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development as a flat sheet of neuroepithelial cells, termed 
the neural plate. Although some temporal, spatial and 
mechanistic differences exist, the formation and folding of 
the vertebrate brain is a remarkably well-conserved evolu-
tionary process [1, 2]. The early neural plate undergoes a  
convergence and extension process (neurulation) to form the 
neural tube (embryonic brain and spinal cord). Patterning of 
this tube along the dorso-ventral axis is well understood and 
depends on the relative gradients of BMP4 (dorsalising) and 
Shh (ventralising) factors [3, 4]. Similarly, patterning along 
the anterior-posterior axis is also well defined, particularly 
with respect to the positioning, induction and maintenance 
of the most crucial neural developmental signalling centre,  
the midbrain-hindbrain boundary (MHB). Originally iden-
tified in chick [5–8], the isthmic organiser located at the 
MHB consists of cells that influence the fate of neighbour-
ing cells to adopt either a mesencephalic (midbrain) or 
metancephalic (hindbrain) fate through expression of tran-
scription factors and soluble signalling molecules [9]. This 
organiser is powerful enough to induce surrounding cells 
to re-fate to become ectopic midbrain and hindbrain if it is 
transplanted to other areas of the brain [10], indicating that 
correct positioning and patterning of organiser formation 
must be tightly and precisely regulated at an early stage in 
brain formation.

The subsequent use of a variety of developmental  
vertebrate models has helped to identify conserved pattern-
ing signals, which position and influence the formation of 
the MHB. Although the precise spatio-temporal expression 
of genes within the MHB cascade varies between verte-
brate species [9], and different gene orthologues perform 
the same functions between species, broadly speaking, the 
conserved pathway operates as follows. The position of the 
prospective MHB is specified at the interface of the expres-
sion domains of the transcription factors Otx2 and Gbx1/2 
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for regulation of MHB morphogenesis by non-classical 
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Introduction

The vertebrate brain is the single most complex and 
dynamic organ to arise in the animal kingdom throughout 
evolutionary development. The brain originates from the 
neural ectoderm, formed during gastrulation, and begins its 
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within the neural plate [10–12]. A cascade of signalling 
(FGF8/Wnt1) and transcription (Pax2/5/8, Eng1/2) fac-
tors within the Otx2/Gbx1/2 boundary induces formation 
of the MHB [9, 13–15], and subsequent interplay between 
these factors is critical for maintenance of the MHB. These  
factors (Otx, Gbx, FGF8, Wnt, Pax, and Eng) classically 
comprise the core MHB cascade, and disturbance of any 
of these factors leads to severe functional disruption in the  
formation of the isthmic organiser.

This core MHB cascade has been the subject of numer-
ous excellent reviews [9, 10, 16–18] and will therefore not 
be the topic of this work. Rather, our focus will centre on 
novel factors and mechanisms that regulate the positioning, 
induction and maintenance of the MHB. This review will 
also examine the evidence that a fourth stage of MHB devel-
opment, namely morphogenesis, is actively governed by a 
specific set of signalling cues and is not merely a passive 
consequence of correct patterning of the neural territory by 
genes of the core MHB cascade.

Novel factors regulating the stages of MHB  
development

Stage 1: Positioning and establishment

As the Otx and Gbx factors are critical for positioning the 
presumptive MHB within the neural territory, the spatio-
temporal regulation of their expression is pivotal. Pla-
nar signals operating within the neural plate are central to  
multiple aspects of neurulation, from initial regionalisa-
tion of the neural plate to the ultimate morphogenesis of the  
neural tube [19]. Studies in zebrafish have shown that  
“posteriorisation” (conversion of part of the neuroectoderm 
to a more posterior fate) during early neurulation, mediated 
by Wnt8, is a critical requirement for the onset of gbx1 and 
otx2 expression [20]. The importance of the notochord in sig-
nalling to the neural plate to set up the Otx2/Gbx1/2 boundary  
has been debated, although as the establishment of this 
interface in mice is unaffected in embryos lacking a (node-
derived) notochord [21], the contribution of this signalling 
to the establishment of the MHB territory is now thought to 
be minor, and rather the non-axial mesendoderm underlying  
the neural plate appears to be a more critical source of  
ventral signalling to the neural plate [20].

A large body of work suggests that FGF8 is the criti-
cal organiser molecule (Fig.  1). FGF8 can regulate the 
expression of both Otx2 and Gbx2 by activating Gbx2 
and repressing Otx2 within the isthmic region [22] and by  
suppressing Otx2 expression in the hindbrain [23]. The 
expression domain of FGF8 itself is in turn regulated by 
the boundaries of Otx2/Gbx2 expression [24], indicating the 
presence of a feedback loop. Most interestingly, FGF8 is still 

observed within the neuroectoderm in the absence of both 
these factors [24], indicating that Otx2 and Gbx2 may serve 
to refine rather than induce the expression of FGF8. Experi-
ments in the chick model suggest that de-repression of Otx2 
transcriptional activity may be critical in the initial position-
ing of the midbrain-hindbrain domains. Overexpression of 
the midbrain-patterning gene Meis2 [25] greatly increased 
the transactivation potential of Otx2, suggesting that in addi-
tion to specifying the midbrain domain, Otx2 may also play 
an active process in gene induction of the core MHB cas-
cade. Although Meis2 clearly regulates the function of Otx2, 
it does not impact on the initiation of the MHB cascade, 
or possess MHB-organiser function itself [25], suggesting 
that despite regulating a critical early MHB-patterning gene, 
Meis2 in itself is not an MHB-patterning factor.

Once established, the boundary demarcates the future 
midbrain (Otx2+) and hindbrain (Gbx1+) territories, gener-
ating an apparent lineage restriction (Fig. 1), whereby once 
fated, cells from the respective territories do not intermix 
[26, 27]. The expression of the bHLH gene Her5 has been 
postulated to act as the earliest fate-determinant during gas-
trulation, acting to establish identities of future midbrain and 
hindbrain cells [28]. Although lineage restriction boundaries 
exist throughout the neural tube demarcating distinct regions 

Fig. 1   Positioning of the presumptive MHB is regulated by the 
expression of Otx and Gbx genes. Following overall posteriorisation 
of the neuroectoderm by Wnt8, Otx2 is expressed within the presump-
tive midbrain region, and Gbx1/2 is expressed within the presump-
tive hindbrain territory. Otx2 expression in the midbrain is regulated 
partially by Meis2, whereas Gbx1/2 expression in the hindbrain is 
regulated by members of the Iroquois (iro) gene family. The tightly 
demarcated interface of Otx/Gbx gene expression is regulated by 
FGF8, which inhibits Gbx1/2 expression in the midbrain and Otx2 
expression in the hindbrain, respectively, resulting in defined lineage 
restriction. Lrrn1-mediated suppression of FGF8 results in defective 
boundary demarcation, lineage-mixing, and defective organiser for-
mation, indicating that the establishment of a sharp boundary is criti-
cal for further MHB development
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(neuromeres), the evidence for a lineage restriction at the 
MHB is not definitive. In vitro cell mixing and in vivo cell 
labelling studies in the chick MHB suggested that cells from 
both mesencephalic and metancephalic territories intermin-
gled freely [26]. A subsequent study in the zebrafish MHB, 
tracking the fate of live cells in vivo, indicated that a tight lin-
eage restriction was apparent [27]. While these observations 
may suggest that different lineage restriction mechanisms 
may operate within disparate species, this is unlikely given 
the overall conservation of MHB development within verte-
brates. In support of this were further experiments in chick 
examining the role of a boundary-demarcating protein, Lrrn1, 
in MHB development. Lrrn1 is a vertebrate orthologue of 
Drosophila tartan/capricious, transmembrane proteins that 
regulate cellular adhesion and are typically expressed in the 
midbrain, and not in the anterior hindbrain. Precisely how 
Lrrn1 maintains lineage restriction is not known, but both 
loss of function in the midbrain, and overexpression of Lrrn1 
ectopically within the hindbrain resulted in the mixing of 
lineage-restricted cells [29]. Loss of Lrrn1 led to the loss of 
isthmic organiser potential, whereas Lrrn1 overexpression 
resulted in a loss of restriction of midbrain (Otx2) and hind-
brain (Gbx2) markers, and subsequently of MHB organiser 
genes Wnt1 and Fgf8. Whether the loss of isthmic organiser 
potential is specifically due to the loss of lineage restriction, 
or whether this observation is merely correlative, remains to 
be determined. However, it is known that Lrrn1 interacts with 
FGF8 at the MHB [29], suggesting that irrespective of the 
importance of a lineage restriction boundary, this feedback 
loop may be an important element of MHB formation.

However, the establishment of a lineage-restricted  
boundary as well as expression of Otx and Gbx factors is not 
sufficient in itself to initiate the MHB programme or confer 
organiser activity onto the isthmic territory. For example, the 
primitive invertebrate lancelet, Amphioxus, shows expres-
sion of both Otx and Gbx factors in the presumptive MHB 
region, yet this region does not have organiser activity, and the 
MHB cascade is not activated over this boundary [30]. The 
converse experiments, examining the effects of the absence 
of Otx or Gbx gene expression on MHB formation, showed 
that mice lacking Otx2 and/or Gbx2 could initiate the MHB 
cascade, but the positioning of the MHB was located either 
anteriorly or posteriorly to its usual location [24]. These 
data clearly indicate that in addition to global positioning  
indicators within the neural plate, active instructional cues 
are also required to initiate the MHB cascade at the junction 
of the tightly patterned Otx2+ and Gbx1+ territories.

Stage 2: Induction

How then does the positional information conferred by Otx2 
and Gbx1/2 expression translate to activation of the down-
stream MHB cascade? As both Otx2 and Gbx2 are thought 
to be transcriptional repressors [31], alleviation of repres-
sion may be a logical first step of MHB cascade induction. 
Induction of the MHB is characterised by the expression 
of members of the Wnt, Pax, Engrailed and FGF families 
[9, 10, 16, 17]. Seminal experiments in the chick indicated 
that FGF8 possesses inductive potential (Fig. 2), as overex-
pression in the forebrain could ectopically induce the MHB 

Fig. 2   Induction of the core-MHB cascade is regulated by several 
factors. Once the presumptive MHB territory has been established, 
genes of the FGF, Wnt, Pax and Engrailed gene families (the core-
MHB cascade) are rapidly induced within this region. FGF8 activity 
is critical, and expression and function of this molecule are regulated 
by miR-9 and members of the Notch pathway (Serrate, Hairy, Luna-

tic Fringe and Delta1). The interplay between members of the core-
MHB cascade begins, and this is regulated by Lrrn1, Grg4 and XHR1 
at multiple levels within the cascade. Specific interactions between 
members have also been described, notably RPTPλ-mediated acti-
vation of Wnt1 following FGF8 stimulation and the transcription of 
Engrailed 2a by FGF8-mediated activation of grhl2b
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cascade, leading to formation of both tectal and cerebellar  
tissues [32]. The formation of various isthmic proximal 
and distal neural structures is directly linked to the dura-
tion and extent of FGF activity [23], and vertebrate stud-
ies have shown that animals lacking FGF8 do not form a 
cerebellum [33]. The critical importance of the FGF8 path-
way was again highlighted by novel work uncovering the 
role of the first known micro-RNA (miR) to regulate MHB  
patterning, miR-9 [34]. This study demonstrated that 
miR-9 in zebrafish was able to negatively regulate several 
members of the FGF pathway at the MHB, namely fgf8, 
fgfr1 and canopy1, thereby suggesting a regulatory net-
work operating at the level of the MHB. Supporting this 
theory was the finding that miR-9 could also directly inhibit 
a separate pathway regulating neurogenesis in and around 
the MHB via direct inhibition of another MHB marker 
gene, her5, a gene known to be critical in its own right for 
restricting neurogenesis at the MHB [35]. These data show 
that the gradients of gene expression, particularly FGF8, 
at the MHB must be critically regulated to ensure correct 
MHB development.

Although FGF8 may be thought of as the “master” MHB 
initiator, several lines of evidence indicate that it does not 
operate alone. The most convincing datum is that the MHB 
cascade is still initiated in animals lacking FGF8 [33, 36], 
although the expression of these genes is not subsequently 
maintained. Similarly, although the isthmus and cerebel-
lum do not form, the tectum of zebrafish lacking FGF8 is 
largely unaffected [33], indicating that FGF8 is dispensa-
ble for at least some of the patterning functions attributed 
to the isthmic organiser. While the involvement of the Pax, 
Eng and Wnt families has been well described in the MHB 
cascade, it is clear that the transcriptional and signalling  
network that operates at the MHB comprises additional fac-
tors. For example, the receptor protein tyrosine phosphatase 
λ (RPTPλ) gene has been shown in the chick model to 
mediate the FGF8-induced activation of Wnt1, as overex-
pression of RPTPλ showed a decrease in Wnt1 expression at 
the MHB, whereas RNAi-mediated knockdown of RPTPλ 
resulted in an expanded Wnt1 domain [37]. Depending on 
the strength of FGF8 dosage, RPTPλ is either downregu-
lated (at high doses) or upregulated (at low doses) by FGF8 
[37], suggesting that this is a novel mechanism for the regu-
lation of Wnt1 expression in MHB development. Further 
work is necessary to determine the overall importance of 
this interaction to the MHB cascade, as FGF8-RPTPλ sig-
nalling appeared to be specific to the regulation of Wnt1; the 
expression of other MHB-markers including En1, Pax2 or 
Pax5 was not differentially regulated.

Studies in Xenopus have shown that Xiro, a member of 
the Iroquois family that is co-expressed with both Otx2 and 
Gbx2 before MHB induction, activates Gbx2 expression 
in the hindbrain and appears to be critical for subsequent 

induction of FGF8 at the isthmic organiser [31], suggesting  
this gene family may be responsible for mediating the 
inductive organiser signal. Like Xenopus Iro, two mem-
bers of the Iroquois family in zebrafish, iro1 and iro7, are 
temporally expressed before either gbx1 or otx2, and loss 
of function of these genes shows a marked reduction in 
downstream genes of the core-MHB cascade [38]. Other 
studies suggest that the Notch signalling pathway may be 
a crucial signalling cascade that regulates induction of the 
MHB programme [39]. The Notch-pathway genes Serrate 1 
(midbrain and hindbrain), Serrate 2 (MHB), Delta 1 (hind-
brain), Lunatic Fringe (midbrain) and Hairy1/2 (MHB) 
are expressed in and around the MHB following formation 
of the Otx2/Gbx2 border, and critically, downregulation 
of Notch signalling at the MHB leads to a loss of FGF8 
and subsequent disrupted MHB formation [39], suggesting 
that Notch functions upstream of both FGF8 and the MHB  
cascade. Other pathways have also been discovered to 
operate upstream of induction of the MHB cascade. Addi-
tionally, transcriptional repression by Grg4, a vertebrate 
orthologue of Drosophila groucho, can negatively impact 
on expression of MHB genes [40], as does expression of 
dominant-negative forms of the HES-related gene Xhr1 in 
Xenopus [41].

Experiments from the chick indicate that FGF8 can 
also regulate Lrrn1. Although Lrrn1 is expressed within 
the neural tube during the onset of neurulation, its expres-
sion is strongly downregulated at the MHB as neurula-
tion proceeds, although it continues to be expressed both 
anteriorly and posteriorly [29]. Downregulation of Lrrn1 
led to failure of MHB constriction formation, with con-
comitant loss of FGF8, suggesting that a feedback loop 
exists between these two molecules as MHB development 
proceeds. These data indicate that Lrrn1 appears to be a 
novel gene required for both induction and maintenance of 
the MHB organiser. It will be interesting to see if in addi-
tion to its interaction with FGF8, Lrrn1 can also directly 
interact with Eng, Pax or Wnt proteins in maintenance of 
the MHB (Fig. 2), and also whether its role is conserved in 
other vertebrates.

These data suggest that many of the genes outside the 
core MHB cascade that regulate induction of the MHB 
programme seem to do so via interaction with FGF8, 
consistent with the organiser function attributed to this 
molecule.

Stage 3: Maintenance

FGF8 is critical and indispensable for induction of the 
MHB genetic programme following establishment of the 
Otx2/Gbx2 boundary, and this gene family continues to play 
a critical role as MHB development proceeds. The third 
phase of MHB development, that of maintenance, relies 
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largely on continued expression and interdependence of 
FGF with Wnt, Eng and Pax factors [42, 43]. Loss of any of 
these factors during the maintenance stage leads to a break-
down of the expression of the other factors, loss of isthmic  
stability and subsequent altered positional patterning  
(Fig. 3). A defining feature of genes operating as mainte-
nance factors is the observation that loss of function does 
not compromise the initial induction of the MHB cascade, 
but the expression of the core MHB cascade genes is  
rapidly decreased as MHB formation proceeds. An exam-
ple of failed maintenance comes from our laboratory, in 
experiments showing that zebrafish grhl2b, a vertebrate 
orthologue of Drosophila grainy head, acts downstream 
of FGF8 to regulate the transcription of eng2a [44]. 
Although eng2a expression is reduced during the induc-
tion phase of MHB development, the expression of other 
core MHB patterning components, pax2a, wnt1, her5 
and fgf8, is unaffected during this stage. However, the 
expression of these genes was lost in grhl2b morphants  
during the maintenance phase, indicating that initial eng2a 
deficiency in this model impacts on MHB maintenance, 
putatively through loss of transcriptional interdependence. 
The activation of grhl2b by FGF8 in contributing to the 
MHB cascade is putatively mediated by Erk signalling, as 
FGF8 is responsible for phosphorylating Erk [45, 46], and 
studies in Drosophila have shown that erk activation phos-
phorylates grainy head, thereby influencing its expression 
and transcriptional activity [47].

Another example of disrupted maintenance is seen  
following the downregulation of Wnt3a, a factor not tradi-
tionally thought to be part of the core MHB cascade. Wnt3a 
loss does not impact significantly on the initial expression of 
the MHB factors, but these factors rapidly disappear because 
of failed maintenance [48]. Another critical factor for MHB 
maintenance appears to be Lmx1b, which is required for 
the continued maintenance of Wnt1 during MHB ontogeny  
following induction by FGF8 [49]; En2 and Pax2a are also 
induced but rapidly lost following Lmx1b loss [50, 51]. 
Similarly, loss of the Hox and Eng co-factor gene Pbx leads 
to normal initiation of the MHB cascade, but complete fail-
ure to maintain signalling, leading to non-formation of the 
MHB constriction. [52]. A recent study has also suggested 
that Autotaxin (ATX) may be important in the maintenance 
of the MHB, as ATX-deficient mouse embryos exhibit aber-
rant cranial neurulation and MHB marker expression and 
increased apoptosis [53]. One caveat here is that ATX defi-
ciency results in pleiotropic brain defects, and further con-
ditional deletions may be required to independently assess 
the role that ATX plays in MHB maintenance specifically.

Another transcription factor that appears to be critical 
for maintenance of the MHB cascade is pou2. Zebrafish 
spiel ohne grenzen mutants, which lack this gene, exhibit 
loss of the isthmus in a manner consistent with defective 

maintenance. The positioning of the otx2/gbx1 boundary 
is not affected, and the initial expression of fgf8 also does 
not differ from that of WT embryos [54]. These mutants 
also successfully initiate the expression of the other MHB  
cascade genes, albeit at somewhat reduced levels. However, 
the expression of all these markers, including fgf8, is not 
maintained, and therefore the MHB is not formed, suggest-
ing a maintenance defect [54]. Pou2 does not appear to be 

Fig. 3   Maintenance of MHB development relies on transcriptional 
interdependence between members of the core MHB cascade. During 
this stage of MHB development, functional interplay among FGF8, 
Wnt1, Pax2/5/8 and En1/2 is critical, as loss of any of these factors 
here leads to complete loss of isthmic stability. Several other factors 
are also postulated to regulate this cascade, namely Wnt3a, Autotaxin 
and Pou2 which seem to globally regulate the cascade, as well as 
Lmx1b, Pbx and grhl2b, which exert their effects on specific genes 
within the cascade. In addition to regulation of Wnt1, Lmx1b may 
also regulate Eng1/2 and Pax2/5/8 in this context. Which pathways 
are activated by the interdependence of the core MHB cascade remain 
largely unknown, although some candidates (such as Brn1, Sef, Tapp1 
and Ncrms) are known to lie downstream of certain cascade mem-
bers, in this case Pax2. Failure of MHB interdependence during this 
stage leads to a variety of pleiotropic defects with profound implica-
tions for organiser integrity, namely increased cell death, defective 
precursor cell proliferation, and impaired differentiation, migration 
and functional integration of more mature neurons within the mid-
brain and hindbrain territories
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an instructive signal for MHB formation, as fish mutants 
lacking either fgf8 or pax2 express pou2 normally, yet still 
fail to form the MHB [54]. This suggests that the function 
of pou2 may be to create a permissive environment for tran-
scriptional MHB gene maintenance, either through direct 
regulation of MHB cascade genes or through maintenance 
of transcriptional interdependence via as yet unidentified 
factors.

While some of these novel genes required for MHB 
maintenance operate concurrently with the core MHB 
cascade to maintain the MHB, others undoubtedly lie 
downstream of this transcriptional network, as both 
Pax2 and Engrailed are transcription factors. For exam-
ple, microarray analysis of differentially regulated genes 
in the isthmus of Pax2a−/− mice revealed four novel  
factors—the transcription factors Brn1 (Pou3f3), the 
intracellular signalling modifiers Sef and Tapp1, and the 
non-coding RNA Ncrms (as well as En1)—whose expres-
sion in the MHB was dependent on Pax2a [55]. However, 
the specific functions of these genes within the isthmic 
organiser (with the exception of En1) in maintaining the 
MHB remain unknown.

Maintenance of the MHB is also dependent on tightly 
regulated cell proliferation and migration, as well as differ-
entiation into the functional neurons of both the midbrain 
and hindbrain [28]. Several genes within the MHB cascade, 
such as FGF8 (as well as related family members FGF17 
and FGF18) [56, 57], Wnt1 [58] and En1/2 [59], regulate 
cellular proliferation and/or survival independently of 
their patterning roles in the MHB cascade within the isth-
mic region; similarly, overexpression of RPTPλ also led 
to a reduction in progenitor proliferation [37]. Apoptosis 
undoubtedly also plays a role in failed maintenance of the 
MHB, as mouse deletion mutants lacking Wnt1, FGF8 or 
En1 display substantial apoptosis in and around the MHB, 
coinciding with failed or impaired development of either 
mid- or hindbrain structures [36]. In addition to disrupted 
MHB patterning, fish lacking grhl2b also displayed severe 
apoptosis in the MHB [44], consistent with studies that have 
shown that the grhl2b target, eng2a, is critical for the main-
tenance of neuronal survival [59, 60]. Taken together, data 
from these studies suggest that in addition to the critical 
role of the MHB genes in promoting correct fate acquisi-
tion, they may also be critical for ensuring cellular survival.

Stage 4: Morphogenesis?

Despite our knowledge of the specification and pattern-
ing of the neural tube, it is clear that the genes that control 
MHB positioning, induction and maintenance play only 
minimal roles in MHB morphogenesis. Although the genes 
of the core MHB cascade are critical for correct patterning 
and fating of the MHB, thereby allowing morphogenesis to 

proceed, we propose that morphogenesis should be thought 
of as a separate stage from that of MHB maintenance.  
Disruption of MHB morphogenesis in vertebrates with 
deficiencies in genes of the core MHB cascade is likely to 
be a secondary defect of impaired patterning. Rather than 
merely being a passive consequence of correct specification, 
however, recent data indicate that MHB morphogenesis is  
in fact actively regulated by genes that control cell shaping,  
cellular migration, cytoskeletal plasticity and cellular 
polarity (Fig.  4). In the zebrafish brain, the first morpho-
logical demarcation of the neural tube into a prospective 
folded structure appears at the 16 somite stage, where a 
small invagination between the midbrain and the hind-
brain becomes apparent [27]. Defective polarity across the  
neuroepithelium (apico-basal polarity) still allows the correct  
neural boundaries to be specified (as seen by marker expres-
sion), but MHB folding and/or ventricle inflation is severely 
disrupted [2], indicating that morphogenesis in this context 
occurs independently from induction of the MHB cascade. 
Preliminary data from our laboratory suggest that grhl2b 
may interact with several members of the Wnt/PCP pathway 
in regulating MHB morphogenesis at this stage (Dworkin, 
unpublished), although the precise molecular mechanisms 
underpinning this failed folding are currently unknown.

Further data indicating that neural tube morphogenesis is 
actively regulated by non-neural patterning genes comes from 
early experiments examining deletion of the transmembrane 
adhesion molecule N-cadherin in mouse [61] and zebrafish 
[62]. The morphology of the entire neural tube is dismorphic 
and MHB formation in the fish is severely disrupted. Impor-
tantly, however, the expression of MHB genes such as wnt1 
or pax2 is not affected [62], highlighting the presence of  
morphological defects in the context of correct MHB  
specification and patterning. A similar phenomenon is seen 
in zebrafish mis-expressing the transcription factor CREB 
[63], whereby overexpression of both a constitutively active 
(CREB-FY), or inactive (CREB-M1) form of CREB led to 
defects in MHB morphology, but no loss of the classical MHB 
markers, further supporting a separation of these processes.

Supporting data showing that the processes of MHB 
patterning and morphogenesis are dissociable came from 
investigation of deletion mutants of the miRNA process-
ing molecule, Dicer. Maternal-zygotic (mz) Dicer-deleted 
zebrafish (which lack mature processed miRNAs) showed 
severe defects in neural morphology, particularly at the 
level of the MHB, without a disruption in expression of the 
MHB markers pax2a or eng2 [64]. This group further ana-
lysed which specific miRNAs contributed to the morphol-
ogy loss and found that the MHB defects in the mz-Dicer 
mutants could be rescued through injection of the miR430 
miRNAs. These data show that miRNAs can specifically 
regulate MHB morphology, and as miRNAs generally act 
to repress transcription or translation of targets, it suggests 
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that an over-abundance of some factors, or a disruption in the 
tightly controlled homeostatic regulatory network operating 
at the MHB, is responsible for the observable defects. Future 
work will undoubtedly focus on both the specific targets of 
miR430 and other miRNAs regulated by Dicer in this context.

Further work has come from the laboratory of Hazel 
Sive, who showed that during the morphogenesis phase 
of MHB development, cells at the MHB shorten to 
approximately 75 % of the length of their neighbours and  
concomitantly undergo a process termed “basal constric-
tion”, whereby these cells narrow at their basal side, closest  
to the developing ventricular lumen [65]. This appears to 
be an active process, rather than passive “pushing” from the 
cerebrospinal fluid (CSF) following ventricle formation, as 
ventricle-inflation-deficient mutants snakehead (atp1a1) 
and nagie oko (Mpp5) form a defined basement membrane 
constriction. However, presumptive folds are visible within 
the neural tube of snakehead, but no such morphological 
distinction appears in nagie oko [66], suggesting that mech-
anisms of tube morphology are distinct from those of ventri-
cle development. In contrast to these two ventricle-inflation 
mutants, the laminin-deficient mutants sleepy (laminin γ1) 

and grumpy (laminin β1) do not form a tight constriction, 
thereby defining a novel role for the basement membrane, 
and particularly laminin proteins, in MHB morphogenesis. 
Furthermore, this process again appears to be independent 
of the first three stages of MHB patterning, as MHB-induc-
tion genes such as eng2a and pax2a are expressed normally 
in laminin mutants [65]. A requirement for other patterning 
genes such as wnt1, fgf8 or her5 has not been reported in 
these mutants; however, thereby not entirely excluding the 
MHB cascade from impacting on this process.

Work from our laboratory has shown that in addition to 
its transcriptional roles in the induction and maintenance of 
eng2a, loss of function of grhl2b, leads to a disruption in the 
characteristic shaping of the MHB folds [44]. Critically, it 
appears as though the folding defects occur independently  
of eng2a downregulation, as both our studies and previous 
data [52] did not provide evidence that eng2a regulates MHB 
morphogenesis. Rather, we identified a second grhl2b target 
gene, spec1 (small protein effector of cdc42), which when 
downregulated phenocopied the non-folded MHB morphol-
ogy seen in grhl2b morphants. These data were particularly 
interesting in light of the fact that expression of the core MHB 

Fig. 4   MHB morphogenesis is genetically separable from the actions 
of genes of the core MHB cascade. The Wnt/PCP pathway plays 
critical roles in the establishment of planar polarity of the neural 
plate during neurulation and may also regulate correct apico-basal 
polarity of neuroepithelial cells during morphogenesis of the MHB. 
Formation of the MHB constriction is likely to involve regulation 
of cytoskeleton plasticity, regulated by cdc42, following grhl2b-
mediated activation of spec1. Several classes of adhesion molecules, 
junctional complex and extracellular matrix proteins, such as laminin 
γ1, laminin β1, N-cadherin and Mpp5, as well as the transcription  
factor CREB, also play a role in shaping the MHB independently of 
the core-MHB cascade; precisely what active or instructive role the 

core-MHB cascade plays during this stage is not clear. Loss of Dicer 
leads to aberrant morphology of the neural tube, a defect that can be 
rescued by miR430. However, the identity of other mature miRNAs 
that are lost in Dicer mutants and direct genetic targets of miR430 
(both indicated by an “X?” on the figure) remain to be elucidated. 
Many factors, both genetic (e.g. Atp1a1, mypt1) and cell-intrinsic 
(cytoskeleton fidelity, cell polarity), are likely to play critical roles 
during basal constriction of MHB cells during morphogenesis, and 
extrinsic forces, such as ventricle inflation and cerebrospinal fluid 
(CSF) pressure, may play a role in allowing full ventricular expansion 
and MHB morphogenesis
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cascade in these morphants was not disrupted, and the spec1-
morphants did not exhibit significantly increased apoptosis at 
the MHB region [44]. The folding defects following loss of 
spec1 may be due to a defect in cell polarity caused by disrup-
tion of cdc42, a small molecule that influences actin accumu-
lation in polarised T cells [67–69]. SPECs may generally be 
involved in cdc42-mediated polarity establishment in other 
cell types and may also regulate cell shape [67]. Interestingly, 
blocking of the Notch signalling cascade through electropo-
ration of an inhibitor ligand into the MHB also resulted in a 
mis-folded neuroepithelium together with loss of MHB-gene 
expression, suggesting that like grhl2b, Notch signalling may 
also affect both MHB patterning and morphogenesis pro-
grammes via independent mechanisms [39]. Taken together, 
these studies demonstrate that specific defects in MHB mor-
phogenesis can be caused through dysregulation of non-MHB 
cascade genes. Importantly, these defects are seen even in the 
context of correct specification and patterning by the MHB 
cascade, supporting the idea that MHB morphogenesis is in 
itself an active process, albeit one that requires that the neural 
territory be correctly patterned.

Conclusions

Despite these recent advances in the field, deciphering the 
genetic complexity of the regulatory network controlling 
MHB development remains a work in progress. In addition 
to a candidate gene approach, identification of factors that 
regulate any, some or all of the four stages of MHB devel-
opment described in this review will most likely come from 
both forward genetic and mapping analyses of mutagen-
esis screens and reverse genetic studies of genes that are 
expressed at the MHB. The zebrafish forms a crucial model 
here, owing to the number of phenotypic mutants identified 
with MHB defects, where the responsible gene(s) remain 
unknown [70, 71], and conversely, also because of the large 
number of genes that have been shown to be expressed at 
the MHB (detected by high-throughput in situ hybridisa-
tion screening [72]), whose function in isthmic pattern-
ing remains unknown. These studies will further serve to 
shape our knowledge of how the MHB is formed and could 
provide valuable therapeutic insights for the multitude of 
human neural patterning defects.
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