canal through cellular mecha-
nisms known to regulate outflow facility, including changes 
in cell volume and cell contractility. In fact, the NO pro-
motes the conversion of GTP to cGMP. This process acti-
vates protein kinase G (PKG), which then determines the 
phosphorylation and therefore the activation of the BKCa 
ionic channel [217]. These potassium (K+) ion channels are 
activated by calcium (Ca++), are located at the cell mem-
brane, and are activated by electric potential changes across 
the membrane or by an increase of intracellular Ca++ con-
centration. Potassium on channel activation determines the 
exit of K+ from cells and the consequent reduction of cell 
volume and osmotic pressure [218]. TM cell volume reduc-
tion allows for enlarged intertrabecular spaces and conse-
quently greater exposure of the cell surface and enhanced 

Table 1   Vascular protein 
as detected in AH of POAG 
pateints by antibody microarray 
(data from Saccà et al. [206])

The presence of these proteins 
in AH indicates that POAG 
course damages the trabecular 
meshwork and in particular its 
endothelial and cytoskeletal 
components thus altering both 
TM functionality and motility

Protein Role Target

ELAM1 Inflammatory responses Endothelium and  
cytoskeleton

Apo B Inflammatory responses Endothelium

Apo E Oxidative stress response Endothelium

VASP Cell adhesion and motility Endothelium

Hsp60 Mitochondrial chaperonin Endothelium

Hsp70 Immunoreactivity Cytoskeleton

Myogenin Muscle growth and regeneration Cytoskeleton

Myogenic factor 3 Regulator of skeletal myogenesis Cytoskeleton

Myotrophin Myofibrillar growth pattern Cytoskeleton

Ankyrin Anchors cytoskeletal components Cytoskeleton

Phospholipase C PKC activator Cytoskeleton

Ubiquitin Regulation of endothelial NOS activity Endothelium
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AH outflow. Furthermore, the NO-dependent soluble gua-
nylate cyclase/cyclic guanosine monophosphate system 
plays an important role in regulating the AH dynamics that 
control AH production in the ciliary processes [219, 220], 
with subsequent decreases in IOP [221].

Endothelins also participate in IOP regulation; despite 
TM mobility, ET-1 (endothelin 1) induces TM contraction 
and increased outflow resistance, whereas TM relaxation 
increases outflow [194]. ET-1 is the most powerful con-
stricting substance produced by endothelium, and it acts 
on specific ETA and ETB receptors. ETA receptors are pre-
sent only in smooth muscle cells and cause vasoconstric-
tion and cell growth. ETB receptors (which also lead to 
vasoconstriction) are present on smooth muscle cells, the 
expansion of which stimulates NO production and provides 
negative feedback by inhibiting the further production of 
ET-1. This negative feedback mechanism is compromized 
when the bioavailability of NO is reduced, and vasocon-
striction effect is consequently increased [222]. The effects 
of endothelin-induced vasoconstriction in the anterior part 
of the eye cause a decrease in ocular blood flow, followed 
by pathological changes in the retina and the ONH; these 
processes are assumed to contribute to the degeneration 
of the RGCs. Nevertheless, trabecular outflow is modu-
lated by TM contractility, which is affected by endothelin 
[223]. High ET-1 levels have been reported in the AH of 
patients with glaucoma [224, 225], and abnormal vascu-
lar responses to endothelin or its receptor antagonists have 
been shown in patients with normal tension glaucoma 
(NTG) [226]. Although direct evidence for local ocular 
endothelial dysfunction (EDf) is difficult to obtain, Henry 
et al. [227] demonstrated general EDf in a group of patients 
with NTG. This association could be due to attenuated ETA 
receptor-mediated tone, increased ETB receptor-mediated 
contraction, or impaired ETB receptor-mediated endothe-
lial NO release [228]. There may be both a dysregulated 
vascular response to increased endothelin levels and a 
direct endothelin effect on target tissues, depending on the 
expression and distribution of their endothelin receptors 
[229]. NO can modulate the expression, sensitivity, and 
signal termination of endothelin receptors [230].

Primary open-angle glaucoma is also associated with 
peripheral vascular EDf [231]. This dysfunction can 
include the TM endothelium, which exhibits mitochondrial 
dysfunction in POAG patients [16] and a higher suscepti-
bility to ROS than other tissues that constitute the AC [76]. 
Siasos et al. [232] have reported that POAG patients have 
significantly impaired endothelial function, which has been 
linked to an increased inflammatory status that is a causa-
tive mechanism of EDf. Furthermore, ET-1 has been linked 
to various other glaucoma-associated effects on the optic 
nerve and RGC including astrogliosis, ECM remodeling, 
and NO-induced damage [233]. Additional evidence of 

EDf arises from data showing increased levels of ELAM-1 
in the AH. ELAM-1 is the earliest marker of atherosclerotic 
plaques in the vasculature. It is activated in human TM 
cells collected from patients with glaucoma [205], and it 
represents the sustained activation of a stress response that 
results in the expression of pro-inflammatory markers [234] 
and an index of endothelial damage.

Aqueous humor proteome during glaucoma course

An intriguing component of the glaucomatous AH is its 
protein fraction. Some stimuli, including elevated IOP, 
exert physical forces on HTM cells, causing mechani-
cal stretch. This stretching can have a profound effect on 
their gene expression profile and may dramatically change 
the AH proteomics during glaucoma. To date, several mol-
ecules that appear to be involved in POAG pathogenesis 
have been identified. Many of these molecules are involved 
in the control of ECM turnover in TM [235]. Evidence that 
molecular alterations in the AH reflect glaucoma patho-
genesis has been published by Izzotti et al. [71, 236]. The 
expression of 1,264 proteins was analyzed by detecting 
remarkable changes in the AH proteins of glaucomatous 
patients relative to matched controls. These findings shed 
light on the biomolecular mechanisms involved in human 
glaucoma pathogenesis. AH proteome profile undergoes 
dramatic changes in POAG patients compared to matched 
controls, even if total protein amount was only slightly, and 
not to a statistically significant extent, increased.

Proteins having a significant (more than two-fold) varia-
tion in expression between POAG patients and controls can 
be classified into 6 groups reflecting glaucoma pathogene-
sis. The first group includes mitochondrial proteins that are 
involved in the electron transport chain, trans-membrane 
transport, protein repair, and mitochondrial integrity main-
tenance. Under physiological conditions, these proteins 
are segregated inside cells in functional mitochondria. The 
presence of these proteins in AH provides evidence of both 
mitochondrial dysfunction and distinct injury occurring 
during glaucoma. This molecular event is linked to myo-
cilin and its mutations impairing mitochondrial functions 
in HTM cells [237], affecting the actin cytoskeletal struc-
ture [238], and conferring differential sensitivity to oxida-
tive stress [239]. Myocilin mutations are typically associ-
ated with high IOP, while optineurin (OPTN) mutations 
are associated with normal tension glaucoma. These asso-
ciations imply that myocilin alteration has more impact on 
the cells of the aqueous outflow pathway, i.e. the TM, than 
those in the ONH and in the retina, i.e. RGCs, and vice 
versa in the case of OPTN [240]. OPTN expression in TM 
is increased by IOP increases [241, 242]. OPTN expres-
sion is regulated by various cytokines, particularly NF-κB 
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[243], which can be activated by increased IOP, ageing, 
vascular diseases, and oxidative stress. Furthermore, OPTN 
also plays an important role in regulating several genes, 
including myocilin [244].

The second group consists of proteins involved in apop-
tosis induction through the intrinsic (i.e., mitochondrial-
dependent) pathway. The relationship between TM cell loss 
and the apoptosis observed in POAG patients can be trig-
gered by many events, including oxidative stress [10, 245], 
intense phagocytosis, and inflammation, either alone or in 
combination with [246] mechanical stress [247]. Neverthe-
less, these pathways induce endothelial cell death, which 
first leads to EDf and then to complete TM malfunction 
with the consequent increase in IOP (Fig. 7). Cytochrome 
c is prominent in this group of proteins. It is released from 
the mitochondrial cristae following elevated hydrostatic 
pressure or oxidative stress and leads to apoptotic cell 
death. Cytochrome c release on day 3 of pressure treatment 
is correlated with caspase-3 activation and apoptotic cell 
death in differentiated RGC-5 cells [248]. The presence of 
cytochrome c in the AC is due to an apoptotic mechanism 
led towards to TM cells. It is conceivable that AH proteome 
alteration reflect from anterior to the posterior ocular seg-
ment thus establishing a communication mediated by pro-
teins between AC and ONH. Many proteins enter the AH of 
the AC by diffusing through the root of the iris [249]. From 
there, they reach the supraciliary space and move as far 
as the suprachoroid layer of the peripapillary retina in the 
posterior segment [250]. This process demonstrates how 

different molecules, particularly proteins, spread freely in 
the anterior and posterior segments. Therefore, these pro-
teins may acquire the task of transmitting signals to both 
the AC and posterior segment cells. This situation bears 
pathogenic relevance in particular for AH proteins highly 
expressed in glaucoma and having neurological relevance.

Indeed, the third group is composed by neuronal pro-
teins. It includes optineurin and growth and differentiation 
factors involved in neurogenesis and neuronal survival. 
Their presence in the AC reflects the neural embryologic 
origin of the TM cells, which have a neuro-ectodermal 
origin and, in part, a neural-like phenotype [32]. Indeed, 
TM cells are derived from the mesenchymal cells of the 
ectodermal neural crest [251]. This is unique situation in 
human body because all vascular endothelial are of meso-
dermal origin. Conversely, TM is an endothelium of ecto-
dermal origin, thus bearing cross-reacting antigens with 
ONH lamina cribrosa. Indeed, TM and lamina cribrosa 
display remarkable similarity in protein expression [252]. 
Neural protein may be detected by proteome analysis in 
AH under physiological conditions [253] and are enhanced 
in vitreous humor in case of proliferative retinopathy 
[254]. Accordingly, it has been proposed [71] that the high 
amount of neural proteins detectable in POAG AH derives 
from ONH damage, reflecting on both vitreous and AH 
composition due to the protein exchange occurring through 
the uveo-scleral pathway [250].

The fourth group consists of proteins involved in 
intercellular adhesion. These proteins include catenins, 

Fig. 7   Histopathological and 
ultrastructural functional altera-
tions occurring in glaucomatous 
TM as highlighted by AH 
proteome analysis



2210 S. C. Saccà, A. Izzotti

1 3

junctional plaque protein, dynein, and cadherins. The pres-
ence of these proteins confirms that EDf plays an important 
role in the pathogenesis of TM damage by permeabilizing 
the barrier between the AC and Schlemm’s canal. Thus, 
outflow decrease in glaucoma is related to loss of mechani-
cal integrity in the TM as a consequence of reduced cell–
cell and cell–matrix adhesion. Catenins are WNT proteins, 
and the WNT signaling pathway controls the activity of 
the genes needed at specific times during development 
and regulates the interactions between cells as organs and 
tissues are forming. Interestingly, normal myocilin is a 
modulator of WNT signaling and provides a useful tool 
for reorganizing the cytoskeleton of TM cells and regulat-
ing IOP [255]. E-cadherin is one of the most important cell 
surface glycoproteins involved in cell morphogenesis. It is 
closely related to metalloproteinase and has an important 
but not well-understood role in the onset and progression 
of POAG [256]. N-cadherin, a Ca2+-dependent cell–cell 
adhesion molecule, is an effector of the optimedin gene, 
which is a neural protein playing an important role in dif-
ferentiating the brain and retina by modulating cytoskel-
eton organisation, cell–cell adhesion, and migration [257]. 
Proteins interconnecting TM cells exert a role in glaucoma 
pathogenesis because their alteration hampers TM func-
tion and integrity. Indeed, it has been recently reported that 
phosphorylation of Tyr14 in caveolin-1 (CAV-1) and tran-
scriptional regulation of CAV-1 expression have a role in 
glaucomatous alterations in TM cells [258]. Furthermore, 
polymorphisms of genes encoding for caveolins have been 
established to act as risk factor for POAG by genome-wide 
association studies [28].

The fifth group includes protein kinases, which are key 
regulators of cell function constituting one of the largest 
and most functionally diverse gene families. PKC path-
way modulation is relevant in glaucoma. PKC inhibitors 
relax TM and affect expression of matrix metalloproteinase 
and PGF2 alpha thus increasing AH outflow by regulating 
myosin light chain phosphorylation and the morphological 
and cytoskeletal characteristics of TM and SC cells [259]. 
PKC has been implicated in activating iROS production 
by NAD(P)H oxidase in endothelial and smooth muscle 
cells and contribute to induce iROS production [260]. PKC 
gamma is a unique PKC isoform that is found in neuronal 
cells and eye tissues. This isoform is activated by ROS, 
such as H2O2, which activates protein kinase Cγ through 
the C1 domain, this activation resulting in the inhibition 
of gap junctions [261]. This confirms the key role of EDf 
in the course of glaucoma. PKCs are involved in apoptosis 
activation and signal transduction [262, 263].

Finally, the sixth group of AH proteins altered in glau-
coma is related to oxidative stress and includes nitric 
oxide synthase, SOD, and microsomal glutathione S-trans-
ferase 1. In a study by our group [264], the levels of the 

antioxidant enzymes SOD and glutathione transferase in 
the AH were significantly lower in POAG patients than 
in controls, whereas the levels of the pro-oxidant enzyme 
NOS and glutamine synthase in the AH were significantly 
higher in patients with POAG than in controls. This find-
ing confirms that the AH antioxidant defenses in glaucoma 
patients are insufficient, and failure of these antioxidant 
defenses results in damage to the TM due to the remarkable 
susceptibility of this tissue to oxidative injury [76].

The origin of these AH proteins may leave some doubt. 
However, it is unlikely that their origin is in either iris or 
cornea. In fact, cornea endothelia do not suffer specific 
abnormalities in the course of glaucoma, and iris loses the 
endothelium after the birth. Plasma-derived proteins enter 
AH from the ciliary body at the iris root [265], but a reflux 
in the course of POAG from Schlemm’s canal or from 
the iris root has never been disclosed. TM damages both 
functional and morphological are in contrast well known, 
validating the hypothesis of a TM origin for AH protein 
changes.

Furthermore, vascular endothelial growth factor (VEGF) 
is increased in AH of glaucomatous eyes [266]. VEGF 
induces endothelial cell proliferation, promotes cell migra-
tion, and inhibits apoptosis. Its presence in glaucomatous 
AH might be justified with the mechanism of activation of 
endothelial cells and then with an increase in endothelial 
permeability. Indeed, the permeability-inducing factor and 
the endothelial cell growth factor are encoded by a single 
VEGF gene [267]. In addition, vascular permeability factor 
had been characterized as a protein that promotes extrava-
sation of proteins from tumor-associated blood vessels 
[268]. Therefore, a trabecular origin of AH’s proteins is 
strongly plausible.

Conclusions

The molecular alterations described as occurring in TM 
are the first events triggering POAG. Shedding light on 
this early TM molecular damage can be useful to develop 
preventive strategies aimed at protecting TM before the 
occurrence of irreversible neural damage. Ageing, ROS, 
and other pathogenic events can decrease TM cellularity 
until levels of inadequacy for the passage of AH from AC 
to Schlemm’s canal. This situation results in IOP increase 
and unleashes a vicious circle of molecular events leading 
to POAG development, including mitochondrial dysfunc-
tion [66], endothelial cell dysfunction [269], and finally 
functional TM impairment [3]. When severe damage 
occurs in TM endothelial cells in tight contact with AH, 
intracellular proteins leak from damaged cells, thereby 
changing the AH composition [71]. The presence of neu-
rological proteins in glaucomatous AH [71] reflects the 
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occurrence of a similar pathological condition affecting 
both TM and ONH [252].

Trabecular meshwork actively modulates AH outflow 
from AC to Schlemm’s Canal and not a mere passive way 
of egress. Little is known about the mechanism transmitting 
glaucomatous molecular signals from the AC to the retina 
and then to the central nervous system. It is conceivable 
that protein produced by damaged TM behave as a commu-
nicating signal for the posterior segment. Early molecular 
events happening in AC and AH can be studied by mean 
of newly developed biomolecular techniques thus disclos-
ing new horizons for understanding glaucoma patho-phys-
iology. The understanding of this molecular language of 
communication between AC and ONH is a new frontier for 
glaucoma. Thanks to the use of new omics methodologies 
molecular bases of POAG are beginning to be understood 
(Fig.  8). In the near future, this knowledge ought to be 
applied in the diagnostic and therapeutic field.

Microarray-based omics techniques able to detect early 
molecular damage in glaucoma include gene expression 
profiling as applied in vitro in endothelial cells [270] and 
in vivo in rat filtering belbs [271] and in mouse retina 
[272]. In human, microarray gene expression analysis in 
blood leukocytes has been recently reported to discriminate 
between glaucomatous patients and controls [273]. Micro-
RNA expression profiling has been applied in vitro in cul-
tured TM cells [274, 275].

The antibody microarray method seems to be very 
promising [71], and, at variance with other methods, is able 
to quantify glaucoma protein hallmarks by a moderately 

invasive sample such as corneal puncture. It is conceivable 
that the invasiveness of this approach might be improved 
by the application of micropuncture techniques [236]. This 
method relies on the identification of different proteins 
differentially expressed in AH in healthy or sick subjects 
by means of specific antibody- and fluorescence-labeled 
probes. Fluorescent signals are acquired by means of a laser 
scanner and analyzed by means of software  able to evalu-
ate expression patterns of sets of proteins, thus being able 
to distinguish a normal from a POAG expression pattern.

This protein signature distinguishes different glaucoma 
types and could be useful for making a diagnosis at early 
stage. These techniques will furnish a very useful instru-
ment of diagnosis  and prevention, leading to a reduction 
of costs for public health. Indeed, the performances of the 
diagnostic test are increased by increasing the number of 
tested AH proteins. Performances include sensitivity (num-
ber of false negative results), specificity (number of false 
positive results), and accuracy (the transferability of the 
results from a low to a great number of subjects). AH anti-
body microarray analysis is able to test up to thousands 
of proteins in a single analysis using hallmark proteins to 
identify glaucoma-affected patients [71, 236].

The knowledge of molecular mechanisms leading to 
POAG onset will further help to develop new therapeu-
tic approaches, counteracting TM oxidative stress and its 
molecular consequences, improving the energetic metabo-
lism, correcting mitochondrial impairment, and decreas-
ing the apoptosis rate. This molecular approach will fur-
ther provide us with the tools to prevent the propagation of 

Fig. 8   Omics techniques so 
far applied to the study of 
glaucoma. Genomic methods 
include analysis of nuclear 
DNA oxidative damage (8-OH-
dG) by 32P postlabeling and 
analysis of mitochondiral DNA 
deletion by qPCR. Micorarray-
based postgenomic methods 
include expression analysis of 
gene (transcriptome), micro-
RNA (miRNome), and proteins 
(proteome)
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damage leading to apoptosis from the anterior chamber and 
ONH.
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