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Abstract Structurally, protein kinase CK2 consists of

two catalytic subunits (a and a0) and two regulatory sub-

units (b), which play a critical role in targeting specific

CK2 substrates. Compelling evidence shows the com-

plexity of the CK2 cellular signaling network and supports

the view that this enzyme is a key component of regulatory

protein kinase networks that are involved in several aspects

of cancer. CK2 both activates and suppresses the expres-

sion of a number of essential oncogenes and tumor

suppressors, and its expression and activity are upregulated

in blood tumors and virtually all solid tumors. The prog-

nostic significance of CK2a expression in association with

various clinicopathological parameters highlighted this

kinase as an adverse prognostic marker in breast cancer. In

addition, several recent studies reported its implication in

the regulation of the epithelial-to-mesenchymal transition

(EMT), an early step in cancer invasion and metastasis. In

this review, we briefly overview the contribution of CK2 to

several aspects of cancer and discuss how in mammary

epithelial cells, the expression of its CK2b regulatory

subunit plays a critical role in maintaining an epithelial

phenotype through CK2-mediated control of key EMT-

related transcription factors. Importantly, decreased CK2b
expression in breast tumors is correlated with inefficient

phosphorylation and nuclear translocation of Snail1 and

Foxc2, ultimately leading to EMT induction. This review

highlights the pivotal role played by CK2b in the mam-

mary epithelial phenotype and discusses how a modest

alteration in its expression may be sufficient to induce

dramatic effects facilitating the early steps in tumor cell

dissemination through the coordinated regulation of two

key transcription factors.
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Introduction

Protein kinase CK2 shares a quaternary structure composed

of catalytic and regulatory subunits with few other protein

kinases. Two catalytic subunits (a or a0) associate with a

dimer of regulatory b subunits, which do not share ho-

mology with any other regulatory subunit of protein

kinases [1, 2]. CK2 is a multifunctional, ubiquitously ex-

pressed, protein kinase with the unusual ability to

phosphorylate serine, threonine, and tyrosine residues

within clusters of acidic residues [3, 4]. It has been esti-

mated that this kinase might be individually responsible for

the generation of a substantial fraction of the eukaryotic

phosphoproteome [5]. At the molecular level, CK2
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participates in hierarchical phosphorylation signaling as

either a priming or primed protein kinase for the phos-

phorylation of key protein substrates (reviewed in [6]).

Although a few studies have shown that extracellular

stimuli can modulate CK2 activity [7–10], most of the data

suggest that this kinase is acting as a ‘‘lateral signaling

player’’ on numerous signaling pathways that are critical

for cell proliferation, differentiation, and apoptosis. This

means that cellular responses such as proliferation, growth,

and survival will be potentiated by CK2, while a death

signal will be dampened. Following a brief overview of

what is known about the contribution of CK2 to several

aspects of transformation and cancer, we discuss the bio-

logical consequences of the multi-subunit structure of CK2

and consider the pivotal role of its regulatory CK2b subunit

in targeting specific protein substrates. Building on this, we

focus our discussions on recent evidence that shows the

critical role played by CK2b and the dramatic conse-

quences of its perturbation in the regulation of epithelial

cell plasticity. Finally, we discuss how unbalanced ex-

pression of CK2 subunits in breast carcinoma could

participate in the molecular circuits propagating the tumor

phenotype.

Protein kinase CK2 and the ‘‘hallmarks of cancer’’

Historically, a large number of growth-related proteins

have been identified as CK2 substrates, suggesting their

role in growth-related functions [11–16]. Accumulating

observations also support the view that CK2 is a compo-

nent of regulatory protein kinase networks that are

involved in several aspects of transformation and cancer

illustrating the extreme complexity of CK2 functions.

These data have been widely reviewed in the literature [2,

17, 18]. Despite the demonstration in transgenic mouse

models of a causative role of CK2a overexpression in

hematopoietic and mammary oncogenesis [19–23], CK2

does not conform to the definition of oncogene since there

is no evidence of point mutations in CK2 giving rise to

tumors. However, a recent study revealed that mutated

CK2a in association with 34 other mutated genes confers

cancer resistance to immune attack [24]. Furthermore,

other studies have also pointed out the frequent copy-

number alteration of all CK2 genes in several malignancies

[25]. Yet, there is a wealth of evidence that CK2 plays a

major role in tumorigenesis, by enhancing the transforming

potential of oncogenes and acting as an antiapoptotic

molecule [14, 26–28]. Accordingly, elevated CK2 expres-

sion associated with high activity is a common

denominator in the majority of cancers and is associated

with aggressive tumor behavior [29–32]. The reliance of

malignant cells on CK2 functions, which underlines a

phenomenon defined as ‘‘non-oncogene addiction’’ [33],

has been thoroughly reviewed by Ruzzene and Pinna [14].

How CK2 alterations contribute to cancer development is

an important and challenging question. Although beyond

the scope of the present article, it is noteworthy that a

review of the literature discloses that CK2 participates to

the regulation of many of the same cellular responses that

characterize the ‘‘hallmarks of cancer’’ originally described

by Hanahan and Weinberg [34, 35]. Indeed, CK2 both

activates and alleviates the expression of a number of

proteins essential for proliferation [9, 11, 13, 18, 28, 36–

45]; evading growth suppressors [39, 41, 46–57]; avoiding

immune destruction [58, 59]; enabling replicative immor-

tality [8, 60–66], tumor-promoting inflammation [67–74],

invasion, and metastasis [22, 23, 29, 31, 56, 66, 72, 75–95];

inducing angiogenesis [29, 96–106]; regulating genome

instability and mutation [25, 40, 57, 107–142]; resisting

cell death [26, 30, 108, 143–160]; and deregulating cellular

energetics [161–166], all relevant for cancer progression

(Fig. 4). Therefore, it is conceivable that modest alterations

in CK2 activity and/or protein levels can influence the

acquisition and maintenance of the emerging cancer hall-

marks in several different ways. In light of these

observations, CK2 has evidently emerged as an attractive

candidate for molecular targeted cancer therapy. Numerous

publications in this area have been summarized in several

reviews [2, 12, 167]. Importantly, an orally available small

molecule inhibitor of CK2 (CX-4945) that promotes an

anti-proliferative and anti-angiogenic response in mouse

cancers has recently entered Phase II clinical trials as a

potential anticancer drug [168–170].

CK2 as an atypical protein kinase

The CK2 holoenzyme can exist in a2b2, aa0b2, or a02b2
configurations and has a low dissociation constant around 4

nM, which is a characteristic of strong heterocomplexes

[171]. Unlike many signaling protein kinases, CK2 is

constitutively active, independent of second messengers or

phosphorylation events, and there is not yet a recognized

potential model to explain how this kinase is regulated

within cells. However, mounting evidence suggests that it

can be regulated through mechanisms such as local re-

cruitment into complexes or intracellular

compartmentalization [142, 172, 173]. In addition, the in-

dividual CK2 subunits might also play independent

functions on their own [20, 45, 174–176]. In the early

1990s, Stigare et al. [177] first reported in an epithelial

Chironomus cell line that most of the catalytic a-subunit
was tightly bound to nuclear structures in the absence of its

b-subunit counterpart. In addition, free monomeric CK2a
is relatively common in plants, and several reports have
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provided evidence for an unbalanced expression of CK2a
and CK2b subunits in different mammalian tissues [178–

180]. The dynamic properties of the molecular interaction

between CK2 subunits were first revealed in living cells, by

the observation of individual CK2 subunits on a short

timescale using live-cell fluorescent imaging [45]. This

study provided evidence of the independent movement of

CK2a and CK2b in cells, showing that the majority of the

two subunits are not present in a permanent holoenzyme.

This apparent difference in mobility was also evident at the

level of their nuclear translocation: each CK2 subunit en-

ters the nucleus as distinct subunits rather than as a

preassembled holoenzyme. Cellular and structural data

configure the CK2 holoenzyme either as a strong transient

or permanent complex [171]. Dissociation of the tetrameric

CK2 complex in living cells has been postulated. However,

the presence of noninteracting CK2 subunits within cells

cannot result from the spontaneous dissociation of the

complex. Rather, it can be hypothesized that at any one

time, CK2 subunits can interact with each other and/or with

specific partners to participate in the transient formation of

distinct multimolecular complexes. In this scenario, CK2

activity may be subtly modulated by a variety of inter-

changeable partners. Accordingly, the CK2b subunit was

characterized as a regulatory binding partner of several

important protein kinases, including A-Raf, c-Mos, p90rsk

[178], PKCf, the checkpoint kinase Chk1 [181], the cell

cycle Wee1 kinase [182], and the activin receptor-like ki-

nase ALK1 [98]. Together, these data supported the view

that CK2b may act as a scaffold to coordinate the regula-

tion of kinases distinct from CK2, offering intriguing new

prospects for understanding its implication in different

signal transduction pathways [175].

A protein kinase on the move

As a signaling protein, CK2 appears as a moving enzyme

that could be rapidly recruited to target specific nuclear

proteins in response to different stress stimuli such as heat

shock [183], ionizing radiation [184], hypoxia [104–106],

DNA breaks [142, 172], viral infections [185–188]. Im-

portantly, compelling evidence accumulate showing that

alterations in the subcellular localization of CK2 subunits

contribute to cancer development and are correlated with

clinicopathological parameters. This is especially the case

in prostate and colorectal cancers where enhanced nuclear

localization of CK2a has been reported to correlate with

poor prognostic factors [76, 189, 190]. Early immunocy-

tochemical studies have shown that CK2 is mostly detected

both in the cytoplasm and the nucleus of most cells.

However, there are also evidence that CK2 can be targeted

to plasma membranes to regulate ion channel activity

[191–193] and the phosphorylation of various membrane-

bound proteins [194–196]. JAK family tyrosine kinases

bind to cytokine receptors and are activated upon cytokine

binding. Activated JAKs are crucial in transmitting signals

through activation of the key downstream transcriptional

effector STAT3. However, activating mutations in JAK2

are frequently observed in the majority of patients with

myeloproliferative disorders, with the most common mu-

tation being V617F, resulting in constitutive activation of

the JAK-STAT signaling pathway. Zheng et al., provided

the first evidence that CK2 binds to JAK2 and is critical for

activation of the JAK2-STAT pathway in response to cy-

tokine stimulation and also for constitutive activation of

JAK2 in cells expressing JAK2 V617F [70]. Importantly,

pharmacological CK2 inhibition decreases proliferation

and induce apoptosis in cells expressing JAK2 V617F

raising the possibility that CK2 inhibitors might be potent

inhibitors of constitutively activated JAK2 V617F and

downstream pathways.

Critical role of CK2b in targeting specific CK2
substrates

Unlike the regulatory subunit of other hetero-oligomeric

kinases, the CK2b subunit is not required for the activity of

the catalytic subunits. Both the isolated CK2a subunits and

the holoenzyme are endowed with constitutive activity.

However, binding of the regulatory subunit to CK2a results

in the phosphorylation of a range of substrates that are not

or are only weakly phosphorylated in its absence. In con-

trast, a limited number of protein substrates are

phosphorylated by the noncomplexed catalytic subunit but

not by the holoenzyme [197, 198] (Fig. 1). Interestingly, it

has been reported that the tight association between CK2

and some of its substrates is often bridged by the CK2b
dimer [2, 39, 78, 80, 122, 199–201]. This means that any

change in CK2b expression might lead to a shift in the

balance of phosphorylated CK2a- and holoenzyme-specific

substrates. Furthermore, since CK2 substrates localize in

many different subcellular compartments, a dynamic rather

than a static interaction of the CK2 subunits may help

adjust the kinase specificity to ensure that the relevant form

of the catalytic subunit is present at each of these locations.

To fine-tune these activities, it is likely that cells have

developed specific mechanisms to actively segregate the

CK2 subunits or to differentially downregulate their ex-

pression. Very little is known about the kinetics of the

assembly of CK2 subunits into intact cells, a process that

could be controlled by interactions with other cellular

proteins. This raises the possibility that CK2a could be

locally and transiently recruited into multimolecular com-

plexes in which the CK2b dimer serves as a scaffold or a
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docking subunit through high-affinity interactions with

substrate or non-substrate protein partners [174, 198, 200].

Alternatively, it has been suggested that upon activation of

Src family kinases, a pool of CK2a not associated with the

b-subunits becomes tyrosine phosphorylated with a resul-

tant increase in its activity toward a subset of specific

substrates [202]. Altogether, it can be predicted that such

mechanisms might be crucial in the control of the many

cellular processes that are governed by this pleiotropic

kinase.

Dysregulation of CK2 in mammary tumorigenesis

Early studies postulated that CK2 could contribute to breast

cancer carcinoma development because enforced overex-

pression of CK2a in the mammary gland of transgenic

mice promotes hyperplasia and neoplasia in this organ [82,

203]. Moreover, upregulation of CK2 protein and activity

was observed during the development of DMBA-induced

mammary tumors [204]. In mouse models, CK2 coop-

eratively promotes oncogenesis and tumor progression with

overexpression of oncogenes such as c-myc [205] or with

loss of tumor suppressors such as p53 [19, 21, 206]. Later

on, studies have shown that human breast cancer tissues

contain high CK2 catalytic activity usually correlated with

CK2 overexpression, suggesting a pathologic relationship

between CK2 expression and mammary tumorigenesis

[82]. Because of the importance of subgroup classification

based on a tumor’s biology and clinical behavior, Giusiano

et al. evaluated the prognostic significance of CK2a ex-

pression in association with various clinicopathological

parameters in a large cohort of breast tumor patients. This

study demonstrated a strong association between CK2a
overexpression and breast tumor aggressiveness, high-

lighting this kinase as an adverse prognostic marker [29].

Furthermore, at the mRNA level, both CK2a and CK2b are

elevated and associated with a poor survival prognosis [25,

30]. This is consistent with two studies that have identified

CK2 as a component of an ‘‘invasiveness gene signature’’

predictive of metastasis and poor survival in breast cancer

[32, 88]. Clinically, breast tumors have been categorized

into three basic therapeutic groups: oestrogen receptor

(ER?), ERBB2 expressing (HER2?) and triple-negative

breast cancers (TNBCs) lacking expression of ER, pro-

gesterone receptor (PR) and HER2. A recent analysis of

transcript expression for CK2 subunits revealed significant

levels of both CK2a and CK2b overexpression but strong

CK2a0 underexpression in all breast cancer subtypes, fea-

tures that were correlated with lower survival rates [30].

Although a correlation between transcript and protein

deregulation remains to be addressed, these data suggest

Fig. 1 Role of CK2b in targeting CK2 substrates. CK2 substrates can

be phosphorylated by the noncomplexed CK2a subunits (e.g.,

substrate A). Binding of the regulatory CK2b subunit to CK2a
results in the phosphorylation of a range of substrates that are not, or

are only weakly, phosphorylated in its absence (e.g., substrate C),

whereas other proteins can be equally phosphorylated by the isolated

CK2a subunits or by the holoenzyme (e.g., substrate B). This model

suggests that any change in CK2b expression may lead to a shift in

the balance of phosphorylated CK2a- and holoenzyme-specific

substrates
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that deregulated CK2 gene transcript expression may be a

mechanism underlying the increased CK2 activity and

protein levels detected in specific breast tumor subtypes.

CK2 contribution to the epithelial phenotype

Epithelial cells usually exist as sheets of immotile, tightly

packed, polarized cells with distinct apical, basal, and lat-

eral surfaces. Remarkably, these cells can dramatically

alter their morphology, losing their epithelial apicobasal

polarity to become motile, fibroblast-like mesenchymal

cells in a process of epithelial–mesenchymal transition

(EMT). In the early steps, aberrant reactivation of EMT in

cancer epithelial cells may facilitate the dissemination of

tumor cells and the generation of cancer stem cells, fueling

both initiation and metastatic spread [207–210].

There is compelling evidence for the multiple functional

contributions that CK2 makes to maintain the epithelial

phenotype and polarity [211–213]. In particular, studies

have suggested its implication in the regulation of the actin

cytoskeleton via phosphorylation of the Wiskott-Aldrich

syndrome protein (WASP) [214]. CK2 is also required for

proper microtubule organization to facilitate neurite out-

growth in neuroblastoma cells [215], documenting the

potential role of CK2 in the regulation of cell polarity and

morphology. Although CK2a activity and expression were

found to be upregulated in breast tumors, the contribution

of CK2b to this dysregulation has not been explored [29,

82]. A differential expression of CK2 subunit transcripts

was observed in Basal and Luminal A molecular subtypes.

Interestingly, Luminal A were depleted for CK2b tran-

scripts while higher expression of all three subunits was

observed in Basal subtype [25]. Analysis of CK2 subunits

at the protein level in breast tumor samples showed that

whereas most samples expressed equivalent amounts of

catalytic and regulatory subunits, their ratio was unex-

pectedly deviant in a subset of samples. Importantly, these

clinical breast tumor samples displayed high concordance

between CK2b underexpression and EMT markers, em-

phasizing the coupling between an asymmetric expression

of CK2 subunits and EMT in vivo [80].

Mechanistically, EMT appears to be a dynamic process,

resulting from the execution of several interconnected

cellular programs that controls epithelial plasticity [216–

218]. A plethora of pathways including the RTK, TGFb,
Notch, Wnt, and BMP pathways are able to induce EMT

[219–223]. These pathways signal through intracellular

kinase cascades to activate EMT transcription factors

(Snail1) ([224, 225], Snail2 [226], Twist [227], Zeb1 [228],

Zeb2 [229], Foxc2 [230], and others), which together with

the loss of E-cadherin transcription are considered impor-

tant hallmarks of the process [217]. In breast tumors, Snail

expression precedes the expression of other factors [231–

233]. Snail1 expression seems to be required for EMT

initiation, whereas other EMT inducers are required to

maintain late EMT [232, 234]. Thus, a temporal hierarchy

in the activation of the EMT transcription factors may lead

to the sequential repression of the epithelial phenotype, the

acquisition of mesenchymal traits, extracellular matrix

(ECM) remodeling and the appearance of invasive prop-

erties associated with acquired multidrug resistance [235].

Late recurrence in breast cancer associated with tumor

dormancy is common and is associated with very poor

outcomes. Interestingly, it has been recently reported that a

high degree of epithelial–mesenchymal plasticity in pri-

mary breast tumors is strongly associated with late

recurrence, as opposed to the conventional classification

based on expression status of HER2, ER and PR. These

findings suggest that in primary tumor, an EMT-related

gene signature that is independent of disease subtype could

predict the transition of tumor cells to a dormant phenotype

with potential outgrowth as recurrent disease [236]. Since

low CK2b expression is associated with an EMT-related

gene signature and ECM remodeling, this molecular al-

teration is likely a common phenomenon applicable to all

breast cancer subtypes.

Linking CK2b to SNAIL1

Analysis of clinical breast tumor samples exhibiting a wide

range of CK2a expression levels showed that Snail1 ex-

pression was significantly increased in low CK2b-
expressing tumor samples. This suggests that CK2b un-

derexpression may be associated with EMT, which is a

common feature of aggressive human breast tumors. Fur-

thermore, downregulation of CK2b in MCF10A mammary

epithelial cells clearly promoted EMT [80]. This is in ac-

cordance with previous observations showing that Snail1

expression is elevated in highly aggressive breast tumors of

the basal-like phenotype [237].

Snail1 is a labile zinc finger protein and its turnover is

tightly controlled by the E3 ligase-mediated proteasome

degradation process [238]. Snail1-mediated EMT confers

cellular plasticity by regulating genes involved in cell death

and stem cell maintenance [239]. As a transcriptional re-

pressor, Snail1 interacts with several corepressors and

epigenetic remodeling complexes to directly repress

specific target genes such as the E-cadherin gene [240].

A wide range of signaling pathways have been found to

activate Snail1 expression including TGFb [241, 242],

Notch [243, 244], and Wnt pathways [245]; reactive oxy-

gen species [246]; and hypoxic stress [247–249]. The

central role of Snail1 in the regulation of EMT has been

linked to its subcellular location and functions through
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different phosphorylation events. There are at least five

kinases that can phosphorylate Snail1 on five distinct re-

gions for regulating Snail1 protein transcriptional activity,

nuclear location, and protein stability. For example, the

p21-activated kinase (PAK1) phosphorylates Snail1, pro-

motes the accumulation of Snail1 in the nucleus and

subsequent Snail1-mediated transcriptional repression of

target genes [250]. In contrast, GSK3b phosphorylates two

Ser residues on Snail1, one of which targets Snail1 for

ubiquitination and degradation [251, 252]. Snail1 is also

phosphorylated by CK2 on Ser92 [81]. Importantly, CK2b
is required for CK2-mediated Snail1 phosphorylation, and

pull-down assays using MCF10A cell lysates revealed that

Snail1 binds the CK2 holoenzyme through its CK2b sub-

unit [80]. CK2b-dependent phosphorylation had a

cumulative positive effect on GSK3b-mediated Snail1

phosphorylation, showing that both kinases can negatively

regulate Snail1 stability through its hierarchal

phosphorylation. Strikingly, Snail1 silencing was sufficient

to prevent the EMT phenotype induced in response to

CK2b attenuation, highlighting the key role of CK2 in

Snail1-mediated EMT [80].

A comparative genome-wide characterization of

CK2b-regulated mRNA expression could identify an

EMT core signature consisting upregulation of mes-

enchymal genes (CDH2, FN1, MYL9, VIM, SNAIL1,

TWIST1, ZEB1/ZEB2, SIX1), genes involved in the

regulation of the extracellular matrix (FN1, FBN1,

COL6A1, COL17A1, LAD1), the cytoskeleton (MAP1B,

MYL9, MYLK), the metalloproteases (ADAM19,

ADAM23, ADAMTS4), and downregulation of epithelial

genes (CDH1, CDH3, CLDN1, CLDN7, OCLN, KRT5,

KRT6B, COL2A1, MUC1) (Fig. 2). This is in accordance

with the observations that CK2b downregulation in ep-

ithelial cells induces dramatic changes in cell adhesion

and migration [213].

Fig. 2 Selected transcripts modulated in CK2b-depleted MCF-10A

mammary epithelial cells. Downregulated and upregulated genes are

in blue and red, respectively. Microarray data were deposited in the

Gene Expression Omnibus (GEO) public database at NCBI, under

Accession number GSE28569
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Linking CK2b to FOXC2

The forkhead box proteins, Foxc1 and Foxc2, belong to the

forkhead family of transcription factors, which are impor-

tant in regulating the expression of genes involved in cell

growth, proliferation, and differentiation [253–255]. It has

been reported that Foxc2 is maintained in the cytoplasm of

injured renal cells where it promotes an epithelial pheno-

type, suggesting that this protein may have regulatory

functions independent of its nuclear transcriptional activity

[256]. In contrast, nuclear Foxc2 localization is implicated

in EMT induction and plays causal role in metastatic dis-

semination [230]. Recently, Golden and Cantley provided

strong evidence that a CK2-mediated phosphorylation of

Foxc2 at serine 124 promotes cytoplasmic retention of this

transcription factor in normal epithelial cells [78]. In

agreement with the mechanism already observed for CK2-

dependent phosphorylation of Snail1 [80], the authors

found that CK2b is also required for CK2-mediated

phosphorylation of Foxc2. Consistent with these findings,

nuclear localization of Foxc2 was correlated with de-

creased expression of CK2b and upregulation of EMT

markers in breast metastatic tumor cell lines. Phosphory-

lation of Snail1 and Foxc2 by the CK2 holoenzyme alters

their stability and subcellular localization, respectively.

Therefore, the CK2b threshold level is critical in governing

Snail1 and Foxc2 fate. This is consistent with a model in

which increased CK2b expression may impinge upon

Snail1 and Foxc2 functions to reinforce epithelial integrity

[78, 80]. These findings also illuminate CK2b as a key

regulatory protein that acts as a substrate-dependent

modulator of CK2a activity.

A

B

Fig. 3 A hypothetical model in which CK2b is at center stage in the

regulation of epithelial plasticity. a Snail1 and Foxc2 are master

transcription regulators that trigger the formation of a signaling

network responsible for establishing and maintaining mesenchymal

cell phenotypes. In epithelial cells, both GSK3b and CK2 can

negatively regulate Snail1 stability through its hierarchal phosphory-

lation. CK2-mediated phosphorylation of Foxc2 promotes its

cytoplasmic retention. Importantly, CK2-dependent phosphorylation

of both transcription factors is mediated by the holoenzyme and thus

requires the presence of CK2b. b Silencing of CK2b or unbalanced

expression of CK2 subunits in response to changes in the microen-

vironment leads to inefficient phosphorylation of Snail1 and Foxc2,

thereby leading to their nuclear translocation and to EMT induction

associated with enhanced migratory potential and acquisition of

apoptosis resistance
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SIX1 is overexpressed in CK2b-depleted cells

The SIX1 homeoprotein has been implicated in both tumor

initiation and tumor progression in many human cancers

[257–262]. Overexpression of SIX1 mRNA was observed

in 44 % of primary breast cancers and 90 % of metastatic

lesions. Recently, several studies provided evidence that

SIX1 both participates in TGFb signaling in mammary

cells [262, 263] and induces EMT to promote tumor de-

velopment [264].

It has been reported that CK2 phosphorylates SIX1 and

this phosphorylation negatively affects its DNA binding

activity [115]. Interestingly, we found that in vitro, SIX1

was not phosphorylated by CK2a alone, whereas optimal

phosphorylation was observed in the presence of the CK2

holoenzyme. Furthermore, a potential negative impact of

this phosphorylation on SIX1 expression is suggested by

the observation that in MCF10A cells, SIX1 is upregulated

both at the mRNA and protein levels in CK2b-depleted
epithelial cells. In contrast, forced expression of exogenous

CK2b in these cells downregulated SIX1 mRNA expres-

sion [213].

Conclusions

As the complexity of the cellular CK2 signaling network

unfolds, it becomes increasingly important to put indi-

vidual CK2 protein substrates and partners into context and

understand their dynamics in normal versus cancerous

Fig. 4 Selected targets and/or interactors of CK2 that contribute to the ‘‘hallmarks of cancer’’described by Hanahan and Weinberg [34, 35]. At

each phase of tumorigenesis, high CK2 activity may reinforce the progression of the disease through promotion of the hallmarks
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cells. The recent research discussed in this review describes

the contribution of the deregulated expression of CK2 to

cancer development and highlights CK2b as a gatekeeper

of epithelial differentiation. CK2b appears to be a key

factor that tips the balance in favor of epithelial cell dif-

ferentiation through the coordinated negative regulation of

key EMT-inducing transcription factors. Therefore, the

CK2 holoenzyme, through stoichiometric expression of its

two subunits, is critical to maintain a normal epithelial

morphology. In this situation, CK2b may target CK2a to

specific proteins (Snail1, Foxc2, SIX1, and others) whose

phosphorylation is highly dependent on the presence of

CK2b. However, this cellular mechanism can be overcome

in specific conditions such as a low ratio of CK2b to CK2a
expression. In this setting, the inefficient CK2-mediated

phosphorylation of these key proteins may lead to their

stabilization/activation and to consequent disruption of the

epithelial phenotype (Fig. 3). Therefore, reduced CK2b
may be a novel molecular alteration during malignant tu-

mor progression. How the relative abundance of CK2

subunits is regulated in response to the activation of

specific signaling pathways remains a challenging ques-

tion. Recent data suggest that the kinase activity of the

CK2 catalytic subunits is implicated in the regulation of

their own gene expression [265]. Intriguingly, miR-125b,

whose expression is downregulated in breast tumors, was

found to perform its tumor suppressor function via the

direct targeting of the 30-UTRs of CK2a [266]. Conversely,

no effector modulating CK2b expression is known,

although a link between hypoxia and CK2 was aptly re-

vealed by the demonstration that under hypoxic conditions,

the CK2 holoenzyme is dissociated, allowing free CK2a to

induce stabilization of the HIF-1a protein [106]. Moreover,

it has been observed that tumor samples expressing low

levels of CK2b had upregulated HIF-1a expression, sug-

gesting that CK2b underexpression may be associated with

the hypoxic conditions found in human breast tumors [80].

Although traditionally considered to be the regulatory

subunit of CK2, it appears that this highly conserved pro-

tein also has cellular functions that are independent of

CK2, reinforcing the importance of delineating its regula-

tion. Therefore, we can anticipate that the identification of

new partners for CK2b will certainly tease out additional

mechanistic insights on the multiple functions of CK2

during tumorigenesis (Fig. 4). While there are many

unanswered questions with regard to how differential levels

of CK2b regulate distinct proteins involved in normal

versus cancerous cells, the potential for CK2 to be an ef-

ficacious target in treating cancer patients remains high.
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