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anatomical regions. Presently, both pericytes enveloping 
microvessels and adventitial cells surrounding larger arter-
ies and veins have been described as possible MSC forerun-
ners. While such a vascular association would explain why 
MSCs have been isolated from virtually all tissues tested, 
the origin of the MSCs grown from umbilical cord blood 
remains unknown. In fact, most aspects of the biology of 
perivascular MSCs are still obscure, from the emergence of 
these cells in the embryo to the molecular control of their 
activity in adult tissues. Such dark areas have not compro-
mised intents to use these cells in clinical settings though, 
in which purified perivascular cells already exhibit decisive 
advantages over conventional MSCs, including purity, thor-
ough characterization and, principally, total independence 
from in vitro culture. A growing body of experimental data 
is currently paving the way to the medical usage of autol-
ogous sorted perivascular cells for indications in which 
MSCs have been previously contemplated or actually used, 
such as bone regeneration and cardiovascular tissue repair.

Abstract   Mesenchymal stem/stromal cells (MSCs) can 
regenerate tissues by direct differentiation or indirectly 
by stimulating angiogenesis, limiting inflammation, and 
recruiting tissue-specific progenitor cells. MSCs emerge 
and multiply in long-term cultures of total cells from the 
bone marrow or multiple other organs. Such a derivation 
in vitro is simple and convenient, hence popular, but has 
long precluded understanding of the native identity, tissue 
distribution, frequency, and natural role of MSCs, which 
have been defined and validated exclusively in terms of 
surface marker expression and developmental potential in 
culture into bone, cartilage, and fat. Such simple, widely 
accepted criteria uniformly typify MSCs, even though 
some differences in potential exist, depending on tissue 
sources. Combined immunohistochemistry, flow cytometry, 
and cell culture have allowed tracking the artifactual cul-
tured mesenchymal stem/stromal cells back to perivascular 
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Abbreviations
AGM	� Aorta-gonad-mesonephros
BGP	� β-glycerophosphate
BM	� Bone marrow
BMP	� Bone morphogenetic protein
CB	� Cord blood
CD	� Cluster of differentiation
CFU	� Colony-forming unit
CPD	� Cumulative population doubling
CSC	� Cardiac stem cell
DLK-1	� Delta-like 1
ECM	�E xtracellular matrix
EPC	�E ndothelial progenitor cell
FACS	� Fluorescence-activated cell sorting
FDA	� Food and Drug Administration
HGF	� Hepatocyte growth factor
HLADR	� Human leukocyte antigen-DR
HSC	� Hematopoietic stem cell
IBMX	� 3-isobutyl-1-methylxanthine
IGF	� Insulin-like growth factor
ISCT	� International Society for Cellular Therapy
Lep-R	� Leptin receptor
mAbs	� Monoclonal antibodies
MAPC	� Multipotent adult progenitor cell
MASC	� Multipotent adult stem cell
MCAM	� Melanoma cell adhesion molecule
MI	� Myocardial infarction
MIAMI	� Marrow-isolated adult multilineage inducible 

cell
MLPC	� Multilineage progenitor cell
MSC	� Mesenchymal stem cell
NELL1	� Nel-like molecule 1
OVX	� Ovariectomized
PDGFRβ	� Platelet-derived growth factor receptor β
PSC	� Perivascular stem cell
SCF	� Stem cell factor
SVF	� Stromal vascular fraction
SVP	� Saphenous vein pericyte
USSC	� Unrestricted somatic stem cell
VCAM	�V ascular cell adhesion molecule
VEGF	�V ascular endothelial growth factor
VESL	�V ery small embryonic-like stem cell
vWF	� von Willebrand factor

Introduction

It is intuitive that any adult tissue with the capacity to 
repair or regenerate harbors specific stem cells, defined by 
their ability to self-renew and retain sufficient proliferative 

and differentiation potential. Bone has an impressive ability 
to repair and it is therefore not surprising that stem cells 
with bone-regenerative characteristics have been identified 
from cultures of bone-derived cells. The presence of non-
hematopoietic stem cells in the bone marrow (BM) was 
first described by Conheim, who proposed that bone mar-
row was also a source of fibroblasts contributing to bone 
healing [1]. In the 1960s, the Russian scientist Frieden-
stein [2–4] identified a population of cells within rodent 
bone marrow that were rapidly adherent to plastic, had the 
appearance of fibroblasts, and formed clonal colonies in 
vitro (colony-forming unit (CFU)—fibroblast). These cells 
were also capable of osteogenic differentiation in culture 
and could generate bone when implanted in ectopic loca-
tions in vivo. In addition, their demonstrated ability to 
regenerate heterotopic bone tissue in serial implants sug-
gested their self-renewal [5]. Since Friedenstein’s early 
descriptions, numerous laboratories have confirmed and 
expanded these findings, showing that cells with similar 
abilities to be sub-passaged and differentiated in vitro into a 
variety of mesodermal cell types such as osteoblasts, chon-
drocytes, adipocytes, and myoblasts could be isolated from 
human bone marrow [6–9]. Some investigators suggested 
that perivascular cells in the bone marrow are the precur-
sors of connective tissue lineages in vivo [10, 11]. Frieden-
stein had isolated from the bone marrow of rodents what 
would later be coined “mesenchymal stem cells  (MSCs)” 
by Caplan [12].

MSCs have now been isolated from multiple different 
human tissue types including fat [13, 14], dental pulp [15], 
periodontal ligament [16], tendon [17, 18], umbilical cord 
[19], skin [20], placenta [21], amniotic fluid [22], synovial 
membrane [23], muscle [24], indeed almost all post-natal 
[25, 26], and fetal tissues [27, 28] (Table 1). Considerable 
work has been done to characterize and expand these cells 
in vitro, and to explore strategies to maintain these cells 
in their stem-like state [29–34]. This work was driven by 
the promise of therapeutic translation using these progeni-
tors to replace or repair damaged musculoskeletal tissues. 
Therefore, current knowledge of MSCs is almost entirely 
based on characterization and observations of behavior in 
culture—the setting in which they are defined—and until 
recently the in vivo counterpart of culture-expanded MSCs 
remained a mystery. 

With interest so far focused on multipotency and tis-
sue engineering, little is currently understood regarding 
the ontogeny of these cells, their anatomical localization 
or their natural role in tissue homeostasis, physiology, or 
pathology. Characterization of native MSCs could allow for 
either pharmacological or genetic manipulations of this cel-
lular pool in vivo, or facilitate the purification of popula-
tions for tissue engineering applications. In this review, we 
summarize recent developments in our understanding of the 
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anatomical and developmental origins of MSCs and discuss 
related ongoing controversies. We discuss how advances 
in our understanding of the in vivo location of MSCs will 
facilitate the expanding medical applications of these cells.

Definitions and in vitro behaviors of MSCs

Attempts have been made to standardize the nomencla-
ture used in MSC research, however the variation in meth-
ods of isolation, culture, and assays used to examine them 
has made this issue both difficult and at times misleading. 
In 2006, the International Society for Cellular Therapy 
(ISCT) produced a position statement in which it suggested 
the minimum criteria required to define MSCs [35]. They 
stated that cells must:

•	 Be plastic adherent
•	 Express the cell surface antigens CD105, CD73, and 

CD90

•	 Not express the cell surface antigens CD45, CD34, 
CD14, CD11b, CD79α, CD19, or HLA-DR

•	 Differentiate into osteoblasts, adipocytes, and chondro-
blasts in vitro

These criteria were established to standardize human 
MSC isolation but may not apply uniformly to other spe-
cies. For example, murine MSCs differ in marker expres-
sion and behavior compared with human MSCs [36].

Although not included within defining criteria, MSCs 
are recognized to perform a number of roles beyond multi-
potency including immune modulation, hematopoiesis 
support, and the release of trophic factors in response to 
injury.

Multilineage potential

The ability of MSCs to differentiate into mesodermal cell 
lineages (cartilage, bone, tendon, ligament, adipose tissue, 
marrow stroma, connective tissue) in appropriate condi-
tions is well established [12]. This is routinely achieved in 
vitro by supplementation of cultures with lineage-specific 
growth factor combinations. For example, dexamethasone, 
3-isobutyl-1-methylxanthine (IBMX), and insulin are used 
to induce adipogenic differentiation while dexamethasone, 
β-glycerophosphate (BGP), and ascorbic acid are used to 
promote osteogenic differentiation.

Support of hematopoiesis

The crucial role of BM stromal progenitors in supporting 
hematopoiesis was first described by Friedenstein et al. [3] 
who observed the formation of heterotopic ossicles con-
taining bone and hematopoietic tissue upon ectopic CFU-
fibroblast-derived colony transplantation in semi-syngeneic 
animals. The hematopoietic cells were of recipient origin 
whereas bone-forming cells originated from the donor 
suggesting that transplanted colonies provided a micro-
environment favorable for hematopoietic stem cell (HSC) 
homing and subsequent establishment of hematopoiesis. 
Subsequently, Dexter et  al. [37] established a system of 
murine long-term cultures to demonstrate that BM stro-
mal cells can maintain hematopoiesis for several  months. 
It was confirmed that a subset of human BM stromal cells 
expressing the STRO-1 antigen possesses hematopoiesis 
supporting ability, along with the potential to differentiate 
into multiple mesenchymal cell lineages [38, 39]. There is 
accumulating evidence to suggest that BM MSCs also have 
promoting effects on HSC engraftment and repopulation. 
Several studies have demonstrated that co-transplantation 
of human HSCs and MSCs results in increased chimerism 
and/or hematopoietic recovery, in both animal models and 
humans [40–46].

Table 1   Human MSCs derived from different sources

Human tissue Study

Aorta [25]

Adipose [13, 27, 228–233, 257]

Amniotic fluid [22, 41]

Bone marrow [2–4, 7, 15, 25, 27, 234]

Blood [235]

Brain [25, 27, 113]

Cartilage [236, 237]

Cord blood [234, 238–241]

Dental pulp [15, 44, 242–246]

Endometrium [247, 248]

Eye [27]

Gut [27, 249]

Heart [27]

Kidney [25]

Liver [25, 234]

Lung [25, 27]

Muscle [24, 25, 27]

Pancreas [25, 27]

Perichondrium [250, 251]

Periodontal ligament [16]

Placenta [21, 27, 252]

Salivary gland [253]

Skin [20, 27]

Spleen [25]

Synovial membrane [23]

Tendon [17, 18]

Thymus [25]

Umbilical cord [19, 27, 254]

Vein [25, 255]
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Immune regulation

The immunomodulatory properties of bone marrow-
derived MSCs, including their immunosuppressive effects 
during allogeneic stem cell transplantation, have been well 
documented [47–51]. The immunoactivity of the cells is 
mediated by direct cell-to-cell contact and through secreted 
bioactive molecules involving dendritic cells, B and T cells 
including T regulatory cells, and T helper cells and killer 
cells [51, 52]. The immunomodulatory effect of MSCs 
has been suggested to involve the release of bio-molecules 
(IL-10, interferon-γ, indoleamine 2,3-dioxygenase [53]), 
cell-to-cell contacts [54], T-cell regulation [55], and alloan-
tigen-pulsed dendritic cells [56]. Furthermore, umbilical 
cord perivascular mesenchymal progenitors [57] as well as 
pericytes purified from pancreas, skeletal muscle and pla-
centa [Corselli et al., unpublished] can reduce lymphocyte 
proliferation as bone marrow MSCs do. More studies will 
be required to elucidate thoroughly the role of MSCs and 
related perivascular mesenchymal progenitors during the 
inflammatory and immunosuppressive responses.

Secretion of trophic factors

Experiments using transplantation of cultured MSCs 
into animals led to the realization that MSCs’ therapeutic 
effects could not be explained by differentiation into tissue-
specific cells alone [58, 59]. As such, transplanted MSCs 
may exert beneficial effects through their vast secretome 
beyond immune regulation [60, 61]. Bioactive factors 
secreted by MSCs have angiogenic and antiapoptotic prop-
erties that serve to limit the extent of tissue damage at the 
injured sites, re-establish blood supply, and possibly recruit 
local progenitors. These MSC paracrine effects have been 
referred to as trophic effects [54].

Due to the lack of a unique MSC function and anatomic 
identity, these cells were termed MSCs or more or less syn-
onymously “marrow stromal cells”, “BM stromal cells” 
and “mesenchymal stromal cells” [1, 62, 63]. Populations 
of cells that fulfilled the ISCT MSC criteria yet exhibit 
broader differentiation capacity have also been described 
[64]. Investigators described such cells as multipotent adult 
progenitor cells (MAPC) [65], marrow isolated multiline-
age inducible cells (MIAMI) [66], or multipotent adult 
stem cells (MASC) [67]. The relationship of these cells to 
MSCs is currently not clear.

For example, cord blood (CB) contains different non-
hematopoietic CD45−, CD34− adherent cell popula-
tions: cord blood mesenchymal stromal cells (CB MSCs) 
that behave almost like MSCs from bone marrow (BM 
MSCs), very small embryonic-like stem cells (VSEL), and 
unrestricted somatic stem cells (USSCs) that differentiate 
into cells of all three germ layers [68–70]. Distinguishing 

between these populations is difficult due to overlapping 
features such as the immunophenotype or the osteogenic 
and chondrogenic differentiation pathways. Functional dif-
ferences in the differentiation potentials suggest different 
developmental stages or different cell populations.

The immunophenotype of MSCs

Assuming that MSCs represent a distinct cell population, it 
is intuitive that they would have a specific repertoire of cell 
surface antigens that would enable identification, isolation, 
and purification based on phenotype. Flow cytometry is a 
powerful and relatively easy-to-handle approach for pheno-
typing of cells using fluorescence labeled monoclonal anti-
bodies (mAbs) against cell surface antigens. The cell sur-
face antigen profile of MSCs has been well explored, and 
in recent years various combinations of cell surface mark-
ers were published for characterizing MSCs (Tables  2, 3) 
[71, 72]. A particular challenge for the field has been the 
absence of any specific marker to define MSCs, although 
a large number of different determinants have been associ-
ated, albeit not exclusively, with them (reviewed by Lind-
ner et al. [73] 2010; for human MSCs).

Simmons et  al. reported that a population of human 
bone marrow-derived cells expressing STRO-1 was con-
siderably enriched in clonogenic cells that were capable 
of differentiation into multiple mesenchymal cell line-
ages and included CFUs. It was subsequently demon-
strated that the homogeneity of the STRO-1-positive 
population could be further improved by co-selecting 
for VCAM-1 [74]. Similarly, CD146 (MCAM)+ popula-
tions isolated from bone marrow were shown to adhere to 
plastic, demonstrate clonogenicity, and self renew in vitro 
[75, 76]. When transplanted subcutaneously into mice, 
this CD146+ population can generate bone and support 
hematopoiesis. Any relationship between the STRO-
1+VCAM-1+ population and the CD146+ population 
remains to be determined. While these markers have been 
used to enrich MSC-like populations, they do not appear 
to participate in the molecular processes regulating self-
renewal versus differentiation [77].

Defining MSCs in vitro adds complexity to their 
study because the culture conditions may introduce 
experimental artifacts. It has been proposed that certain 
natively expressed surface markers are modified follow-
ing explantation, while new markers may be acquired. 
For example, an MSC line was isolated that uniformly 
expressed human leukocyte antigen-DR (HLA-DR) 
(a marker that should not be expressed on MSCs by 
the above definition) while also expressing CD90 and 
CD105, adhering to plastic in culture, and being capable 
of differentiating into osteoblasts, adipocytes, and chon-
droblasts [78].
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Table 2   Markers used for the POSITIVE identification of MSCs and MSC precursors

* CD34 expression is rapidly lost in culture

Marker Also known as “Conventional” MSCs Pericytes Adventitial cells

CD3 [256]

CD9 Tetraspanin-29 [256–259]

CD10 Neural endopeptidase [27, 257] [27]

CD13 Alanine aminopeptidase N [27, 257] [27]

CD18 [261]

CD29 Integrin beta 1 [148, 256–259, 261, 262] [260]

CD34* Mucosialin [106, 135, 257, 258, 262, 263, 265] [135, 263–265]

CD44 Receptor for hyaluronic acid [148, 256–259, 261, 262] [27, 260, 263, 295] [135]

CD49A Half of α1β1 integrin duplex [256, 257, 259, 261]

CD49B Half of α2β1 integrin duplex [256, 257, 259, 261]

CD49C Integrin α 3 [256, 257, 259, 261]

CD49E Integrin α 5 [256, 257, 259, 261]

CD49F Integrin α 6 [256, 257, 259, 261]

CD51 Integrin α V [261]

CD54 Intercellular adhesion molecule 1 [257–259, 261]

CD55 [257–259]

CD56 Neural cell adhesion molecule (NCAM) [261, 263]

CD58 Lymphocyte function-associated antigen 3 [256]

CD59 Protectin [257, 266]

CD61 Integrin β 3 [258]

CD63 Lysosomal-associated membrane protein 3 
(LAMP-3)

[258]

CD71 Transferrin receptor [256, 258, 259]

CD73 5′-nucleotidase, ecto [27, 35, 148, 256, 259, 262] [27, 106, 260, 264] [106, 135]

CD90 Thy-1 [27, 35, 148, 256, 258, 259, 262, 263] [27, 106, 260, 263–265, 295] [13, 15–17]

CD97 Leucocyte antigen [258]

CD98 [258]

CD99 E2 antigen [258]

CD104 Integrin β4 [261]

CD105 Endoglin [27, 35, 148, 257–259] [27, 260, 264, 295] [135]

CD106 Vascular cell adhesion molecule 1 (VCAM1) [257, 261]

CD120A Tumor necrosis factor receptor [7]

CD124 Interleukin-4 receptor [7]

CD140 Platelet-derived growth factor receptor beta 
(PDGFRβ)

[27, 263, 267, 268] [27, 260, 263, 264]

CD146 Melanoma cell adhesion molecule (MCAM) [27, 106, 257, 263, 265] [27, 106, 260, 263–265, 295]

CD166 Activated leukocyte cell adhesion molecule 
(ALCAM)

[257–259, 261, 262] [295]

CD271 Low-affinity nerve growth factor receptor 
(LNGFR)

[263, 267, 269]

CD276 [258]

CD304 [258]

CD324 [261]

CD340 [267]

CD349 [267]

αSMA [27, 263] [27, 263, 264]

NG2 [258, 263] [27, 260, 263, 264] [263]

STRO-1 [264, 295]
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Similarly, the expression of CD105, CD73, and CD90 is 
not uniform and can be modulated by in vitro conditioning. 
The expression or absence of these factors does not appear 
to be inclusive or exclusive of multipotency and discrete 
subpopulations of MSC-like cells have been isolated with 
varying levels of expression [79]. Numerous other mark-
ers have been suggested, including platelet-derived growth 
factor receptor β (PDGFRβ), CD271 [80, 81], and recently 
decorin, a marker specific to MSCs in adipose tissue has 
been identified [82]. A nomenclature that focuses on ana-
tomically defined in vivo populations is preferential to one 
that is based on inherently variable and imprecise in vitro 
populations.

MSCs isolated from different organs exhibit unique 
features

The equivalency of MSC populations of distinct anatomic 
origins has not been robustly demonstrated. Despite fulfill-
ing the ISCT criteria, differences have been observed with 
respect to the immunophenotype, secreted cytokine profile, 
and results obtained by proteome analysis depending on the 

source and the native or cultivated state of the MSC popu-
lation characterized [83–85]. Cloned human MSCs isolated 
from fat and bone marrow default to an adipogenic or osteo-
genic potential respectively, suggesting that the tissue envi-
ronment of origin imprints such character. Clonal analysis 
varies between donors and tissues yielding values between 
30 and 50  % for tripotent cells that can differentiate into 
adipocytes, chondrocytes and osteoblasts [86, 87]. The abil-
ity of MSCs to differentiate in vitro into adipocytes, chon-
drocytes, osteoblasts, myoblasts, and of late into hemat-
opoiesis- or osteogenesis-supporting stromal cells has been 
used to stratify the multipotency of these cells as well as to 
search for markers indicative of lineage commitment. While 
surface antigens like CD105, CD73, and CD29 are con-
served by most MSCs [35], others such as Sca-1 (rodents), 
CD24 [88–90], CD140-a, -b, CD146 [91], CD271 [92, 93], 
CD338 [94], and many others [88] betray the underlying 
heterogeneity in these cells. Some markers like PDGFRα 
correlated with the adipogenic potential of these cells, both 
in humans and in rodents, while others like CD146 may be 
associated with greater multipotency, and a higher colony-
forming efficiency and proliferation rate [87].

Table 3   Markers used for the NEGATIVE identification of MSCs and MSC precursors

Marker Also known as “Conventional” MSCs Pericytes Adventitial cells

CD11a Integrin αL chain [7, 35]

CD11b Integrin αM chain [35]

CD14 LPS receptor [7, 35, 148, 258] [260, 295]

CD16 [256]

CD19 [7, 35]

CD27 [256]

CD28 [256]

CD31 Platelet/endothelial cell  
adhesion molecule 1 (PECAM-1)

[106, 256, 259, 265] [27, 106, 260, 263,  
264, 270, 295]

[263, 264, 270]

CD33 [256]

CD34 Mucosialin [35, 148, 256, 263] [27, 106, 263, 264, 270]

CD36 [256]

CD45 Leucocyte common antigen (LCA) [35, 148, 256, 258, 259] [27, 106, 260, 264,  
270, 295]

[135, 270]

CD50 [261]

CD56 [27, 264]

CD79a Ig-α [35]

CD102 Intercellular adhesion molecule 2 [261]

CD106 Vascular cell adhesion molecule (VCAM1) [295]

CD117 c-kit [270] [270] [270]

CD133 Prominin-1 [148, 258] [27]

CD144 Vascular endothelial (VE)-cadherin [27, 148] [27]

CD146 Melanoma cell adhesion molecule (MCAM) [106, 135, 263, 270]

CD243 [256]

αSMA [135, 263]

NG2 [135]
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Anatomical location of MSCs

With interest focused on multipotency and tissue engineer-
ing and repair, the native origin and physiological roles 
in vivo of MSCs have been considerably overlooked. As 
such, cells that could be identified only retrospectively in 
long-term culture were being proposed for therapeutic pur-
poses, without a true understanding of their native origin or 
function. The real, in vivo counterpart of culture expanded 
MSCs was unknown, and it could be argued that based on 
the ISCT definition, MSCs represented a mere artifact of 
culture with no exact equivalent in the living organism. 
Somewhat surprisingly, the lack of understanding of the 
in vivo origin of these cells did not constrain their clini-
cal uses. However, such a retrospective characterization in 
vitro meant that any clinical exploitation of MSCs would 
make use of a heterogeneous population of cells exposed to 
the hazards of extended culture. In search of ways to fully 
exploit the therapeutic characteristics of MSCs, research-
ers sought an improved understanding of the native identity 
and biology of these cells.

The massive stem cell recruitment, expansion, migra-
tion, and differentiation that can be visualized at early 
embryonic stages wanes with maturity. As development 
proceeds, stem cells become less prevalent and tissue 
regeneration and repair become quantitatively marginal. 
This makes the documentation of stem cell presence and 
activity in anatomic terms increasingly challenging. It is 
established that adult tissue-specific stem cells are located 
in specialized “niches” in their corresponding tissues of 
origin [95]. For example, HSCs can be found in the bone 
marrow [96] [93], epidermal stem cells in mammalian hair 
follicles [97], and neural SCs in the subventricular zone 
[98]. MSCs have perhaps proved to be the most elusive of 
all adult stem cells.

The main cell types suggested to descend from MSCs 
including bone, cartilage, fat, and muscle are not limited 
to one anatomical region. Wherever MSCs originate, they 
must be capable of reaching these tissues throughout the 
body or be locally available. With this in mind, a num-
ber of potential explanations have been suggested [99]. 
Firstly, MSCs may originate from a single organ, from 
which they migrate towards areas of need in response to 
systemic signals. In support of this, experiments using 
rats exposed to low-oxygen conditions suggest that MSCs 
are specifically mobilized into peripheral blood as a 
consequence of hypoxia [100], while elevated numbers 
of MSCs were noted in the peripheral blood of patients 
immediately following traumatic hip injury [101]. How-
ever, the origin(s) of the mobilized cells remains unclear 
and it has proved extremely difficult to establish MSC 
cultures from conventional blood either in physiological 

conditions or following stimulation with cytokines [25, 
102, 103].

Conversely, the ability to derive apparently identi-
cal MSCs from multiple tissues led to the hypothesis that 
these cells share a common in vivo location. A growing 
body of published reports has described perivascular cells 
that appear indistinguishable from vascular pericytes as a 
possible source of MSCs [15, 27, 43, 75], a situation that 
would explain why MSCs can be isolated from all vascular-
ized organs. Association of these mesenchymal progenitor 
cells with the vasculature would allow them to function as 
a source of new cells for physiological turnover and for the 
repair or regeneration of local lesions. The establishment of 
MSC-like cultures from blood vessels alone supports this 
hypothesis [9]. Lineage tracing studies have confirmed that 
vascular pericytes do contribute to regeneration of bone fol-
lowing tooth injury although other populations of cells are 
also involved [44]. More recently, another subset of vascu-
lar cells, namely adventitial cells, have been identified that 
may behave in a similar manner to pericytes [135].

Pericytes at the origin of MSCs

Recent results have acknowledged the regenerative poten-
tial, under certain conditions, of a subset population resid-
ing in the wall of blood vessels [45, 46]. Pericytes have 
been recognized as a distinct cellular entity that share a 
common immunophenotype and differentiation potential 
to mesenchymal stem/progenitor cells [26]. In a variety 
of human organs, perivascular mesenchymal progenitor 
cells can be identified by a combination of perivascular 
(CD146, NG2, PDGFRβ) and MSC (CD29, CD44, CD73, 
CD90, CD105, alkaline phosphatase) markers, as well as 
lack of hemato-endothelial cell markers [CD31, CD34, 
CD45, CD144, von Willebrand factor (vWF)] expression. 
Pericytes have been shown to differentiate into multiple 
mesodermal lineages including bone [104, 105], fat [106], 
cartilage [27], and skeletal muscle [107, 108]. The T-lym-
phocyte surveillance shut-down effects observed with cul-
ture-expanded bone marrow-derived MSCs have also been 
reported in studies evaluating pericytes [109, 110].

Tottey et  al. [111] demonstrated that perivascular cells 
isolated from human fetal muscle proliferate at a higher 
rate under hypoxic conditions (6  %) than normoxia 
(21 %) and that they migrate more rapidly when exposed 
to degraded ECM products. This indicates some degree of 
activation in the presence of injury. Perivascular cells can 
release various cytokines, including basic-fibroblast growth 
factor (b-FGF), a well-known chemotactic and mitogenic 
agent and vascular endothelial growth factor (VEGF), a 
regulator of angiogenesis, which can also participate in 
tumor progression [112].
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Pericytes participate in vivo in the development, renewal, 
and repair of several distinct tissues

Most interestingly, there is now increasing evidence that 
pericytes—aka mural cells—can play a natural role as 
progenitor cells in development and in various injured tis-
sues. Perivascular cells represent a ubiquitous cell popula-
tion, distinct from tissue-specific stem cells such as brain 
neural stem cells [113], hepatic stellate cells [114], supra 
adventitial-adipose stromal cells [106], and myogenic sat-
ellite cells [115]. However, Leydig cells in the rat testis 
were suggested to be regenerated by pericytes following 
chemical injury [116] and mural cells were proposed as 
normal progenitors of white adipocytes in murine fat tissue 
[117]. It has also been demonstrated that pericytes resident 
in postnatal skeletal muscle differentiate into muscle fibers 
and generate satellite cells following chemical damage to 
the muscle [118]. Most recently, direct differentiation of 
pericytes into follicular dendritic cells was documented in 
the mouse [119]. More generally, pericytes appear to give 
rise in situ to multiple mesodermal derivatives [120], in 
response notably to PDGFRβ signaling [121]. Therefore it 
appears that the ability of pericytes to yield MSCs in cul-
ture mirrors an intrinsic broad developmental potential of 
these cells, or at least of subsets thereof.

Pericytes and the bone marrow hematopoietic niche

Although hematopoietic stem cells were originally local-
ized in the endosteal regions of bone marrow, recent find-
ings suggested the existence of a distinct perivascular niche 
in which pericytes support HSC stemness. Perivascular 
reticular cells expressing CXCL12 were found to play a 
role in murine HSC maintenance [122]. Mendez-Ferrer 
et al. [123] demonstrated the existence in mouse bone mar-
row of perivascular nestin+ MSCs associated with HSCs. 
Ablation of these nestin+ MSCs led to a significant reduc-
tion in the number and homing ability of HSCs. Further-
more, a direct role for perivascular cells in hematopoiesis 
regulation was recently confirmed by Ding et  al. [124] 
in a stem cell factor (SCF) knock-in mouse model. Here, 
selective shut-off of c-kit ligand expression in leptin recep-
tor (Lep-R)-positive cells surrounding bone marrow blood 
vessels significantly reduced the frequency of long-term 
reconstituting hematopoietic stem cells. More recently, 
Corselli et  al. [125] demonstrated that human bone mar-
row and adipose tissue-resident pericytes express in vivo 
nestin, CXCL12, and Lep-R, and support the ex vivo main-
tenance of human HSCs. Furthermore, it was found that 
pericytes support HSCs through direct contact and Notch/
Jagged1 signaling. Conversely, conventional unfractionated 
MSCs did not maintain HSC stemness, favoring differentia-
tion. Pericytes can therefore be considered as the bona fide 

human equivalents of the hematopoietic perivascular niche 
components recently described in the mouse.

Nonpericyte perivascular cells as MSC ancestors

Multipotent progenitors displaying MSC phenotypic and 
developmental properties have also been described in the 
bovine artery wall [126] and have recently been isolated 
from the tunica adventitia of the human pulmonary artery 
[127]. The tunica adventitia was long considered an inac-
tive component of blood vessels mainly functioning as 
structural support for the tunica media. Only recently has it 
been demonstrated that the adventitia plays a crucial role in 
vascular remodeling and the development of vascular dis-
eases including arteriosclerosis and restenosis [128]. Acti-
vation of adventitial cells has been described in response 
to physical stressors including injury [129], vein grafting 
[130], hypoxia [131], and hypertension [132]. In these 
settings, adventitial cells may differentiate into myofibro-
blasts that migrate into the inner layers of the vascular wall, 
alter extracellular matrix deposition, and release paracrine 
factors regulating vascular remodeling [133]. In apoE−/− 
mice, Hu et al. [130] identified and isolated Sca1+ adventi-
tial progenitor cells that are able to differentiate in vitro and 
in vivo into smooth muscle cells. Following transplanta-
tion of Sca1+ βgal- cells carrying the LacZ gene under the 
control of the smooth muscle-specific promoter SM22 into 
the adventitia of murine vein grafts, the authors observed 
the presence of β-gal+ smooth muscle cells in the neoin-
tima up to 4 weeks after grafting. This indicates the con-
tribution of adventitial progenitors in the progression of 
vascular diseases. It has subsequently been demonstrated 
that the differentiation potential of adventitial cells is not 
restricted to myofibroblasts. These observations suggest, 
indirectly, that pericytes exclusively present around capil-
laries and microvessels are not the only ancestors of MSCs, 
as hypothesized previously [134].

Along a systematic search by flow cytometry purifi-
cation for alternative non-pericyte cells at the origin of 
MSCs, Corselli et al. identified a subset of CD34+ CD45− 
CD56− CD146− NG2− cells in the tunica adventitia of 
human arteries and veins [135]. These adventitial cells 
grew like MSCs in culture and exhibited typical MSC dif-
ferentiation properties. Interestingly, adventitial progeni-
tor cells express natively the MSC markers CD44, CD73, 
CD90, and CD105. No potential to give rise to MSCs in 
culture was detected outside the perivascular subsets 
including pericytes and adventitial cells.

Although pericytes and adventitial perivascular cells 
have been described for more than a century, it is only 
recently that the blood vessel wall was demonstrated as 
a reservoir of progenitor cells. We showed that perivas-
cular cells, i.e., pericytes and adventitial cells, are in vivo 
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counterparts of MSCs obtained in culture from various 
organs [27, 135]. These perivascular cells can be prospec-
tively purified by flow cytometry using a well-defined sur-
face marker combination, common in all human organs 
tested. Importantly, pericytes and adventitial cells dissoci-
ated from vessel walls contain multipotent precursors with 
robust regeneration properties similar to those of classic 
heterogeneous MSCs.

Mesenchymal stem cells from umbilical cord blood: do 
pericytes enter the blood circulation?

Over the last years, the clinical use of allogeneic umbili-
cal CB for hematopoietic cell transplantation has increased 
dramatically. In comparison with other stem cell sources, 
well-characterized CB grafts are immediately available in 
numerous CB banks worldwide [136, 137]. Despite pub-
lication of many relevant reports over the past 10  years, 
controversy still exists as to whether MSCs or their fore-
runners are present in human CB. Clearly though, non-
hematopoietic cells contributing to tissue repair circulate 
in fetal blood at term, as recently reported by some of us 
[138–140] and confirmed by others [141].

Even though cells present in CB possess overlapping 
features with MSCs derived from usual sources, some 
particularities have fed the debate on their very nature. 
One of the differences between regular MSCs and CB-
derived cells is the isolation rate, which varies consider-
ably between investigators [138, 142, 143]. In addition, the 
growth of the latter can be markedly delayed, up to 20 days 
from the seeding.

Moreover, at least two different cell population kinet-
ics can be described within CB MSC like cells, endowed 
with short-term (a few passages) or long-term (more than 
ten passages) expansion ability, characterized by different 
growth curves with lower or higher cumulative popula-
tion doublings (CPD). There is no consensus either regard-
ing the nomenclature of these multipotent cells, diversely 
named USSCs [68, 69, 144], multilineage progenitor cells 
(MLPCs) [145], embryonic-like stem cells [146], very 
small embryonic-like stem cells (VSELs) [70], or more 
simply CB MSCs.

The morphology of CB-derived stromal cells is quite 
similar to that of bone marrow MSCs, even though CB 
stromal cells are smaller and less spindle-shaped, with a 
higher nucleus/cytoplasm ratio. Over the long term, these 
cells remain healthy, homogenous, and non-senescent till 
numerous passages, and reach higher CPD than BM MSCs.

Flow cytometry analysis showed that these cells are 
negative for lineage markers such as CD45 and CD34, but 
positive for human MSC markers such as CD90, CD105, 
and CD73, as well as other integrins and matrix recep-
tors, defining an immunophenotype consistent with that of 

BM-derived MSCs [147]. The ability of CB stromal cells 
to differentiate into osteoblasts that produce mineralized 
matrices and chondrocytes that produce type-II collagen 
has been confirmed by several authors [148]. Regard-
ing adipogenic differentiation, some authors report very 
poor potential [141] and others a complete absence [149]. 
Some authors claimed to distinguish short- and long-term 
CB stromal stem cells by their adipogenic differentiation 
potential and delta-like 1 (DLK-1) expression profile [69], 
but others did not confirm these differences [141]. Worthy 
of consideration is the fact that the proliferation and dif-
ferentiation abilities of customary MSCs may decrease 
with donor age, while the MSC-like cells contained in CB 
can be considered as, by essence, very young. Therefore, 
a considerable volume of work has already been carried 
out investigating the use of CB stromal stem cells in ani-
mal tissue regeneration, including kidney and lung repair 
[138, 140]. Clinical trials are already going on (see http://
www.clinicaltrials.gov) to evaluate the safety and efficacy 
of CB-derived MSCs to promote hematopoietic stem cell 
engraftment and prevent graft-versus-host disease. Clinical 
applications are also contemplated in patients affected by 
focal glomerulosclerosis and preterm newborns with bron-
chopulmonary dysplasia.

Nothing is known regarding the origin of CB MSCs 
and the possible affiliation thereof with perivascular cells. 
Some authors have speculated that short- and long-term 
CB MSCs are released from fetal bone marrow or liver into 
the blood circulation [69]. Considering the physical trauma 
inflicted to the placenta and umbilical cord at birth and dur-
ing blood collection, it remains possible that perivascular 
cells have simply been released mechanically from severed 
blood vessels, their presence in blood being of no physi-
ological relevance.

Developmental origins of MSCs

There have been few basic studies on the emergence of 
MSCs and their developmental origins remain an area of 
considerable ongoing mystery. However, the limited avail-
able data do suggest that MSCs derive from multiple devel-
opmental origins [150–152] (Fig. 1). The mesoderm is the 
primary source of mesenchymal cells giving rise to skel-
etal and connective tissues [153]. Pericytes that develop 
around the developing trunk vessels in the axial and lateral 
plate areas are thought to derive from mesoderm [154]. 
Coronary vessel mural cells may derive from epicardial 
cells, which are themselves derived from the splanchnic 
mesoderm [155]. An early Flk1+ mesodermal precursor, 
with the potential to differentiate into endothelial cells, 
blood, muscle, and mesenchymal lineage cells (bone and 
cartilage), was identified in the E9.5 mouse dorsal aorta 

http://www.clinicaltrials.gov
http://www.clinicaltrials.gov
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[156]. Evaluation of osteogenic, chondrogenic, and adipo-
genic potentials of cells isolated from different anatomical 
sites in the E11.5 mouse embryo revealed intraembryonic 
hematopoietic tissues [aorta-gonad-mesonephros (AGM)] 
as a site of origin for cells with mesenchymal differentia-
tion potential [157]. However, immediate mesodermal pre-
cursors that give rise to expandable multipotential MSC 
lines are not identified and characterized.

Studies in the mouse embryo demonstrated the origin of 
some MSCs from neural crest [158, 159]. A recent study 
showed that the earliest lineage providing MSC-like cells 
during embryonic trunk development is generated from 
Sox1(+) neuroepithelium, at least in part through a neu-
ral crest intermediate stage [150]. These early MSCs are 
then replaced, later in development, by MSCs from other 
origins. As embryogenesis progresses, the neural crest 
cells can be classified in different series, with respect to 
the territory they colonize: (1) the cranial neural crest, (2) 
the cardiac neural crest, (3) the trunk neural crest, and (4) 
the vagal and sacral neural crest. Terminal differentiation 
of these cells gives rise to neural as well as mesenchymal 
tissues. In the peripheral nervous system, these cells con-
tribute to neurons and glia of sensory, sympathetic and 
parasympathetic systems, and the neural plexuses within 
specific tissues and organs. Neural crest cells migrating to 
the pharyngeal arches form a mixed tissue type known as 
“mesectoderm” or “ectomesenchyme” to distinguish them 
from mesenchymal cells derived from the mesoderm [152].

Similarly, using interspecies transplantation of quail and 
chick embryonic tissues, the lineage of cephalic pericytes 

was traced to neuroectodermal tissue [160]. The vascula-
ture of the avian embryo exhibits a mosaic pattern where 
neural crest- and mesoderm-derived pericytes and smooth 
muscle cells occupy sharply delineated and mutually exclu-
sive regions in the face and brain [161]. Evidence that 
these neural crest-derived cells persist in some adult tis-
sues has come from several studies [162]. The neural lin-
eage potential of neural crest-derived MSCs is preserved 
in adult rats and can be reactivated when they form mes-
enspheres, express various neural crest cell markers, and 
undergo differentiation, in vitro, into neuron- and glia-like 
cells [163–166]. While the gene expression profiles of 
neural crest cells and MSCs are unique [167], there is evi-
dence that cultivation of neural crest cells in the presence 
of serum evokes an MSC-like phenotype. For example, 
human embryonic stem cells differentiated in vitro toward 
a neural crest cell phenotype can differentiate into neurons 
and glia when cultured under serum-free conditions, while 
cultivation in medium containing serum evokes an MSC-
like phenotype capable of differentiation to mesodermal 
cells [168].

Perhaps relevant to these observations, it has been 
recently demonstrated that neural crest-derived cells 
migrate to the bone marrow through the bloodstream [169]. 
These cells are still present in the adult bone marrow, 
and can differentiate in vitro into neurons, glial cells, and 
myofibroblasts. The potential link, if any, between these 
cells, the cells identified by Takashima et al. [150] and con-
ventional MSCs isolated according to Friedenstein’s proto-
col [4] remains unclear.

Fig. 1   Schematic illustrating the known developmental and anatomical origins of MSCs. Dashed lines indicate where associations are inferred
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It has also been reported that endothelial progenitors and 
mural cells may derive from a common vascular progeni-
tor [170]. Lineage-tracing experiments have shown that 
cells originated from the primary vascular plexus also give 
rise to mural cells with the capability to differentiate into 
osteoblasts and adipocytes [171]. These findings may sug-
gest that MSCs, HSCs, and endothelium progenitor cells 
(EPCs) arise from a common progenitor.

The mixed developmental origins of pericytes, and thus 
MSCs, may reflect the finding that a core set of expressed 
genes governs the general hallmarks of MSCs [172]. Regu-
lation of this battery of genes may allow cells originating 
from different germ layers to undergo mesenchymal “acti-
vation”. As such, the ontogeny of MSCs is different from 
that of other specialized cell types, for which the tradition-
ally held view is that they undergo differentiation along a 
linear path, requiring successive specifications of progeni-
tor cells paralleled by progressive restrictions in potency.

There is a need to define developmentally distinct MSC 
subsets and the hierarchy of their progenitors to advance 
our understanding of heterogeneity within MSCs and its 
implications for the developmental and therapeutic poten-
tial of these cells.

Therapeutic significance of understanding the native 
anatomical origins of MSCs

The multipotency as well as the trophic and immunoregu-
latory effects of MSCs have vast potential clinical appli-
cations, with many treatments already in the stages of 
clinical trials (305 registered on clinicaltrials.gov at the 
time of writing) (Table  4). However, conventional unpu-
rified MSC preparations have significant drawbacks 
including contamination from non-MSC populations and 
the requirement of in vitro culture to enrich the MSC 
population. Approaches to delivering cell-based thera-
pies are increasingly being guided by regulatory frame-
works. Within these frameworks, cells that require in vitro 
manipulation or culture must undergo stringent safety tri-
als prior to approval for clinical use while cells that can 
be directly implanted bypass much of this legislation. 
Many of these drawbacks can be addressed with the abil-
ity to identify and isolate pure populations of MSC pre-
cursors as perivascular cells using FACS. The practical 
and therapeutic consequences of understanding the iden-
tity and anatomical origin of native MSCs have therefore 
been considerable.

Perivascular stem cells (PSCs) can be sorted to purity

Whole bone marrow cell suspensions and the stromal 
vascular fraction (SVF) of adipose tissue have been used 

directly with the aim of harnessing the potential of the con-
tained stem cells. However, both represent highly hetero-
geneous cell populations, which include non-mesenchymal 
stem cell types, such as inflammatory cells, hematopoietic 
cells, endothelial cells, and non-viable cells, among others 
[173]. Available studies using SVF show poor and unrelia-
ble tissue formation [174], or lower tissue regeneration effi-
cacy relative to cultured MSCs [175]. In fact, recent studies 
have suggested that the presence of endothelial cells has 
inhibiting effects on bone differentiation, among other line-
ages [176, 177]. Despite the process of enrichment through 

Table 4   Partial list of potential clinical applications of MSCs

a  Phase 1 trials started for this application

Bone regeneration

 Skeletal defect healinga [271]

 Osteoporosis [201, 202]

 Osteogenesis imperfecta [272]

Cartilage regeneration

 Cartilage defect healinga [271]

 Meniscus injury [273]

 Osteoarthritisa [276]

Muscle regeneration

 Skeletal muscle regenerationa [279]

 Cardiac muscle regenerationa [214]

 Smooth muscle regeneration [277]

Tendon regeneration

 Repair of tendon defectsa [278]

Neural regeneration and injury prevention

 Traumatic brain injury [296]

 Spinal cord injurya [297]

 Multiple sclerosisa [298]

 Parkinson’s diseasea [299]

 Multiple system atrophya [300]

 Ischemic strokea [280]

Prevention of injury in acute ischemia

 Limb ischemiaa [281, 282]

 Acute lung injurya [283]

 Myocardial infarctiona [284]

 Acute kidney injurya [285, 286]

Other immunomodulatory applications

 Diabetes, type Ia [287]

 Sepsisa [301]

 Acute lung injurya [302]

 Rheumatoid arthritisa [274, 275]

 Hepatic cirrhosis [288–290]

 GVHDa [291, 292]

Other

 Renal failurea [303]

 Skin graftinga [293]

 Urinary incontinencea [294]
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plastic adherence, it is inevitable that preparations will be 
contaminated by non-MSC populations, and the contribu-
tion of each contained population to the repair process can-
not be definitively established. However, it is likely that 
subsets of functionally distinct cells exist even within puri-
fied populations of PSCs and MSCs. Identification of MSC 
subsets with the most desirable characteristics for clinical 
applications is likely to be a major focus of future research. 
Finally, variability in cell composition presents clear dis-
advantages for regulatory body [for example the Food and 
Drug Administration (FDA)] approval of a future stem cell-
based therapy, potentially including reduced safety, purity, 
identity, potency, and efficacy. With these regulatory hur-
dles in mind the use of purified MSCs, i.e., pericytes and 
adventitial cells, collectively designated as PSCs, has clear 
practical advantages.

PSCs do not require in vitro selection

The selection and preparation of MSCs through adherence 
to culture plastic is time consuming, and introduces addi-
tional risks such as immunogenicity and infection through 
exposure to animal-derived culture products. Investigators 
have documented the influence of MSC culture on genetic 
instability [178], and tumorigenicity [179, 180], although 
these results have been challenged [181]. Multipotency, and 
hence therapeutic potency, has been shown to diminish 
with serial passaging, with human BM MSCs progres-
sively losing their adipogenic and chondrogenic differen-
tiation potentials as the number of cell divisions increases 
[86]. In addition, expression of adhesion molecules and 
chemokines, and the ability to respond to chemokines 
decline with time in culture [86].

PSCs can be isolated in sufficient numbers to negate ex 
vivo expansion

In addition to the advantages of negating the need for in 
vitro selection of MSCs, the ability to isolate PSCs from 
adipose tissue in clinically relevant numbers has significant 
therapeutic implications. Low stem cell numbers and high 
donor site morbidity limit the use of fresh autologous bone 
marrow [179, 182], periosteum [183], and the majority of 
other MSC sources. Adipose tissue represents a largely 
dispensable source of MSCs that are readily accessible 
through lipoaspiration, even in patients of healthy weight 
[184]. It has attracted much attention as a potentially plen-
tiful source of MSCs, particularly using uncultured cells 
(SVF or PSCs) but also with cells following in vitro expan-
sion. Relative to the lower yield, limited donor sites, and 
high morbidity associated with bone marrow or periosteal 
harvest, adipose tissue is now a well-documented, easily 
accessible, abundant source of such cells. James et al. [105] 

reported the yields from lipoaspirates isolated from 60 con-
secutive donors in cosmetic procedures. From 100  ml of 
whole lipoaspirate, the mean yield of total nucleated cells 
(SVF) was 39.4  ×  106 (range, 10  ×  106–70  ×  106). On 
FACS sorting pericytes most frequently represented 30 % 
or less of total SVF (mean 19.5  %) with adventitial cells 
representing 40  % or less (mean, 23.8  %) of total SVF. 
When added in combination, the total PSC content most 
commonly fell between 30 and 60 % of total viable SVF 
(mean, 43.2  %, median, 41.7  %). Given this prevalence 
of PSCs, it has been estimated that <200  ml of lipoaspi-
rate would be sufficient starting material for the clinical 
application of PSCs in localized bone repair. For example, 
200 ml of lipoaspirate would theoretically yield 31 million 
cells, which would be sufficient for healing of a 2-cm mid-
diaphyseal femoral defect (cell seeding density of 1 million 
per 0.4 ml) [105, 185]. In cases where there is a require-
ment for an extremely large number of cells (for example 
GVHD where 1–2  million cells/kg body weight may be 
required for infusion) or where the availability of fat for 
lipoaspirate is limited, some expansion in culture  would 
inevitably be required.

In addition to the requirement for robust trials to demon-
strate safety and efficacy of PSCs for tissue regeneration, 
a number of practical challenges must also be overcome 
before widespread clinical application of this technology. 
There are currently few flow sorting facilities with formal 
accreditation from the relevant regulatory bodies to pro-
duce clinical-grade cells. The financial costs of clinical-
grade sorting, taking into account the price of the antibod-
ies (also certified for clinical purposes) is high. However, 
this may be offset by savings made by the lack of require-
ment for expansion in culture. The use of an automated 
clinical-grade immunodepletion system has been proposed 
as a more affordable alternative for bulk sorting to FACS. 
However, the complex phenotype of PSCs, and the require-
ment for both positive and negative selections render this 
impractical.

In summary, the therapeutic consequences of under-
standing the native identity of MSCs are considerable. 
MSCs can now be prospectively purified to homogeneity 
based on expressed cell surface markers from adipose tis-
sue in quantities large enough to avoid ex vivo expansion 
with its associated risks and disadvantages. Sorting of MSC 
precursors in this way addresses many of the issues that 
currently limit the translation of MSC-related therapies 
including the availability, purity, and potency of progeni-
tors isolated through conventional culture methods, and 
the poor regenerative efficiency of SVF. The high numbers 
of MSC precursors that can be sorted from adipose tissue 
reduce the delays associated with expansion and may pre-
vent exposure of patients to multiple anesthetic procedures 
while widening possible applications to include trauma 
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where a time delay between extraction and implantation 
excludes their use. Furthermore, the high degree of MSC 
purity and potency will greatly facilitate demonstration of 
the product safety and efficacy required for regulatory body 
approval.

Conventionally derived MSCs and purified PSCs–
emerging pre‑clinical and clinical data

There is a rapidly expanding body of pre-clinical data 
evaluating the potential therapeutic benefits of exogenous 
MSCs. Both autologous and allogeneic MSCs isolated 
from multiple sources have been injected into tissue such 
as the heart or infused within the bloodstream and have 
been observed to localize to sites of injury involving dam-
aged or inflamed blood vessels. The list of MSC-related 
applications includes a broad and diverse range of clini-
cal targets and indications including graft-versus-host dis-
ease, stroke, acute myocardial infarction (MI), spinal cord 
lesions, acute kidney failure, liver fibrosis, multiple scle-
rosis (MS), amyotrophic lateral sclerosis, tendinitis, burns 
and wound healing, bone regeneration, juvenile diabetes, 
lupus, autism, inflammatory bowel disease, urinary incon-
tinence, and sepsis [51]. Almost all of these trials and pre-
clinical models utilize conventionally derived MSCs for 
their immunomodulatory or trophic effects rather than their 
ability to differentiate in different cell lineages. The lim-
ited emerging data from animal studies confirm that PSCs 
are at least as effective as conventionally derived MSCs 
in terms of clinical effect [28, 185]. It is expected that the 
added benefits of prospective isolation and the avoidance of 
culture will enable these treatments to become more acces-
sible to patients from a wider range of conditions. Here 
we summarize the results of pre-clinical studies evaluating 
MSCs in bone healing and cardiac regeneration and where 
available compare results of studies using PSCs.

Conventionally derived MSCs and PSCs in bone healing

Osseous defects and other diseases of bone have been 
treated with success in preclinical studies using convention-
ally derived MSCs. Multiple investigators have shown the 
efficacy and feasibility of either allogeneic or autologous 
MSC-based implants to heal large osseous defects [186–
188], including critical-sized defects of the appendicular 
and calvarial skeleton in mouse [189–191], rat [192–194], 
dog [195, 196], and sheep [197–199] models among oth-
ers [200]. Notably, the majority of successful MSC-based 
healings of skeletal defects have been reported using pre-
differentiated cells, although studies have also determined 
that pre-differentiation is not an absolute requirement. The 
success in MSC-mediated regeneration of osseous defects 

led some investigators to look into autologous MSC-based 
treatments of osteoporosis [201, 202]. Several in vivo stud-
ies demonstrated that  transplantation of pre-differentiated 
autologous MSCs strengthened osteoporotic bone in ova-
riectomized (OVX) animal models, including rabbit [203] 
and rat [204]. Furthermore, direct intra-osseous injection 
of differentiated allogeneic MSCs showed potential in the 
improvement of osteoporotic trabecular bone in terms of 
increased osteogenic differentiation as well as collagen 
synthesis [204]. Finally, genetic manipulation of autolo-
gous MSCs has been investigated, utilizing MSCs as a 
vehicle for gene therapeutics [75]. Most prominently, the 
bone morphogenetic protein family, including bone mor-
phogenetic protein (BMP)-2, BMP-4, BMP-6, and BMP-
7, have been investigated for their bone-forming effects 
and ability to direct MSCs towards an osteogenic lineage 
[205]. BMPs are involved in various developmental pro-
cesses including embryogenesis, skeletal formation, hemat-
opoiesis, and neurogenesis, and belong to the transform-
ing growth factor-β superfamily [206, 207]. For instance, 
MSCs transduced with BMP-2 and seeded onto a coral-
hydroxyapatite scaffold led to successful healing of large 
mandibular defects in OVX rats [208]. In osteoporotic mice 
and sheep, MSCs transduced with BMP-2 were shown to 
increase bone regeneration and improve fracture healing 
[205, 209, 210]. BMP-4, BMP-7, and BMP-9 gene trans-
duction of MSCs have yielded similar results to BMP-2 ex 
vivo [211, 212].

Non-cultured adipose-derived PSCs show an enhanced 
ability to repair bone defects when compared to unsorted 
SVF. In addition, cells lose their osteogenic potential with 
increasing passage [185]. In a murine gluteo-femoral mus-
cle pocket model, James et  al. [185, 213] reported that 
PSCs undergo osteogenic differentiation in vitro and form 
bone after intramuscular implantation without the need for 
pre-differentiation. Patient-matched, purified PSCs formed 
significantly more bone in comparison with traditionally 
derived SVF by all parameters tested. Recombinant BMP-2 
increased in vivo bone formation but with a massive adipo-
genic response. In contrast, recombinant Nel-like molecule 
1 (NELL-1: a novel osteoinductive growth factor) selec-
tively enhanced bone formation.

Conventionally derived MSCs and PSCs in cardiac 
regeneration

In the case of cardiac muscle, various studies have shown 
improved cardiac function following the delivery of MSCs 
in animals, either via direct injection or intravenous admin-
istration [214, 215]. Although not as effective as cardiac stem 
cells (CSCs) [216], MSCs serve to reduce fibrosis, contrac-
tile strain alterations, and cardiomyocyte apoptosis while 
upregulating angiogenesis through secretion of multiple 
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paracrine factors [214, 217, 218]. In the case of cardiac ther-
apy, MSCs function primarily through the promotion of 
trophic  responses in myocytes, and the elaboration of HGF, 
IGF-II, and VEGF, which contribute to the cardiac repair 
mechanism through enhancement of cell survival and angio-
genesis [219–221]. Interestingly, allogeneic MSCs retain nei-
ther their immunoprivilege nor functional efficacy late after 
myocardial implantation [222]. Various studies have explored 
factors to optimize MSC efficacy, which include selection for 
MSC overexpressing regulators of cardiogenesis [223], use 
of MSCs induced via co-culture with cardiomyocytes [224], 
and exogenous expression of VEGF to recruit CSCs [225]. 
In summary, preclinical studies have demonstrated efficacy 
in the use of MSCs for cardiac diseases, primarily through 
a trophic effect on surrounding cells, and to a lesser extent 
through direct myogenic differentiation.

A recent study has reported long-term improvement in 
cardiac function following direct implantation of pericytes 
using a mouse myocardial infarction model [226]. In this 
study, the transplantation of saphenous vein pericytes (SVPs) 
into the peri-infarct zone of immunodeficient CD1/Foxn-
1(nu/nu) or immunocompetent CD1 mice attenuated left ven-
tricular dilatation and improved ejection fraction compared 
to control. Moreover, pericytes reduced myocardial scar, 
cardiomyocyte apoptosis, and interstitial fibrosis, improved 
myocardial blood flow and neovascularization, and attenu-
ated vascular permeability. The authors demonstrated that 
pericytes secrete VEGF-A, angiopoietin-1, and chemokines 
and induce an endogenous angiocrine response by the host, 
through recruitment of VEGF-B expressing monocytes. The 
association of donor- and recipient-derived stimuli activates 
the proangiogenic and prosurvival Akt/eNOS/Bcl-2 signal-
ing pathway. Moreover, microRNA-132 (miR-132) was con-
stitutively expressed and secreted by SVPs and remarkably 
upregulated, together with its transcriptional activator cyclic 
AMP response element-binding protein, on stimulation by 
hypoxia/starvation or VE GF-B. In vitro, SVP conditioned 
medium stimulates endothelial tube formation and reduces 
myofibroblast differentiation through inhibition of Ras-
GTPase activating protein and methyl-CpG-binding protein 
2, which are validated miR-132 targets. Furthermore, miR-
132 inhibition by antimiR-132 decreased SVP capacity to 
improve contractility, reparative angiogenesis, and interstitial 
fibrosis in infarcted hearts.

In a separate study, human skeletal muscle-derived peri-
cytes were significantly better than myogenic progenitors 
at treating ischemic heart disease and mediating associ-
ated repair mechanisms in a murine model of myocardial 
infarction [227]. Echocardiography revealed that pericyte 
transplantation attenuated left ventricular dilatation and 
significantly improved cardiac contractility, being superior 
to CD56+ myogenic progenitor transplantation in acutely 
infarcted mouse hearts. Pericyte treatment substantially 

reduced myocardial fibrosis and significantly diminished 
infiltration of host inflammatory cells at the infarct site. 
Hypoxic pericyte-conditioned medium suppressed murine 
fibroblast proliferation and inhibited macrophage prolifera-
tion in vitro. High expression by pericytes of immunoregu-
latory molecules, including interleukin-6, leukemia inhibi-
tory factor, cyclooxygenase-2, and heme oxygenase-1, was 
sustained under hypoxia, except for monocyte chemotactic 
protein-1. Host angiogenesis was significantly increased. 
Pericytes supported microvascular structures in vivo and 
formed capillary-like networks with or without endothelial 
cells in three-dimensional co-cultures. Under hypoxia, peri-
cytes dramatically increased expression of VEGF-A, plate-
let-derived growth factor-β, transforming growth factor-β1 
and corresponding receptors while expression of basic 
fibroblast growth factor, hepatocyte growth factor, epider-
mal growth factor, and angiopoietin-1 was repressed. The 
capacity of pericytes to differentiate into and/or fuse with 
cardiac cells was revealed by green fluorescence protein 
labeling, although to a minor extent.

Conclusions

The recent discovery that MSCs derive from a perivas-
cular location where they reside as pericytes or adven-
titial cells has generated some momentum in the field of 
adult stem cell research and provided some insight into 
the developmental origins of these much exploited but lit-
tle understood cells. It is now evident that  the perivascu-
lature represents an MSC niche in vivo, where local cues 
coordinate the transition to progenitor and mature cell 
phenotypes. Here, MSCs can stabilize blood vessels and 
contribute to tissue and immune system homeostasis under 
physiological conditions and assume a more active role in 
tissue repair in response to injury. The establishment of 
a perivascular compartment as the MSC niche provides a 
basis for the rational design of additional in vivo therapeu-
tic approaches.
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