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Abbreviations
AcaA	� Adenylyl cyclase A
cAMP	� 3′-5′-cyclic adenosine monophosphate
CaM	� Calmodulin
CaMBP	� Calmodulin-binding protein
CaMBD	� Calmodulin-binding domain
carA	� 3′-5′-cyclic adenosine monophosphate receptor 

A
Cdk	� Cyclin-dependent kinase
CycB	� Cyclin B
CycC	� Cyclin C
Disc1	� Discoidin 1
PKAc	� Protein kinase A catalytic subunit
PsaA	� Puromycin-sensitive aminopeptidase A

Cyclin‑dependent kinases

The cyclin-dependent kinases (Cdk) belong to a family of 
serine/threonine protein kinases that were first discovered 
for their role in regulating eukaryotic cell cycle progres-
sion [1, 2]. Cdks are present in all eukaryotic cells and their 
kinase activity is regulated through their association with 
cyclins, which also function to recruit substrates [1, 2]. In 
mammals, the main cell cycle regulator is Cdk1, however 
additional Cdks (i.e., Cdk2, Cdk4, and Cdk6) are required 
for normal development and the proliferation of specialized 
tissues [3]. Due to their ability to regulate the cell cycle and 
the fact that tumor cells evade anti-growth signals, mem-
bers of the Cdk protein family are potential targets for anti-
cancer therapies [4, 5]. Cdk1 is the most well studied Cdk 
and its function is best understood in the model organism 
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Saccharomyces cerevisiae where the protein controls the 
cell cycle by interacting with nine different cyclins (i.e., 
three G1 cyclins and six B-type cyclins) [3]. In yeast, Cdk1 
also regulates DNA replication, chromosome segregation, 
transcription, and cell morphogenesis and polarization [3]. 
There are approximately 75 bona fide and over 300 poten-
tial Cdk1 targets [6].

Although most Cdks regulate the cell cycle, a subset 
of Cdks, namely Cdk7, Cdk8, and Cdk9, regulate gene 
expression through direct interactions with the transcrip-
tion machinery. In mammals, Cdk8 represses transcription 
by phosphorylating the carboxy terminal domain of RNA 
polymerase II [7]. However, Cdk8 has also been reported to 
activate transcription through the phosphorylation of spe-
cific transcription factors [8]. Cdk8 associates with cyclin 
C to form part of the Mediator complex, which controls 
both basal and regulated transcription and is composed of 
at least 36 other proteins that are highly conserved from 
yeast to human [7, 9]. Like Cdk8, Cdk5 is another member 
of the Cdk protein family that possesses functions unrelated 
to the cell cycle. Unlike other members of the mamma-
lian Cdk protein family, Cdk5 is not activated by cyclins. 
Instead, the protein is activated through its association with 
the neuron-specific activator molecules p35, p39, and p67 
[10]. Cdk5 functions in a diversity of cellular processes 
including axon guidance, neurite outgrowth, insulin secre-
tion, lens differentiation, membrane transport, myogenesis, 
and ubiquitin-dependent degradation [11–14]. In addition, 
unlike other Cdks whose functions have been implicated 
in tumor growth, Cdk5 dysregulation has been linked to 
neurodegenerative diseases including amyotrophic lateral 
sclerosis, Alzheimer’s disease, and Parkinson’s disease 
[15–17].

The life cycle of Dictyostelium discoideum

Dictyostelium discoideum is a fascinating organism that has 
been chosen by the National Institutes of Health as part of 
its model organism initiative for biomedical and human dis-
ease research [18, 19]. This model Eukaryote undergoes an 
asexual life cycle comprised of a vegetative feeding stage 
where single cells grow and divide mitotically as they 
chemotactically respond to folic acid, which is secreted by 
their bacterial food source and a multicellular developmen-
tal stage that is induced by starvation [20]. The Dictyoste-
lium cell cycle does not possess a discernible G1 phase dur-
ing growth and almost all cells are in G2 during both growth 
and development [21]. Growing cells released from station-
ary phase enter a short S phase lasting less than 30 min. This 
is followed by a long G2 phase that lasts 6.5 h on average. 
Cells then enter M phase, which lasts about 12 min. Upon 
starvation, cells enter a developmental program that begins 

with the secretion of 3′-5′-cyclic adenosine monophosphate 
(cAMP), which acts as a chemoattractant causing cells to 
aggregate into mounds [20]. Aggregated cells then develop 
into a motile, multicellular structure known as a pseudo-
plasmodium or slug. Cells destined to become spores (i.e., 
pre-spore cells, 80  % of the total cell population) sort to 
the middle and posterior regions of the slug, while cells 
destined to become stalk (i.e., pre-stalk cells, 20 % of the 
total cell population) sort to the anterior region. When con-
ditions are suitable, the slug will develop into a fruiting 
body comprised of a mass of spores that is supported by a 
stalk of dead cells. Two periods of cell division occur dur-
ing Dictyostelium development, one during the early stages 
of development and the other after multicellular structures 
have formed [22]. However, only the second period of cell 
division has been shown to be a result of mitosis [23]. The 
observed increase in cell number during early development 
is not due to mitosis, but instead is a result of multinucleated 
cells undergoing cytokinesis to complete their final growth-
stage cell cycle [23].

In addition to its involvement in the regulation of 
growth, the cell cycle also influences cell type differentia-
tion in Dictyostelium [24–29]. This is an interesting fea-
ture of the Dictyostelium life cycle, which has recently 
been reviewed [30, 31]. Cells within a growing population 
will be in different phases of the cell cycle (i.e., S, early 
G2, mid-G2, late G2, M). However, since the G2 phase 
in Dictyostelium is relatively long compared to the S and 
M phases, the majority of cells will be in G2 [25]. Upon 
starvation, cells in M, S, or early G2 tend to form pre-stalk 
cells, while cells in mid- or late G2 preferentially form 
pre-spore cells. Unlike growth, there is evidence for a G1 
phase during Dictyostelium development [23, 32]. Pre-
stalk cells undergo mitosis just before stalk formation (i.e., 
after 22 h) and arrest in G1 prior to terminal differentiation 
[23]. Pre-spore cells undergo mitosis between 12 and 20 h 
of development [23], however whether these cells arrest in 
G1 or G2 prior to terminal differentiation remains unclear. 
Chen et al. [23, 32] have reported that pre-spore cells arrest 
in G1 prior to encapsulation. Their studies, which were 
based upon cellular DNA content profiles obtained by 
flow cytometry and quantification of extra-chromosomal 
and chromosomal DNA, also showed that Dictyostelium 
cells can carry out the entire developmental sequence in 
G1 [32]. In contrast, MacWilliams et  al. [33] used direct 
fluorescence measurements of DAPI-stained nuclei to show 
that the nuclear DNA content of cells and spores do not dif-
fer significantly. Since vegetative cells are largely in G2, 
it follows that the spores under their experimental condi-
tions would also be in G2 [33]. These results were sup-
ported by Muramoto and Chubb [34] who introduced a 
live cell S-phase marker into developing cells (i.e., fluores-
cently tagged replication factor, proliferating cell nuclear 
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antigen). They reported that germinating spores entered 
S-phase only after their first round of mitosis, indicating 
that the spores were in G2 [34]. In addition, while it is gen-
erally accepted that DNA replication does occur during 
development, the source of the DNA synthesis (i.e., nuclear 
or mitochondrial) is controversial with contradictory results 
reported in the literature [24, 32–35]. Zimmerman and 
Weijer [24] labeled developing cells with the thymidine 
analog 5′-bromodeoxyuridine and reported that 75  % of 
cells from axenically grown cultures go through S-phase. 
A later study by Shaulsky and Loomis [35] reported that 
while DNA synthesis does occur in pre-spore cells, the 
source of the DNA synthesis is mitochondrial, not nuclear. 
Unfortunately, more recent studies have yet to clarify this 
feature of the Dictyostelium life cycle. Chen and colleagues 
[32] reported that although substantial mitochondrial DNA 
synthesis does occur in pre-spore cells, chromosomal DNA 
synthesis is not observed. Using their imaging approach 
Muramoto and Chubb [34] reported that a large propor-
tion of cells undergo nuclear DNA synthesis during devel-
opment. As discussed previously, their study also showed 
that spores arrest in G2 [34]. Since the majority of cells 
upon starvation are in G2, and it is known that at least one 
round of mitosis occurs during the later stages of develop-
ment, their results indicate that S-phase does occur during 
development [34]. Taken together, it has become increas-
ingly evident that this aspect of the Dictyostelium life cycle 
requires further study to resolve and clarify the conflicting 
reports presented in the literature. In addition, although it 
is well established that the cell cycle influences cell type 
differentiation in Dictyostelium the function(s) (if any) of 
Cdks and cyclins during this process is unknown.

The Dictyostelium genome has been sequenced and 
several homologues of mammalian Cdks have been identi-
fied (Table 1). The most well studied of these homologues 
include Cdk1, Cdk5, and Cdk8, which will be discussed in 
detail below and will be the focus of this review. The Dic-
tyostelium genome also encodes putative Cdks that have 
not yet been characterized (e.g., Cdk7, Cdk9, Cdk10, and 
Cdk11) as well as a number of cyclins and Cdk-binding 
partners (Tables  1, 2). Some of these binding partners 
have been verified as bona fide Cdk-binding proteins and 
will also be discussed in the review. The genome, however, 
does not contain obvious homologues of mammalian Cdk2, 
Cdk3, Cdk4, or Cdk6 (Table 1).

Cyclin‑dependent kinase 1

Cdk1 functions during Dictyostelium growth

In Dictyostelium, Cdk1 functions primarily during veg-
etative growth (Fig.  1) [36]. cdk1 mRNA and protein is 
expressed at a constant level during all phases of axenic 
growth (i.e., exponential and stationary phases) [37]. Dur-
ing development, the level of cdk1 mRNA increases dur-
ing aggregation and then decreases to low levels by the 
slug stage, eventually disappearing during the terminal 
stages of differentiation [36–38] (Fig. 2). The kinase activ-
ity of Cdk1 has been verified and the protein level remains 
constant during development up to 16 h, after which time 
the amount of Cdk1 protein decreases significantly [36]. 
Despite the fact that cdk1 mRNA and protein are expressed 
during development, there is little evidence to suggest that 

Table 1   List of Cdk 
homologues in Dictyostelium 
discoideum

a  Dictyostelium Cdk1 shares 
strong sequence similarity with 
both mammalian Cdk1 and 
Cdk2, but the genome does not 
contain separate genes for Cdk1 
and Cdk2

Gene Identified  
in Dictyostelium?

dictyBase gene ID Function(s)

cdk1 Yes DDB_G0272813 Growth [36, 39]

Early development? [36, 39]

cdk2 Noa N/A N/A

cdk3 No N/A N/A

cdk4 No N/A N/A

cdk5 Yes DDB_G0288677 Growth [42–44]

Mid development [42, 44]

Late development [42, 44]

cdk6 No N/A N/A

cdk7 Yes DDB_G0285417 Uncharacterized

cdk8 Yes DDB_G0267442 Growth [84, 86]

Early development [84–86]

Late development [84–86]

cdk9 Yes DDB_G0273207 Uncharacterized

cdk10 Yes DDB_G0268480 Uncharacterized

cdk11 Yes DDB_G0283279 Uncharacterized
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Cdk1 is involved in regulating developmental processes, 
including the mitotic events that occur during later devel-
opmental stages [22, 36, 37, 39]. Although Luo et al. [36] 
reported an increase in Cdk1 histone H1 kinase activity 
during early development, a follow-up study by Sharma 
et  al. [39] concluded that this increase in kinase activ-
ity is likely not important for Dictyostelium development. 
This conclusion was based upon observations of cells that 
expressed a dominant-negative mutant cdk1 gene under 
the control of the discoidin promoter, which drives gene 
expression only during growth and early development [38]. 
Thus the mutant Cdk1 protein was only expressed during 
these stages of the life cycle. Although the mutant cells 
showed slow rates of growth, thus supporting a function 
for Cdk1 during cell proliferation, they were observed to 
develop and differentiate normally [39]. In other words, 

expression of the mutated Cdk1 protein during early devel-
opment did not negatively affect later developmental pro-
cesses. It is important to note that the cdk1 mutant cells still 
expressed endogenous Cdk1. Therefore it is likely that the 
effect of the mutant Cdk1 protein during growth and early 
development was somewhat mitigated by the presence of 
the endogenous protein. Furthermore, the absence of an 
increase in Cdk1 histone H1 kinase activity during later 
development coupled with the relatively low expression of 
cdk1 mRNA and protein during this stage of the life cycle, 
also supports the contention that Cdk1 is not involved in 
regulating later developmental processes, including the 
mitotic events that occur during this time [36].

Cyclin B interacts with Cdk1 and regulates its activity 
during Dictyostelium growth

Like its mammalian counterpart, Dictyostelium Cdk1 is 
activated through its association with cyclin B (CycB) and 
its activity during growth and development is dependent on 
CycB expression levels (Fig. 1) [36]. During growth, cycB 
mRNA and protein expression increases upon entry into 
mitosis and the Cdk1/CycB complex has been suggested 
to regulate the transition from G2 to M phase since over-
expression of truncated CycB results in mitotic arrest [36, 
40]. In addition, CycB degradation is required for vegeta-
tive cells to leave mitosis, which has also been reported to 
occur during the early development of Xenopus [40, 41]. 
During Dictyostelium development, cycB mRNA and pro-
tein expression reaches a maximum between the tipped 
aggregate and multicellular slug stage (i.e., 12–16  h), 
which closely adheres to the observed expression profiles 
of cdk1 mRNA and protein [36, 40] (Fig.  2). Together 
these findings indicate that Cdk1 and CycB are required for 
growth, however the function of these proteins during early 
development (i.e., aggregation) is still unclear.

Fig. 1   The functions of Cdk1, Cdk5, and Cdk8 during Dictyostelium 
growth and development. Cdk1 interacts with CycB and is required 
for growth. Its function during early development remains unclear 
(i.e., indicated by a dashed arrow and question mark). Cdk1 activity 
is also dependent on CycB expression levels. Cdk5 is a CaMBP that 
also binds to PsaA. Cdk5 is required for efficient growth and for mid- 
and late developmental processes. Cdk8 is required for early and late 
developmental processes. Cdk8 also functions during growth, how-
ever its activity is not essential for this cellular process (i.e., indicated 
by a dashed arrow). Cdk8 and CycC are detected in high molecular 
weight complexes isolated from Dictyostelium nuclei, however a 
direct interaction between Cdk8 and CycC has not yet been shown

Table 2   List of identified and 
putative Cdk-binding partners in 
Dictyostelium discoideum

a  Although a direct interaction 
between Cdk8 and CycC has 
not yet been shown, the two 
proteins are detected in high 
molecular weight fractions 
isolated from Dictyostelium 
nuclei

Gene Protein dictyBase gene ID Binding partner

cycA Cyclin A DDB_G0279085 Cdk1 (predicted)

cycB Cyclin B DDB_G0275493 Cdk1 [36, 40]

cycC Cyclin C DDB_G0274139 Cdk8 [87]a

cycD Cyclin D DDB_G0277439 Cdk1 (predicted)

cycH Cyclin H DDB_G0268668 Cdk7 (predicted)

cycK Cyclin K DDB_G0286617 Cdk9 (predicted)

cycL Cyclin L DDB_G0285553 Cdk11 (predicted)

psaA Puromycin-sensitive  
aminopeptidase

DDB_G0270994 Cdk5 [43]

calA Calmodulin DDB_G0279407 Cdk5 [60]

cksl Cyclin-dependent kinases  
regulatory subunit

DDB_G0271642 Unknown
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Cyclin‑dependent kinase 5

Cdk5 is required for growth and later development 
processes in Dictyostelium

Cdk5 is required for growth and for processes that occur 
during the later stages of Dictyostelium development 
(Fig. 1) [42–44]. The kinase activity of the protein has been 
confirmed and Cdk5 protein levels remain constant during 
all stages of axenic growth (i.e., exponential and station-
ary phases) [39, 44, 45]. cdk5 mRNA and protein expres-
sion increases significantly during development reaching 
peak expression levels after 16  h and remains relatively 
high during terminal differentiation [38, 39, 45] (Fig.  2). 
Overexpression of a dominant negative form of Cdk5 that 
contains an aspartate to asparagine substitution at amino 
acid position 144 reduces the rate of growth in suspension 
culture as well as the rates of fluid-phase endocytosis and 

phagocytosis [42]. In mammals, this amino acid substitu-
tion causes the binding between Cdk5 and its activator p35 
to be two to threefold more efficient than the binding of 
normal Cdk5 to p35 [46]. Thus, when over-expressed, the 
mutant protein blocks the activation of endogenous Cdk5 
by depleting the available pool of p35. During Dictyoste-
lium development, overexpression of this mutant Cdk5 pro-
tein delays aggregation and fruiting body formation as well 
as significantly reduces the number of fruiting bodies and 
spores that form from these cells indicating that Cdk5 is 
required for processes that occur during later development 
[42]. These results also suggest that Cdk5 may regulate cell 
cycle events during mid- to late development. Although the 
Dictyostelium genome does not encode an obvious homo-
logue of mammalian p35, Cdk5-binding partners have been 
identified in Dictyostelium (discussed below).

Cdk5 localizes to the nucleus and cytoplasm in 
Dictyostelium and translocates from the nucleus to the 
cytoplasm during mitosis

In Dictyostelium, Cdk5 localizes to both the nucleus and 
cytoplasm of vegetative cells suggesting a functional role in 
both cellular locales [43, 44]. Interestingly, this finding mir-
rors observations in mammalian cells. Unlike other mem-
bers of the Cdk protein family that function primarily in the 
nucleus, Cdk5 localizes and functions in both the nucleus 
and cytoplasm of mammalian cells. Early studies on Cdk5 
function in mammals focused on the cytoplasmic functions 
of the protein, however the nuclear functions of Cdk5 are 
slowly being revealed [47]. In neurons, Cdk5 has a death-
promoting activity when localized to the nucleus and a pro-
survival activity when localized to the cytoplasm [48]. In 
cycling NIH 3T3 cells, the localization of Cdk5 shifts from 
the nucleus to the cytoplasm suggesting that Cdk5 acts as 
a cell cycle suppressor when localized to the nucleus [49]. 
The change in localization occurs before or shortly after 
the initiation of the cell cycle and blocking the migration 
of Cdk5 out of the nucleus suppresses the cell cycle. Dur-
ing the early stages of Dictyostelium mitosis, Cdk5 gradu-
ally moves from a punctate nucleoplasmic distribution to 
localize adjacent to the inner nuclear envelope, eventually 
condensing as an intranuclear ring [43]. During anaphase 
and telophase, Cdk5 is absent from the nucleoplasm and 
localizes to the cytoplasm. The protein then returns to the 
nucleus during cytokinesis. Together these results indicate 
that the nucleocytoplasmic translocation of Cdk5 is an evo-
lutionarily conserved process. In addition to its localiza-
tion to the nucleus and cytoplasm, a small amount of Cdk5 
has also been detected in the cytoskeleton of Dictyostelium 
cells [44]. This observation fits with the established role of 
Cdk5 in regulating fluid-phase endocytosis, phagocytosis, 
and cytoskeletal dynamics in Dictyostelium and adheres to 

Fig. 2   Gene expression analysis of Dictyostelium Cdks and cyclins 
during development. RNA-Seq data was obtained from dictyExpress 
(www.dictyexpress.biolab.si, [38]) and re-plotted using Microsoft 
Excel. a Expression profiles of cdk mRNA during development. b 
Expression profiles of cyclin mRNA during development

http://www.dictyexpress.biolab.si
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studies in mammalian cells, which have shown that mam-
malian Cdk5 and its activators p35 and p39 localize to the 
actin cytoskeleton possibly playing a role in the regulation 
of actin-cytoskeletal dynamics [42, 50–52].

Cdk5 binds to a puromycin‑sensitive aminopeptidase in 
Dictyostelium

As discussed above, Cdk5 is one member of the mamma-
lian Cdk protein family that is not activated by cyclins. 
Instead, Cdk5 is activated through its association with the 
neuron-specific activator molecules p35, p39, and p67 [10]. 
The Dictyostelium genome does not encode obvious hom-
ologues of mammalian p35, p39, or p67, however immu-
noprecipitations coupled with immunolocalizations have 
identified puromycin-sensitive aminopeptidase A (PsaA) 
as a Cdk5-binding partner in Dictyostelium (Fig.  1) [43]. 
PSAs are highly conserved metalloproteases that hydrolyze 
N-terminal amino acids from oligopeptides and are linked 
to a number of cellular processes [53]. In Dictyostelium, 
PsaA localizes to the nucleoplasm [54]. Bestatin, which 
inhibits the final step of intracellular protein degradation 
(i.e., degradation of small peptides into free amino acids) 
and represses epidermal growth factor-induced DNA syn-
thesis and cell division in rat hepatocytes, binds to PsaA 
and inhibits cell division [54–56]. These results thus sup-
port a functional role for PsaA in regulating cell prolifera-
tion and mitosis in Dictyostelium. The interaction between 
Cdk5 and PsaA is interesting given that proteolytic activ-
ity has been shown to be a critical regulator of the cell 
cycle [57]. Inhibitors of aminopeptidase activity suppress 
cell proliferation by arresting the cell cycle and causing 
an accumulation of cells in the G2/M phase [55, 58, 59]. 
These findings indicate that PSA activities are required 
to complete mitosis and are essential for cell division and 
viability. In Dictyostelium, the association of Cdk5 with 
PsaA suggests that PsaA proteolytic activity may modulate 
the cell cycle by regulating the function and/or localization 
of Cdk5 during mitosis. Several potential phosphorylation 
sites have been identified in mammalian PSA, however 
Dictyostelium PsaA does not appear to be phosphorylated 
in vivo indicating the protein is likely not a target of Cdk5 
kinase activity [43, 59].

Cdk5 is a calmodulin‑binding protein in Dictyostelium

A recent study showed that Cdk5 is a calmodulin (CaM)-
binding protein (CaMBP) in Dictyostelium that binds to 
apo-CaM (i.e., Ca2+ independent CaM-binding) and asso-
ciates with PsaA and CaM in Dictyostelium nuclei (Fig. 1) 
[60]. This was the first evidence in any system for Cdk5 
being a CaMBP. CaM is the primary sensor of Ca2+ within 
the cell and binds to a diversity of CaMBPs that participate 

in a variety of cellular processes [61–63]. In HEK293T 
and PC12 cells, p35 activity is regulated by both Cdk5 
phosphorylation and CaM-binding, however a direct bind-
ing between Cdk5 and CaM has not been shown [64]. 
Sequence analysis identified two putative CaM-binding 
domains (CaMBDs) in Dictyostelium Cdk5, however until 
now, only one of the two putative domains has been verified 
as a true CaMBD [60]. Deletion of CaMBD2 (132LLIN-
RKGELKLADFGLARAFGIP154) prevented CaM-bind-
ing indicating that this region, which contains 1-10, 1-12, 
1-14, 1-16, and 1-8-14 hydrophobic motifs, encompasses 
a functional CaMBD. Interestingly, the two CaMBDs of 
Dictyostelium Cdk5 are strongly conserved in human Cdk5 
indicating that this is an evolutionarily conserved interac-
tion that warrants investigation in human cells. Insight into 
the function of this interaction was provided when Huber 
et al. [60] showed that deletion of Cdk5 CaMBD2 signifi-
cantly increased the nuclear distribution of Cdk5 and that 
this effect was dramatically enhanced by deletion of both 
CaMBD1 and CaMBD2. In mammalian cells, CaM func-
tions at multiple points in the cell cycle and is required 
for cell proliferation [65, 66]. CaM function has also been 
linked to mitosis and cell proliferation in Dictyostelium 
[67, 68]. Together, these results suggest that CaM may reg-
ulate the nucleocytoplasmic transport of Cdk5, which could 
ultimately regulate cell proliferation and mitosis in Dicty-
ostelium and other systems. The identification of Cdk5 as 
a CaMBP opens up new avenues of research to investigate 
whether Cdk5 binds CaM in other systems and the function 
of this interaction.

Roscovitine inhibits Cdk5‑dependent processes in 
Dictyostelium

Attempts to generate a cdk5 knockout mutant have been 
unsuccessful, likely because the protein is essential for cell 
division and growth [42]. As discussed previously, an early 
study made use of a mutant strain overexpressing a domi-
nant negative form of Cdk5 [42]. That study showed that 
Cdk5 is required for optimal growth and differentiation and 
that the protein is involved in regulating fluid-phase endo-
cytosis, phagocytosis, and cytoskeletal dynamics. The ina-
bility to generate a cdk5 knockout mutant has necessitated 
the use of other approaches to fully elucidate the function 
of this biomedically important protein. With this in mind, 
Huber and O’Day [44] showed that the mammalian Cdk 
inhibitor roscovitine could be used to study the function of 
Cdk5 during Dictyostelium growth and development.

Roscovitine is a potent, cell-permeable Cdk inhibi-
tor that inhibits kinase activity by binding to the ATP-
binding pocket of a number of Cdks (e.g., Cdk1, Cdk2, 
Cdk5, Cdk7, and Cdk9), however studies have indicated 
that it preferentially inhibits Cdk5 [69–72]. The ability 
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of roscovitine to inhibit Cdk10 and Cdk11 has not been 
reported, however it has no effect on the activity of mam-
malian Cdk4, Cdk6, and Cdk8 [73, 74]. Its effectiveness 
at treating nasopharyngeal cancer and non-small cell lung 
cancer is currently being evaluated in phase 2 and 2B clini-
cal trials, respectively, and it is also being investigated for 
its potential to treat breast cancer, herpes simplex infection, 
HIV infection, leukemia, and chronic inflammation disor-
ders such as cystic fibrosis and arthritis [75–79]. Roscovi-
tine has been used to show that Cdk5 is required for long-
term potentiation induction and NMDA-induced currents in 
rat hippocampal neurons, morphine tolerance in rats, cell 
proliferation and apoptosis of MDA-MB-231 cells, and 
endothelial cell migration [70, 71, 80, 81]. Roscovitine has 
also been used to inhibit Cdk5 activity in mouse C2C12 
myoblasts [82].

In Dictyostelium, roscovitine significantly inhibits 
kinase activity and axenic growth and this inhibition can be 
partially rescued by the overexpression of Cdk5-GFP [42, 
44]. These results thus support the involvement of Cdk5 
in the regulation of axenic growth and indicate that Cdk5 
is a primary target of the chemical. Roscovitine does not 
affect the expression of Cdk5 protein during growth, but 
it does inhibit its translocation to the nucleus; a result that 
has not been previously reported for any organism [44]. It 
also increases the amount of cytoskeletal-associated Cdk5. 
Development up to the mound stage is unaffected by ros-
covitine, however treatment does inhibit the later stages 
of Dictyostelium development, specifically slug and fruit-
ing body formation. The fruiting bodies that do form are 
small relative to untreated fruiting bodies and contain rela-
tively few spores. In addition, unlike the elliptical shape of 
untreated spores, roscovitine causes spores to adopt a round 
shape. These findings mirror the observations of the mutant 
Cdk5 dominant negative overexpressing strain, thus provid-
ing strong evidence for the ability of roscovitine to inhibit 
Cdk5 activity in Dictyostelium and supporting the involve-
ment of Cdk5 in the regulation of later developmental pro-
cesses [42]. The relative abundance of cdk5 mRNA during 
Dictyostelium growth and development compared to other 
Cdks is also an indication that roscovitine primarily inhib-
its Cdk5-dependent cellular processes in Dictyostelium 
(Fig. 2). Since it has been reported that at least one round 
of mitosis occurs during the later stages of development, 
these findings also indicate that Cdk5 may be required 
for the mitotic events that occur during this stage of the 
developmental cycle [22, 83]. The ability of roscovitine to 
inhibit Cdk5 activity and its nucleocytoplasmic transloca-
tion in Dictyostelium will allow future studies to clarify 
the function of Cdk5 during cell proliferation and develop-
ment by identifying the signaling pathways that regulate its 
activity and localization. Dictyostelium can also be used 
as a model system to understand the mechanism of action 

of roscovitine, which could provide important insight for 
studies aimed at determining its usefulness as a clinical 
drug. As discussed previously, it is well established that the 
cell cycle affects cell type differentiation during Dictyos-
telium development [30, 31]. Therefore, it is also possible 
that the effect of roscovitine on development is due to the 
inhibition of the cell cycle during earlier developmental 
processes rather than roscovitine having a direct effect on 
later development. In addition, although Huber and O’Day 
[44] provided strong evidence that roscovitine specifically 
inhibits Cdk5 activity in Dictyostelium, the ability of the 
chemical to also inhibit other Cdks during Dictyostelium 
growth and development remains unclear. This may require 
future study since Cdk1, Cdk7, and Cdk9 have also been 
shown to be sensitive to roscovitine in mammals [69].

Cyclin‑dependent kinase 8

Cdk8 is required for early and later developmental 
processes in Dictyostelium

In Dictyostelium, Cdk8 is not absolutely required for growth, 
but is required for early and later developmental processes 
(Fig.  1) [84–86]. cdk8 mRNA expression is relatively low 
during growth (Fig.  2) [84]. Expression increases during 
early development, reaches peak levels after 12 h, and then 
quickly decreases between 12 and 15 h of development [84]. 
Recently published RNA-Seq data supports the increase in 
cdk8 mRNA expression during early development, however 
in that analysis expression peaked at 20 h and remained high 
during the later stages of development (Fig. 2) [38].

cdk8- cells possess a pleiotropic phenotype and there 
is no obvious effect of Cdk8 overexpression [84, 85]. 
Mutant cells grow more slowly than parental cells in axenic 
medium and form small plaques on bacterial lawns indicat-
ing that Cdk8 is required for feeding [84, 86]. Upon star-
vation, cdk8- cells do not aggregate or stream and do not 
show evidence of pulsatile cell movement [84, 85]. Mutant 
cells do not express adenyl cyclase A (acaA) transcripts 
and the expression of 3′-5′-cyclic adenosine monophos-
phate receptor A (carA) mRNA is strongly reduced indi-
cating that the aggregation defect is likely due to abolished 
cAMP signaling [84]. Lin et al. [85] confirmed this hypoth-
esis by showing that the aggregation defect could be par-
tially overcome by pulsing cells with cAMP thus indicating 
an impaired signal relay in cdk8- cells. Lin et al. [85] also 
reported a dysregulation of gene expression during early 
development for the catalytic subunit of protein kinase A 
(PKAc) and discoidin 1 (Disc1). However, overexpression 
of PKAc could not rescue the aggregation defect indicat-
ing that the low expression levels of PKAc are not solely 
responsible for the aggregation defect [86].
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cdk8- cells develop abnormally during the later stages 
of Dictyostelium development indicating that Cdk8 may 
be involved in regulating the cell cycle during development 
[84]. Fruiting bodies form only under certain experimen-
tal conditions (i.e., grown axenically in nutrient-rich HL5 
medium followed by plating on filters) and most of the 
spores are not capable of germinating [84]. Follow-up stud-
ies confirmed the requirement of Cdk8 for spore cell differ-
entiation [85, 86], however a recent study that generated a 
cdk8 mutant in a strain lacking detectable gene duplication 
showed that cdk8- cells are able to form phenotypically 
normal fruiting bodies [86]. In that study, a slight devel-
opmental defect was reported with fruiting body formation 
occurring 3–4 h later than parental cells. Despite the abil-
ity to form normal fruiting bodies, spores that formed were 
less viable than the parental strain, though they looked 
morphologically normal. Nonetheless, these findings con-
firmed earlier observations supporting an involvement of 
Cdk8 in spore cell differentiation [84, 85].

Cyclin C associates with high molecular weight complexes 
and regulates the activity of Cdk8 during Dictyostelium 
development

Dictyostelium Cdk8 localizes primarily to the nucleus and 
forms part of a high molecular weight complex that has 
carboxy terminal domain kinase activity [85, 87]. In mam-
mals, the high molecular weight Mediator complex links 
regulatory proteins to the basal transcription machinery [7, 
9]. Dictyostelium cyclin C (CycC) has also been detected 
in high molecular weight complexes isolated from Dicty-
ostelium nuclei however a direct interaction between Cdk8 
and CycC has not yet been shown [87]. CycC protein is 
expressed in growing cells [87]. During development, the 
protein level begins to decrease after mound formation 
[87]. cycC mRNA follows this expression pattern and the 
decrease in expression after mound formation, which is 
triggered by extracellular cAMP, reduces the association of 
Cdk8 with the nuclear high molecular weight complex [87]. 
Recently published RNA-Seq data shows that cycC mRNA 
expression increases during early development, but does 
not decrease after mound formation as reported by Greene 
et  al. [87] (Fig.  2) [38]. Instead, cycC mRNA expression 
continues to increase after mound formation and reaches 
its peak level once the multicellular slug has formed (i.e., 
16 h) (Fig.  2). Expression then decreases during the later 
stages of development. While it is not immediately appar-
ent why different expression profiles have been reported 
research to this point still strongly supports a developmen-
tal function for Cdk8 and CycC. Finally, increased levels 
of either Cdk8 or CycC enhance the rate of early develop-
ment indicating that the two proteins are rate-limiting for 
multicellular development [87]. Overexpression of both 

proteins results in an even greater acceleration of early 
developmental events. Together, the accumulated evidence 
indicates that Cdk8 and CycC are not absolutely necessary 
for growth, but are required during development for aggre-
gation and spore cell differentiation.

Conclusions and future directions

The expression profiles and interacting proteins involved 
in regulating the activity of Cdk1, Cdk5, and Cdk8 sug-
gest that the proteins likely perform distinct functions 
during the Dictyostelium life cycle (Fig.  1,2). Accu-
mulated evidence indicates that Cdk1 is important for 
growth, but does not appear to be essential for develop-
ment including the regulation of developmental mitosis. 
In contrast, Cdk5, although also required for growth, is 
important for the later stages of development, specifically 
slug and fruiting body formation. Cdk5 activity may also 
be required for the mitotic events that occur during later 
development indicating that the regulation of develop-
mental mitosis may be different from the mechanisms 
that regulate mitosis during vegetative growth. Finally, 
Cdk8 functions during early and late development, spe-
cifically aggregation and spore differentiation, indicating 
that Cdk8 may also be involved in regulating cell cycle 
events during development. The research community 
would benefit from future studies that focus on the identi-
fication of signaling pathways that mediate the activity of 
these Cdks as well as studies that characterize the puta-
tive Cdks and cyclins that have also been identified in 
Dictyostelium to determine their function during growth 
and development (e.g., Cdk7, Cdk9, Cdk10, and Cdk11) 
(Tables 1 and 2; Fig. 2). Future research in this area may 
also be able to shed light on the precise mechanisms that 
regulate the cell cycle and cell type differentiation during 
Dictyostelium development. Taken together, these results 
show that Dictyostelium can be used as a model system 
to study the function of conserved Cdks in an organism 
that provides an excellent opportunity to examine their 
role in a number of cellular and developmental processes. 
Since the Cdk protein family has been identified as a 
potential target for anti-cancer therapy, research into the 
function of Cdks in Dictyostelium could provide valuable 
new insight for the development of effective treatments 
and therapies for various forms of cancer. In addition, 
studies into Cdk5 function in Dictyostelium could pro-
vide new insight into the role Cdk5 dysregulation plays 
in neurodegeneration.
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