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steroid receptors. In this review, we discuss the potential 
impacts of bile acid (BA), through its interactions with ster-
oid metabolism, on glucose metabolism, sexual function, 
and prostate and breast cancers. Although several of the 
published reports rely on in vitro studies, they highlight the 
need to understand the interactions that may affect health. 
This effect is important because BA levels are increased 
in several pathophysiological conditions related to liver 
injuries. Additionally, BA receptors are targeted clinically 
using therapeutics to treat liver diseases, diabetes, and 
cancers.

Keywords  FXRα · Bile acid · Steroids · Physiologic 
functions

Bile acids

Biosynthesis and physico‑chemical function

Bile acids (BAs) are the main constituent of bile. BAs are 
present in the digestive tract during a meal and ensure solu-
bilization and emulsification of fat, thus helping digestion 
[1]. They are produced in the liver from cholesterol through 
a series of enzymatic modifications. There are two different 
synthesis pathways that share common enzymes. The first, 
named the classical pathway, involves the P450 CYP7A1 
and CYP8B1 cytochromes, among others. The alternate 
pathway involves cytochromes CYP27A1 and CYP7B1. 
Both pathways result in the production of the so-called pri-
mary BAs cholic acid (CA) and chenodeoxycholic (CDCA) 
[2]. Before being excreted by the hepatocytes, BAs are, in 
part, combined with amine residues (glycine or taurine) 
leading to the production of bile salt-, tauro-, or glyco-con-
jugates. Primary BAs and their conjugates are stored in the 

Abstract  Bile acids are cholesterol metabolites that have 
been extensively studied in recent decades. In addition to 
having ancestral roles in digestion and fat solubilization, 
bile acids have recently been described as signaling mol-
ecules involved in many physiological functions, such as 
glucose and energy metabolisms. These signaling pathways 
involve the activation of the nuclear receptor farnesoid X 
receptor (FXRα) or of the G  protein-coupled receptor 
TGR5. In this review, we will focus on the emerging role 
of FXRα, suggesting important functions for the receptor 
in steroid metabolism. It has been described that FXRα is 
expressed in the adrenal glands and testes, where it seems 
to control steroid production. FXRα also participates in 
steroid catabolism in the liver and interferes with the ster-
oid signaling pathways in target tissues via crosstalk with 
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gallbladder and are discharged during a meal into the duo-
denum to facilitate the digestion of fats and their passage 
through the enterocyte barrier.

In the ileum, BAs are partially deconjugated and are 
modified by enzymes of the intestinal flora [3]. These 
transformations lead to the synthesis of secondary BAs. 
Thus, deoxycholic acid (DCA) and lithocholic acid (LCA) 
are derived from CA and CDCA, respectively.

In the ileum and colon, the majority of BAs (95 %) are 
reabsorbed for recycling in the liver. Thus, the newly syn-
thesized BAs will again be excreted during several rounds 
of digestion. This recycling mechanism, named enterohe-
patic circulation, involves a system of finely regulated car-
riers to maintain the homeostasis of BAs and cholesterol 
from which the BAs originate [4].

In addition to this mechanical function, BAs have been 
described as molecules that signal through two receptors: 
the nuclear farnesoid X receptor alpha (FXRα; NR1H4) 
and the membrane receptor TGR5 (GPBAR1, G protein-
coupled bile acid receptor).

Here, we will focus on the potential involvement of 
FXRα and bile acids on steroid metabolism.

The nuclear receptor of BAs: FXRα

FXRα is a member of the nuclear receptor family [5]. This 
receptor was isolated from mouse livers in a screen of pro-
teins searching for proteins that interact with the receptor of 
9-cis retinoic acid (RXR) and thus was previously named 
RXR-interacting protein 14 (RIP14) [6]. It was renamed 
FXRα because it was shown to be activated by farnesol, an 
intermediate of the mevalonate pathway. FXRα regulates 
transcription through heterodimerization with RXR, and 
binds specific sequences on the promoter of target genes, 
named the FXR-response elements (FXREs), to regulate 
transcription. These sequences are composed of two copies 
of a six-nucleotide sequence (AGGTCA) that are arranged 
as inverted repeat motifs separated by one base (IR-1) [7]. 
Other FXREs have been described, including IR0, IR8 
(separated by zero or eight base pairs, respectively), ER8 
(an everted repeat motif) and DR1 (a direct repeated motif), 
but these response elements have a lower affinity than IR-1.  
If the FXRα/RXR heterodimer enhances transcription, 
it seems as FXRα can also repress transcription through 
potentially negative FXREs [8–10].

FXRα has also been shown to bind to certain genes as a 
monomer or a homodimer on negative FXREs [11]. These 
mechanisms are not yet fully understood.

FXRα/RXR is a permissive heterodimer, as ligands of 
both partners can synergize to regulate the transcription 
of target genes. In 1999, BAs were identified as ligands 
of FXRα [12–14]. This led to the renaming of FXRα as a 
“bile acid receptor” (BAR). The preferred ligands of FXRα 

are CDCA and its conjugated derivatives [15, 16]. Different 
bile acids have different potencies in regard to the activa-
tion of FXRα. The potencies are as follows, in decreasing 
order: (1) CDCA, (2) DCA, (3) LCA, (4) CA [13].

Human and mouse genes encode four isoforms of 
FXRα: FXRα1 (RIP14-2), FXRα2, FXRα3 and FXRα4 
(RIP14-1) [17, 18]. The mouse FXRα gene is located on 
chromosome 10 C2, and the human FXRα gene is located 
on chromosome 12q23.1. These genes are composed of 11 
exons and ten introns. The isoforms result from two alter-
nate promoters that initiate transcription at either exon 1 
or exon 3 [17, 19]. The alternative promoters at exon 1 or 
exon 3 regulate the expression of FXRα1 and FXRα2 or 
FXRα3 and FXRα4 transcripts, respectively. The FXRα3 
and FXRα4 isoforms possess longer N-terminal regions 
than do FXRα1 and FXRα2. The isoform differences could 
impact the efficiency of the “activation function 1 domain” 
(AF-1) for interacting with cofactors. In the FXRα 1 and 
3 isoforms, exon 5 is differentially spliced compared to 
FXRα 2 and 4. This alternative splicing event results in 
the addition of four amino acids (MYTG) adjacent to the 
DNA-binding domain in the hinge domain. The four FXRα 
isoforms present a degree of specificity at the mRNA level, 
which affects protein structure. However, all isoforms con-
tain the classical domains of nuclear receptors, including 
the dimerization interface, the ligand binding domain, the 
DNA-binding domain, and the ligand-dependent activation 
function (AF-2) domain at the C-terminus. Indeed, the iso-
forms indicate classical activation by RXR and FXRα ago-
nists, but could differentially regulate the expression of tar-
get genes in vitro [19, 20, 21]. Moreover, the isoforms are 
expressed in a tissue-specific manner.

The heart and adrenal glands express only FXRα1 and 
FXRα2. These isoforms are expressed at low levels in the 
lung and white adipose tissue. FXRα3 and FXRα4 are 
expressed in the kidney and stomach [22]. Volle et al. [23] 
showed the expression of FXRα in the testis, specifically 
in the interstitial compartment. This result was supported 
by a further study on testicular cell lines [24]. In humans, 
Bishop-Bailey et  al. [25] showed expression of FXRα in 
biopsies of cardiac muscle, the small intestine and the adre-
nal glands. The liver and adrenal glands express FXRα1 
and FXRα2 exclusively, while the kidney and the colon 
express FXRα3 and FXRα4. All four isoforms are found 
in the small intestine and duodenum. FXRα is detected in 
human immune cells, peripheral blood mononuclear cells 
and subsets of lymphocytes and monocytes [26, 27].

These expression patterns of FXRα suggest that it might 
have major physiological roles. The use of a mouse model 
lacking the gene encoding FXRα (FXRα−/−) highlights 
the involvement of FXRα in many physiological functions 
(digestion, immunity) and diseases, such as diabetes and 
cancers [28]. The first described roles of FXRα were the 



4513Farnesoid X receptor alpha: a molecular link between bile acids and steroid signaling?

1 3

regulation of the enterohepatic cycle and the regulation of 
BA biosynthesis [29]. Fxrα−/− mice exhibit high plasma 
concentrations of BAs, highlighting the critical role of 
FXRα in the repression of Cyp7a1, which codes for a key 
enzyme in BA biosynthesis. At the molecular level, this 
pathway involves several members of the nuclear recep-
tor superfamily, such as SHP (small heterodimer partner), 
LRH1 (Liver receptor homolog-1), and LXRα (Liver X 
receptor) [30, 31]. In parallel, FXRα protects the liver from 
the toxic effects of the accumulation of BAs, promoting the 
excretion of BAs into the bile by the transcriptional induc-
tion of specific transporter Bsep (bile salt export pump) 
[32]. Fxr−/− mice consistently show decreased excretion 
of BAs in the digestive tract [29]. In the intestine, FXRα 
induces the expression and secretion of fibroblast growth 
factor 15/19 (FGF15/19) into the portal circulation. 
After binding with the fibroblast growth factor receptor 4 
(FGFR4) in the liver, FGF15/19 represses the enzymes of 
BA synthesis [33].

FXRα is also involved in the control of lipid and car-
bohydrate metabolism [11]. Its action in the liver limits 
triglyceride production through the repression of genes 
such as stearoyl coenzyme A desaturase [34]. Consistently, 
Fxrα−/− mice show high plasma triglyceride concentra-
tions. In addition, FXRα also controls glucose metabolism 
through the regulation, in the liver, of phosphoenolpyruvate 
carboxykinase and glucose-6-phosphatase genes encoding 
key enzymes of gluconeogenesis and glycogenolysis [35].

Crosstalk between bile acids and steroid metabolism

In addition to the primary roles of bile acids, many recent 
studies have reported potential connections between bile 
acids and steroid metabolism.

It has recently been demonstrated that steroids can con-
trol bile acid homeostasis. For example, long-term therapy 
with glucocorticoids (GC) presents several limitations due 
to side effects such as hyperglycemia or insulin resistance. 
Cholestasis remains a major side effect. BA serum levels 
are correlated positively with serum GC concentrations in 
humans. Increased GC levels in Cushing’s patients were 
associated with elevated BA levels [36]. Furthermore, 
hepatic GC receptor deficiency in mice resulted in a reduc-
tion of the hepatic BA pool in obese mice [37].

Similarly, estrogens are thought to contribute to the eti-
ology of intrahepatic cholestasis during pregnancy, which 
is associated with an increase in the total bile acid pool 
[38]. This disease usually develops in the third trimes-
ter of pregnancy when concentrations of estrogens are the 
highest. These patients can develop cholestasis outside 
pregnancy when they are taking oral contraceptives con-
taining 17αethinyloestradiol. High doses of estradiol and 

its metabolites also cause cholestasis in rodents, and mice 
lacking estrogen receptors are resistant to these effects  
[39, 40].

In this review, we will discuss data indicating that bile 
acids can regulate steroid homeostasis and interfere with 
steroid signaling pathways through FXRα. This hypothesis 
relies on studies demonstrating that FXRα is expressed in 
many steroidogenic tissues. Moreover, bile acids, FXRα 
ligands, and steroids are derived from the same precursor 
molecule (cholesterol). Although several of the reported 
data rely on in vitro studies, they highlight the need to 
understand these interactions because they may affect 
health.

Impact of bile acids on glucocorticoid pathways

Glucocorticoids are produced by the adrenal glands and 
are essential for life. In humans, cortisol is the most 
important glucocorticoid (GC). The name of the GCs is 
based on their well-established roles in glucose metabo-
lism during the stress response. GCs are involved in the 
stimulation of gluconeogenesis, particularly in the liver, 
the mobilization of amino acids from extrahepatic tissues, 
the inhibition of glucose uptake in muscle and adipose tis-
sue, as well as the stimulation of fat breakdown in adi-
pose tissue [41]. GCs regulate or support cardiovascular, 
metabolic, immunologic, and homeostatic functions. The 
adrenals also produce mineralocorticoids, mostly aldos-
terone. The main target of aldosterone is the distal tubule 
of the kidney, where it stimulates the exchange of sodium 
and potassium.

The potential role of FXRα in adrenals was expected as 
it was described to be highly expressed in the adrenocorti-
cal cells of the zona fasciculata [42, 43]. These potential 
interactions with GC metabolism could be either at the 
level of GC synthesis, catabolism, or either through the 
alteration of their physiological functions.

Glucocorticoid synthesis

As summarized in Fig. 1, the impact of FXRα on GC syn-
thesis was recently demonstrated. Fxrα−/− mice show the 
same plasma glucocorticoid concentrations as wild-type 
mice, suggesting that FXRα might not be involved in the 
regulation of the adrenal steroidogenesis under normal 
conditions. However, FXRα might have an impact in adre-
nal physiology in mice [44], as its activation increases the 
expression of scavenger receptor class B, member 1 (SR-
BI), which is involved in the transport of cholesterol esters, 
the specific cellular cholesterol pool used for steroidogene-
sis [45]. C57BL6 female mice treated with GW4064, a syn-
thetic FXRα agonist, have an increased plasma corticoster-
oid concentrations [46].
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In the human adrenocortical cell line H295R, the use of 
GW4064 and CDCA shows that FXRα positively regulates 
the expression of 3β-hydroxysteroid dehydrogenase type 2 
(HSD3B2). This regulation does not exist in mice, which is 
consistent with the fact that no FXRE was identified in the 
mouse Hsd3β1 promoter region, the orthologue of human 
HSD3B2 gene [47].

Glucorticoid catabolism

In target tissues, the concentration of steroids results from 
the equilibrium between synthesis and catabolism pro-
cesses. The efficiency of GCs relies on an inactivation or a 
degradation of the steroids.

Cellular availability  The ability of cells to respond 
to glucocorticoids and aldosterone is dependent on 
11β-hydroxysteroid dehydrogenases (11betaHSDs), which 
catalyze the reversible conversion of physiologically active 
glucocorticoids to the inactive 11-ketometabolites. There 
are two isoforms of the 11β-hydroxydeshydrogenease: 11β-
HSD1 and 11β-HSD2, and 11β-HSD deficiency is responsi-
ble for the hypermineralocorticoid, which results in hyper-
tension.

There is much evidence to suggest that bile acids are 
able to enhance the intracellular availability of cortisol by 
abrogating the 11β-HSD2 activity. BA-dependent inhibi-
tion of 11βHSD2 enzyme activity was demonstrated using 
total renal microsomes. Various BAs, such as CDCA and 
DCA, are able to inhibit the oxidative activity of 11βHSD2. 
However, in vitro studies suggest that CDCA might affect 
the activity of 11β-HSD2 in HEK-293 cells only at very 
high non-physiological concentrations. Consistently, the 
induction of cirrhosis by bile duct ligation decreased the 
transcriptional levels of the 11β-HSD enzyme (Fig.  2). 
Inhibition of 11βHSD2 may contribute to the sodium reten-
tion and potassium excretion observed in patients with liver 
cirrhosis or cholestasis [48, 49].

In agreement with reports showing that bile acids can 
inhibit both 11β-HSD isoforms in various tissues, it was 
demonstrated that CDCA inhibited 11β-HSD1 in Leydig 
cells [50]. It can be hypothesized that FXRα can regulate 
the impact of cortisol in Leydig cells through the regulation 
of 11β-hydroxysteroid dehydrogenase 1 (Fig. 2). It is well 
established that glucocorticoids play a critical role in the 
control of Leydig cell function. High levels of glucocorti-
coids are associated with a reduced circulating testosterone 
level and with reproductive dysfunction [51, 52]. It has 
been reported that excess corticosterone reduces the expres-
sion and activity of 3β-hydroxysteroid dehydrogenase (3β-
HSD) and 17β-hydroxysteroid dehydrogenase (17β-HSD) 
in adult rat Leydig cells in vivo and in vitro [53].

Glucocorticoid degradation  Glucuronidation is catalyzed 
by enzymes belonging to the uridine 5, diphosphate glucu-
ronosyl transferase family (UGT) [8, 54]. These enzymes 
have been divided into two major subfamilies, UGT1A and 
UGT2B, based on their amino acid sequence homology. The 
UGT2 family includes enzymes that are able to glucuroni-
date both bile acids and steroids.

Expressed in the liver, kidney, brain, and gastrointesti-
nal tract, UGT2B7 is considered the major human miner-
alocorticoid and glucocorticoid metabolizing UGT enzyme 
(Fig. 2). It has also been demonstrated that a single muta-
tion in this gene greatly affects the level of aldosterone 
glucuronidation.

Ugt2b7 expression seems to be repressed by LCA 
treatment in vitro. LCA-FXRα activation dramatically 

Fig. 1   Schematic representation of FXRα impact on steroid synthe-
sis. In the testes, FXRα regulates the synthesis of both androgens 
and estrogens through the inhibition of the steroid acute regulatory 
proteins, cytochrome P450A1, 3β-hydroxydehydrogenase, and aro-
matase. This effect can lead to altered male fertility or sexual matura-
tion at puberty. In the adrenal glands, the impact of FXRα on steroid 
synthesis is mediated through the regulation of the Srb-1 gene, lead-
ing to increased cholesterol mobilization for steroid synthesis and reg-
ulation of 3β-hydroxydehydrogenase type 2 in human adrenal cells. 
This effect can result in hypercorticosteroid or hypermineralocorti-
coid production and affects stress responses and inflammation
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decreased accumulation of UGT2B7 mRNA levels through 
the binding of FXRα to a negative FXRE [55]. Moreover, 
transfection of cells with hFXRα resulted in a significant 
suppression of UGT2B7 expression in the absence of LCA 
and additional suppression was observed when the cells 
were treated with LCA.

FXRα interferes with glucose metabolism regulation by 
glucocorticoid signaling pathways

Regarding the impact of FXRα on GCs synthesis and 
catabolism, it is reasonable to speculate that bile acids 
could contribute to a pathologically increased serum level 
of mineralocorticoids and glucocorticoids [56].

The action of glucocorticoids is mediated through the 
glucocorticoid receptor (GR), which is a member of the 
nuclear receptor superfamily that regulates numerous 
transcription programs including immune suppression, 
anti-inflammatory responses, and glucose metabolism. 

Glucocorticoid binds to GR in the cytoplasm and promotes 
its translocation to the nucleus. Then, activated GR binds 
to a GR response element (GRE) in the promoter of down-
stream target genes and allows their transcription through 
the recruitment of various co-activators such as PGC-1.

GR is highly expressed in the liver, where it regulates 
the expression of rate-limiting enzymes in gluconeogen-
esis and plays an important role in the control of glucose 
metabolism. During conditions of high energy demand, 
systemic glucocorticoid concentrations increase and acti-
vate GR in the liver, leading to glucose mobilization via the 
expression of gluconeogenesis enzymes [57]. Among these 
enzymes, phospho(enol)pyruvate carboxykinase (PEPCK) 
and glucose-6-phosphatase (G6Pase) are known to be posi-
tively regulated by glucocorticoids and also by glucagon, 
which both have strong gluconeogenic actions, while insu-
lin suppresses hepatic gluconeogenesis [58]. Conditional 
mice harboring a disrupted GR in hepatocytes exhibit pro-
found hypoglycemia after prolonged food withdrawal and 

Fig. 2   Schematic representa-
tion of FXRα impact on steroid 
catabolism. In the liver, FXRα 
participates in the homeosta-
sis of steroids by regulating 
the expression of many genes 
involved in steroid metabo-
lism, such as Cyp3a4, Sult2a1, 
Ugt1a3, and Ugt2b4. Ugt2b4 
regulation can be either direct 
or through PPARα. These types 
of regulation are also observed 
in the intestine (Sult2a1 and 
Ugt2b7). Modulating the local 
levels of mineralocorticoids and 
corticosteroids contributes to 
local inflammation processes. 
In the testis, the role of FXRα 
in BA repression of 11βhsd is 
unclear, but it may contribute 
to the repression of testoster-
one synthesis by FXRα. In 
the prostate, the repression 
of Ugt2b15/17 expression by 
FXRα leads to androgen accu-
mulation and an increased risk 
of prostate cancer development
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are unable to up-regulate the expression of gluconeogenic 
enzymes [59].

Bile acids exert regulatory effects to maintain glu-
cose and insulin homeostasis. However, the precise role 
of FXRα in the regulation of hepatic glucose metabo-
lism remains controversial, as it was described either as 
an inhibitor or an inducer of gluconeogenesis [22, 60, 61] 
(Fig. 3).

FXRα represses gluconeogenesis  Several studies report a 
repressive effect of FXRα on the expression of gluconeo-
genic genes, suggesting that FXRα signaling could interfere 
with/counteract the role of glucocorticoids and GR signal-
ing on hepatic glucose metabolism. C57BL6 mice treated 
with a 1  % CA-supplemented diet for 7–8  days showed 
decreased hepatic Pepck and G6Pase mRNA levels [62, 63]. 
The involvement of FXRα in Pepck and G6Pase downregu-
lation was suggested in vivo by Zhang et al. [64], showing 
that oral GW4064 treatment, as well as adenoviral-mediated 
hepatic overexpression of FXRα, improved hyperglycemia 
in db/db diabetic mice. Feeding a CA-enriched diet has been 
shown to decrease fasting blood glucose levels associated 
with reduced expression of Pepck and G6Pase mRNA in 
wild-type but not Fxrα−/− mice. This effect was shown to 
be mediated through the classical FXRα target gene Shp, a 
known regulator of gluconeogenesis [65].

FXRα induces gluconeogenesis  Some in vivo studies 
showed that treatment with the FXRα agonist GW4064 
induces Pepck mRNA levels in an FXRα-dependent man-

ner [35, 64]. Renga et  al. [66] demonstrated that FXRα 
activates gluconeogenic pathways in the liver through the 
direct regulation of GR expression and activity. In Fxr-null 
mice, the decreased accumulation of rate-limiting gluconeo-
genic enzymes after a period of 15 h of withdrawal is asso-
ciated with blunted liver expression of GR. Treating wild-
type mice with a semisynthetic FXR ligand (6E-CDCA) 
increases the liver expression of GR, Pepck, and G6pase 
mRNA accumulation. Fxrα−/− mice failed to regulate Pepck 
and G6Pase in response to dexamethasone, suggesting that 
FXRα is essential for mediating GR gluconeogenic signal-
ing. GR silencing by siRNA in vitro or its pharmacological 
antagonism in vivo with mifepristone reverses the effect of 
FXRα activation on the expression of gluconeogenic genes, 
suggesting that an FXRα-GR pathway regulates the activa-
tion of hepatic gluconeogenesis in the transition from the 
unfed to the fed state.

A diet issue?  Such complex regulation of glucose metabo-
lism in vivo has been recently addressed by Ma et al. [65] 
who showed that the activation of FXRα exerts opposite 
effects during unfed or fed conditions. In fed animals, the 
activation of FXRα downregulates the expression of Pepck 
and G6Pase, and the opposite effect was observed in the 
unfed state.

Fxrα−/− mice were defective in the induction of glu-
coneogenic genes, including Pgc-1α and Pepck, after 6  h 
of fasting and displayed lower basal hepatic glucose pro-
duction, leading to an early hypoglycemia response. This 
defect in the starvation response was associated with a 

Fig. 3   Schematic representation of the crosstalk between steroids and 
FXRα signaling pathways. In the liver, the interaction of FXRα and 
glucocorticoid pathways is notably complex and can lead to either 
the induction or repression of this pathway. This process is correlated 
with fed/unfed adaptation processes. FXRα has a role in breast cancer. 

The expression of FXRα was significantly correlated with prolifera-
tion in post-menopausal women with lower estrogen concentrations 
who had ER-positive breast tumors. Additionally, estrogen levels are 
thought to contribute to the etiology of intrahepatic cholestasis in 
pregnancy
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significantly reduced hepatic glycogen content in the 
Fxrα−/− mice [67].

At the molecular level, such a model may be partially 
explained by the relative affinity of FXRα to different types 
of response element. It is well known that FXRα binds with 
high affinity to IR-1, while ER-8 sequences have low-affin-
ity binding sites for FXRα [68, 69]. In the fed state, when 
Fxrα mRNA levels are low, the activated receptor regulates 
the transcription of target genes mainly by binding to IR-1 
sequences such as the Shp target gene, a known repressor 
of gluconeogenesis. When Fxrα mRNA levels are high, as 
in the unfed state, the receptor might occupy low-affinity 
binding sites, such as the ER-8 sequences, which then allow 
induction of Gr transcription by FXRα. This induction of 
GR leads to increased Pepck and G6pase mRNA levels.

Integrative conclusions

Together, these data suggest that BA might have an impact 
on glucocorticoid metabolism at multiple levels. The results 
obtained in vivo using mice treated with a FXRα agonist 
correlated with the use of Fxrα−/− mice and demonstrate 
the induction of glucocorticoid levels (Fig. 1).

The increase of GC concentrations following BA expo-
sure is also a result of the increased bioavailability of glu-
cocorticoids and is associated with decreased liver catabo-
lism and reduced inactivation by 11βHSD2 (Fig. 2).

The activation of FXRα by BA interferes with GC action 
on glucose metabolism in liver. When these data are com-
bined with the well-established role of GR signaling on glu-
cose metabolism, especially during adaptation between fed/
unfed conditions, the data suggest that FXRα modulates the 
kinetics of glucose homeostasis during fasting. This result 
highlights a potential positive interaction between the two 
receptors for metabolic adaptations (Fig. 3).

The links between FXRα and GC on liver glucose 
metabolism were analyzed by Ma et  al. for crosstalk 
between receptors. Thus, it is important to consider the 
ligand bioavailability. According to the hypothesis by Ma 
et  al., the impact of BA/FXRα on glucose metabolism 
depends on the transition between the fed and unfed states, 
which corresponds to unstressed/stress situations. The 
impact of BAs on metabolism will be difficult to assess in 
normal physiology because during fasting, the GC levels 
are increased, and BA levels are decreased. The relevance 
of BAs on GR signaling pathways is difficult to integrate. 
However, it is important to examine these parameters in 
diseases with high BA levels.

Impact of bile acids on sex hormone pathways

There are limited data available on the interactions between 
bile acid/FXRα signaling pathways and sex steroid 

metabolism. As for GCs, these interactions will be at the 
levels of synthesis, catabolism, or by modification of the 
physiological functions of sex steroids.

Sex hormone synthesis

The only link between FXRα and sex hormone synthesis 
thus far has been obtained from studies on the testes. The 
testes are composed of seminiferous tubules outlined by a 
basal membrane that separates them from the interstitial 
compartment. In the adult, these two compartments ensure 
the exocrine (spermatozoa production) and the endocrine 
(hormone synthesis) functions [70]. The testes are involved 
in the synthesis of estrogens and testosterone. In males, 
androgens are responsible for the maintenance of fertility 
and the development of secondary sexual characters [71]. 
In addition, testosterone is essential for reproductive func-
tion, muscle and bone mass maintenance, cognitive func-
tion and other physiological parameters. Altered testicular 
functions may increase the risk of metabolic syndrome 
[72]. The testes also produce estrogen, which acts through 
the estrogen receptors ERα and ERβ. Estrogen down-regu-
lates the luteinizing hormone receptor (Lhcgr) and inhibits 
the Steroidogenic acute regulatory protein (StAR) gene and 
others genes implicated in steroidogenesis in Leydig cells 
[73].

In 2007, Volle et al. [23] detected transcripts of Fxrα in 
the interstitial cells. FXRα was also described as a regu-
lator of the aromatase gene in tumor Leydig cells [24]. A 
decrease in aromatase expression was observed after induc-
tion with GW4064 or CDCA in Leydig cell lines in vitro 
(Fig.  1). FXRα interferes negatively with SF1 activity on 
sequences of the PII promoter of aromatase, where FXRα 
enters in competition with SF-1 for binding a common site. 
This results in an inhibition of estrogen synthesis.

The in vivo role of FXRα on androgen synthesis was 
demonstrated using a FXRα synthetic agonist (GW4064). 
If testosterone concentrations were similar between wild-
type and Fxrα−/− mice, the administration of GW4064 
repressed steroidogenesis after 12 h of treatment and was 
associated with a decrease in Star, Cyp11a1, and 3β-hsd 
gene expression (Fig.  1). At the molecular level, it was 
demonstrated that this repressive effect is consistent with 
the up-regulation of Shp, which then inhibits LRH-1 and 
SF1 activity, two know inducers of steroidogenesis. It 
has also been shown that FXRα regulates the synthesis of 
androsterone [74].

Bile acids and sex hormone catabolism

The potential interaction of FXRα with sex hormone 
metabolism was also demonstrated through the regulation 
of the catabolism of these steroids. Such cross-talks occur 
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via the regulation of several key genes as highlighted in 
Fig. 2 and detailed below.

CYP3A4  Expressed predominantly in the adult liver and 
intestine, the cytochrome P450 enzyme CYP3A4 has been 
shown both in vitro and in vivo to hydroxylate BAs at the 
1β, 6α, and 6β positions, thus participating in the elimina-
tion of BAs [75, 76]. Several studies have shown that bile 
acids positively regulate Cyp3a11 expression, the mouse 
orthologue of Cyp3A4, to initiate their catabolism when 
they are in excess [75, 77–79]. CYP3A11 plays an impor-
tant role in the metabolism of both exogenous drugs and 
endogenous compounds such as cortisol [80], testosterone 
[81] or estradiol-17β [82]. This result suggests a potential 
association with steroid metabolism.

Studies using the HepG2 cell line exposed to either the 
natural ligand CDCA or to the specific synthetic ligand 
GW4064 have demonstrated that FXRα controls Cyp3A4 
expression in the liver [79]. This result was also observed in 
the mouse, as wild-type mice fed GW4064 have increased 
hepatic levels of Cyp3a11, which is the rodent homologue 
of human CYP3A4 [79]. However, this effect was not 
observed in Fxrα−/− mice.

Epidemiological and clinical evidence links a CYP3A4 
promoter variant (CYP3A4*1B (rs2740574)) with the inci-
dence of prostate cancer and the clinical grade of the tumor 
and disease progression [83–85]. There is no significant 
association between the CYP3A41B* genotype and the lev-
els of serum testosterone. This result suggests that CYP3A4 
might have a minimal impact on hepatic catabolism [86]. 
The decreased CYP3A4 expression within prostate tis-
sue is associated with a higher Gleason score and poorer 
cancer-specific survival [87, 88]. This result suggests that 
CYP3A4 may play a critical role in maintaining androgen 
homeostasis within the prostate and loss of CYP3A4 leads 
to the development of cancer.

SULT2A1  In addition to hydroxylation, sulphate or glu-
curonidate conjugation are important mechanisms for the 
detoxification of steroids. Upon conjugation, the substrates 
become more polar, less toxic and more water soluble, facil-
itating their clearance.

Dehydroepiandrosterone-sulphotransferase (SULT2A1/ 
Sult2a1) are phase II metabolizing enzymes that catalyze 
the sulphating of various exogenous chemicals and endoge-
nous compounds including testosterone, estrogen, and BAs 
[89–91].

Increased serum and urine levels of sulphated BAs were 
described in patients with cholestatic liver diseases [92, 93]. 
These clinical observations suggest a potential involvement 
of BAs in controlling their own sulphating though the regu-
lation of enzymes such as Sult2a1. This is consistent with 
the fact that Sult2A1 is expressed abundantly in the liver 

and intestine, the two first-pass metabolic tissues where 
FXRα is also expressed. Song et al. have demonstrated that 
primary bile acid CDCA treatment was shown to induce 
rat/mouse Sult2a1 promoter activity in transfected Caco-2 
and HepG2 cells in vitro. This rat/mouse Sult2a1 induction 
involved an activated FXRα/RXR heterodimer binding to 
an atypical FXRα response element (IR0) located in the 5′ 
flanking region [90].

However, sequence alignments have shown that this IR0 
element does not exist in the human SULT2A1 5′-flank-
ing region, demonstrating that the regulation by FXRα 
might not be conserved between species [94, 95]. Human 
SULT2A1 mRNA levels failed to be modulated in cultured 
human primary hepatocytes treated with CDCA [95]. Fur-
ther studies are needed to understand how FXR regulates 
human SULT2A1 expression.

Consistently, in vivo investigations showed that 
FXRα may be involved in the repression of basal Sult2a1 
expression. Moreover, CDCA-fed mice present mark-
edly decreased Sult2a1 expression in wild-type mice. This 
is correlated with an increased level of Shp, suggesting a 
FXRα-dependant mechanism, which was confirmed by the 
lack of Sult2a1 modulation in Fxrα−/− mice following a 
diet [96].

Interestingly, Fxrα−/− mice present an increased level 
of Sut2a1 in basal physiology and are resistant to LCA 
induced liver toxicity compared to wild-type (WT) mice 
[97].

SULT2A1 was originally involved in the inactivation of 
androgen hormones. In the rodent liver, the high expres-
sion of Sult2a1 during the androgen-insensitive state of the 
hepatic tissue in senescent males is thought to be a result 
of the efficient inactivation of androgens into androgen sul-
phates [98, 99]. Thomae et al. [100] reported 3 SULT2A1 
gene alterations that result in decreased Sult2a1 expression 
and activity. Interestingly, these alterations were present 
only in African American patients and were suggested to 
be partially responsible for the androgen-associated risk of 
disease. A significant increase in the DHEA-to-DHEA-sul-
phate ratio was observed in African American participants 
with a heterozygous SULT2A1 A63P/A261T genotype. 
However, the presence of the different SULT2A1 alleles 
was not associated with prostate cancer.

Moreover, as FXRα and AR are both able to control 
Sult2a1 gene expression, it is reasonable to think that bile 
acid and androgen metabolisms could crosstalk through 
Sult2a1 regulation [101, 102].

UGTs  Sex steroid catabolism also involves UDP-glucu-
ronosyltransferases (UGT). Among the 18 functional UGT 
enzymes identified in humans, UGT2B7, UGT2B15, and 
UGT2B17 have a remarkable capacity to conjugate andro-
gens [103].
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UGT2b7  A tumor-suppressor function was suggested for 
UGT2B7 by preventing the accumulation of mutagenesis 
compounds like 4-hydroxyestrone [104]. Indeed, reduced 
levels of the UGT2B7 protein and glucuronidation of 
4-hydroxyestrone were shown in invasive cancers. How-
ever, the role of the bile acid challenge in vivo on UGT2B7 
expression still remains to be determined.

UGT2B4 (liver)  Barbier et  al. [8] identified human 
UGT2B4 as a target gene of FXRα. Activation of FXRα by 
CDCA or GW4064 in primary human hepatocytes or in the 
HepG2 cell line resulted in increased UGT2B4 expression 
through an atypical binding of FXRα as a monomer to a 
single hexameric DNA motif.

Interestingly, the PPARα agonist fenofibrate was shown 
to activate the UGT2B4 gene promoter through a specific 
peroxisome proliferator activated receptor (PPAR) response 
element [105]. DCA also induces the transcription of 
PPARα gene via an FXRα-mediated mechanism. Thus, bile 
acids may induce UGT2B4 expression directly through acti-
vation of FXRα and/or indirectly through FXRα-dependent 
induction of PPARα, which then activates UGT2B4 tran-
scription. Through these mechanisms, BAs may be part of 
a negative feedback mechanism by which BAs control their 
elimination to prevent pathophysiological toxicity.

The potential impact of BAs on steroid metabolism 
should be taken into consideration as UGT2B4 is known 
to be active on 5α-reduced androgens and polyhydroxy-
lated estrogens, including estriol, 4-hydroxyestrone and 
2-hydroxyestriol.

UGT1A3 (liver)  Hepg2 cells treated with LCA, CDCA, 
and GW4064 present increased UGT1A3 mRNA levels. 
The resulting CDCA-24-glucuronide was shown to exhibit 
an antagonistic effect on FXRα as feedback inhibition. 
UGT1A3 is expressed in the liver, intestine, and large bowel 
[106–108]. Apart from BA, UGT1A3 metabolizes xenobiot-
ics such as polyaromatic hydrocarbons as well as estrogens, 
and vitamin D derivatives [109–111]. Because UGT1A3 is 
significantly induced by FXRα in response to bile acids, this 
regulation could link bile acid metabolism and steroid hor-
mone metabolism alteration.

UGT2B15/17 (prostate)  While glucuronidation was gen-
erally considered to be a hepatic/intestinal detoxification 
mechanism, extrahepatic glucuronidation is now estab-
lished as an efficient way to locally inactivate endogenous 
bioactive molecules [103, 112]. This is particularly true for 
androgens, which are efficiently glucuronidated within their 
target tissues, such as the human prostate [113].

A regulatory function of the nuclear receptor FXRα 
in androgen metabolism has been shown in prostate 

cancer LNCaP cells [114]. CDCA or GW4064 repress 
gene expression and androgen-conjugating activity of 
the UGT2B15 and UGT2B17 enzymes in prostate cancer 
LnCaP cells. The regulation of UGT2B15 expression by 
FXRα seemed to be tissue-specific, as previous data have 
shown that CDCA does not modulate UGT2B15 mRNA in 
human hepatocytes [8]. Moreover, Fxrα−/− mice present an 
increased level of UGT mRNA accumulation in the pros-
tate compared to wild-type mice. The exact mechanism by 
which FXRα negatively regulates UGT2B15 and UGT2B17 
genes, and the physiological implications of this regulation, 
remain to be determined because androgen glucuronidation 
is almost absent in the rodent prostate [114–116].

In contrast, the importance of glucuronidation for andro-
gen metabolism in the human prostate was highlighted by 
the observation that polymorphisms within androgen-glu-
curonidating genes are associated with an increased risk for 
prostate cancer [117, 118]. A UGT2B17 inactivation poly-
morphism was associated with an increased prostate cancer 
risk [119]. The D85 polymorphism of UGT2B15, which 
leads to a less efficient protein for conjugation of 3-diol and 
DHT, results in higher androgen exposure in prostate tis-
sue. In accordance with these findings, the D85 allele has 
been reported to increase prostate cancer risk and aggres-
siveness [120, 121].

During cholestasis, plasma levels of bile acids are dras-
tically increased [122], and it can be hypothesized that 
in such patients, glucuronidation of androgens may be 
reduced, resulting in the accumulation of androgens in 
the prostate, which may correspond to a pro-carcinogenic 
mechanism. Interestingly, the development of cholestasis 
has been reported in various patients with prostate cancer 
[123–125].

This conclusion is particularly important because FXRα 
agonists are currently considered as a promising treat-
ment of several diseases such as hepatitis C or metabolic 
syndrome, as highlighted by several ongoing clinical trials 
(www.clinicaltrials.org).

FXRα interferes with sex hormone signaling pathways

Potential impact of FXRα on AR pathways (Fig.  3)  The 
role of FXRα on androgen signaling pathways has not been 
clearly demonstrated and is still speculative. However, it can 
be hypothesized that by controlling Shp expression, FXRα 
could interfere with the actions of androgen. SHP is able to 
interact with numerous nuclear receptors. It has been dem-
onstrated in vitro using GST-pull-down experiments that 
SHP interacts and inhibits the androgen receptor activity 
[126]. SHP acts by competing with AR co-activators. These 
data opened a new field of research concerning how BAs 
might interfere with androgen signaling pathways. This is 

http://www.clinicaltrials.org
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even more interesting in line with the described inhibitory 
effect of FXRα synthetic ligand on testosterone production.

Potential impact of FXRα on ER  Any impact on breast 
cancer? (Fig. 3). Although no data describe links between 
FXRα and female hormone synthesis, reports suggest a 
potential role for FXRα in breast pathophysiology. Estrogen 
exposure has long been known to contribute to the etiol-
ogy of breast cancers [127], and approximately two-thirds 
of these cases are characterized by dysregulation of the 
estrogen receptor α (ERα) signaling [128]. Therapy con-
sists of blocking estrogen synthesis (aromatase inhibitors) 
or ER transactivation (estrogen receptor modulators, such 
as tamoxifen) [129, 130]. Evidence suggests a potential role 
for bile acids in breast cancer etiology (Fig. 3). The accu-
mulation of bile acids has been reported in breast cyst fluid 
and has been proposed as a potential risk factor for breast 
cancer [131–133]. Women with breast cancer may have 
differences in the fecal excretion of BAs compared to con-
trols [134–136]. In addition, long-term follow-up of women 
undergoing cholecystectomy has revealed a higher risk of 
breast cancer [137].

The potential involvement of FXRα was highlighted in 
several clinical studies. Interestingly, FXRα was shown to 
be expressed in normal breast tissue, and several studies 
established significant correlations between FXRα and ER 
expression in breast cancer samples [138, 139]. Fifty per-
cent of ER-negative breast cancer samples had weak FXRα 
expression, and 70  % of ER-positive samples had FXRα 
expression suggestive of crosstalk between ER and FXRα 
signaling [139]. These clinical data are supported by semi-
quantitative analyses revealing that the ER-positive breast 
cancer cell line MCF-7 has higher FXRα protein accumu-
lation than the ER-negative MDA-MD 231 cell line [37]. 
A significant correlation between FXRα and the Ki67 pro-
liferative marker has also been observed. FXRα expression 
was significantly correlated with proliferation in patients 
with ER-positive breast tumors in postmenopausal women, 
with lower estrogen concentrations [37]. In the context 
of low estrogen, FXRα expression may play a key role in 
proliferation. This hypothesis is further supported by the 
presence of high plasma levels of DCA in postmenopau-
sal breast cancer patients [140], suggesting that bile acids 
might be involved in the onset and development of mam-
mary gland cancers in an estrogen-independent context 
through the activation of FXRα.

If these correlations are established in patients, the 
molecular mechanisms remain unclear with contradictory 
results.

In vitro data show that activated FXRα induces a mito-
genic response in a breast cancer cell line through posi-
tive crosstalk with the ER. Indeed, the ER-positive cell 
line MCF-7 shows increased proliferation in response to 

FXRα activation. This was associated with a pro-estro-
genic response, as measured by the downregulation of 
ERα accumulation [37, 139]. These results suggest that in 
absence of estrogens, these pro-estrogenic patterns should 
a result of FXRα-mediated activation of ERα dependent 
transcription. At a relatively low concentration, CDCA 
glucuronidate increased MCF-7 growth combined with 
this same pro-estrogenic effect (decreased Erα accumula-
tion and up-regulated ER target genes). However, while 
low doses of CDCA lead to this same estrogenic response, 
a contradictory decrease in proliferation was observed. 
These discrepancies might be explained by dose effects of 
bile acids on proliferative pathways through ER activation 
[141].

In contrast to previous reports [37, 139], Giordano 
et al. show that CDCA or GW4064 inhibited proliferation 
in the breast cancer cell line MCF-7 and in the Tam-resist-
ant breast cancer cell line MCF-7/TR1. This anti-prolif-
erative effect of FXRα suggests repression of the HER2 
receptor, perhaps by enhancing formation of a FXRα and 
NF-κB complex inhibiting the binding of NF-κB to its 
responsive element located in the human HER2 promoter 
region.

High concentrations of FXRα ligands exert an anti-pro-
liferative effect on breast carcinoma cell lines, regardless of 
their ER status. In breast cancer cell lines, FXRα agonists 
down-regulated the breast cancer target gene aromatase. 
These data could also be relevant, as aromatase inhibition 
is classically used in breast cancer treatment.

Integrative conclusion

Taken together, these data demonstrate complex interac-
tions between BAs and sex hormone homeostasis. Several 
findings suggest that BAs decrease sex hormone synthesis 
(testosterone and estrogen) in male mice (Fig. 1), but this 
result has not been demonstrated in female mice and or in 
humans. The impact of the BAs/FXRα pathways in lower-
ing the levels of sex hormones is also dependent on their 
effects on liver catabolism through the regulation of genes 
such as Sult2a1 and Cyp3a (Fig. 2). These data are consist-
ent with the known decrease in plasma testosterone levels 
in a male experimental model of liver injuries [142].

A decrease in sex hormone levels in males may have 
major effects on sexual maturation and/or the maintenance 
of secondary sexual characters.

Hormone concentrations are finely controlled in target 
organs such as the prostate. In cell lines, there is evidence 
for a link between FXR-mediated maintenance of BA 
homeostasis and hormone steroid inactivation. It has been 
hypothesized that FXRα transactivation in liver or pros-
tate tissues may prevent androgen accumulation and the 
development of androgen-dependent cancers such prostate 
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cancer through the regulation of Ugt2b15/17. However, 
there are no data describing FXRα dependent regulation of 
Cyp3A4 within the prostate.

The interaction of FXRα with the estrogen receptor in 
breast cancer (Fig.  3) supports crosstalk between FXRα 
and ER in inducing tumor progression. However, no clear 
in vitro evidence has been provided. This issue highlights 
the need for a better understanding of these pathways to 
determine if FXRα agonists/antagonists could be useful 
drugs in some cases of breast cancers.

Conclusions and perspectives

BAs represent the main cholesterol catabolites. Because 
they share the same origin as steroids, there may be some 
crosstalk between BA metabolism and steroids. Recent 
studies have focused on bile acids and their nuclear recep-
tor, FXRα (NR1H4).

Glucocorticoids and estrogen can inhibit BA-FXRα 
signaling pathways in the liver and mammary glands. 
Alternatively, as reported in this review, FXRα/BA path-
ways can affect steroid metabolism at the levels of synthe-
sis, catabolism and downstream signaling pathways. This 
is highlighted by the fact that FXRα is expressed in ster-
oidogenic tissues, such as the adrenal glands and the testis, 
where FXRα controls steroid production. FXRα also inter-
feres with steroid signaling pathways in target tissues such 
as the liver through crosstalk with the glucocorticoid recep-
tor (GR). The evidence for crosstalk between the FXRα/
BA pathways and steroids has been reinforced by the recent 
identification of the impact of glucocorticoids and estrogen 
on the activity of FXRα.

Several FXRα polymorphisms have been detected in 
humans, and they are associated with pathologies includ-
ing obesity and gallstone diseases, such as cholelithiasis 
or intrahepatic cholestasis of pregnancy (ICP) [143, 144], 
[145, 146]. The role of FXRα in the metabolism of either 
glucocorticoids or sex hormones could be used to deter-
mine if altered FXRα signaling pathways are involved in 
idiopathic diseases. Screening patients for FXRα polymor-
phisms could offer new insight into the origins of these 
pathologies and determine if FXRα is a diagnostic/prog-
nostic marker.

The crosstalk between BAs and steroid metabolism 
has important roles in health. Further studies are needed 
to clearly identify all of the pathways activated by BAs 
through FXRα. The complexity of the system is important 
to understand because the activation of this receptor could 
lead to both beneficial [147] and deleterious effects. This 
phenomenon is of particular interest when these endoge-
nous molecules abnormally accumulate in pathophysiologi-
cal conditions, such as liver injury.

The incidence of liver disease is difficult to establish 
because the concept encompasses many different types of 
pathologies. The onset of many types of liver disease is 
insidious and is not detected until hepatic decompensation 
occurs. The real significance of steroid metabolism in the 
physiology of liver diseases must be underestimated.

Clinical data have suggested a link between liver dys-
function and male fertility disorders [148, 149]. Experi-
mental models of cholestasis induced by bile duct ligation 
to increase plasma bile acid levels [150] have been associ-
ated with testicular alterations [151, 142]. In this pathologi-
cal context, reduced plasma testosterone levels have been 
associated with loss of the germ line in the seminiferous 
tubules. This effect can result in reduced fertility or infertil-
ity and altered male sexual maturation.

The role BA in steroid metabolism should be considered 
with the fact that FXRα is targeted for pharmacological 
drugs in the treatment of such diseases as diabetes [152]. 
It will not be simple to target one BA receptor to manage a 
specific pathology. Therefore, we will have to consider that 
interfering with steroid metabolism might lead to deleteri-
ous side effects from this therapy.

In addition to their involvement in the control of gluco-
neogenesis in the liver [41], GCs also regulate or support 
a variety of important cardiovascular, metabolic, immuno-
logical, and homeostatic functions. Therefore, before using 
FXRα agonists as a long-term treatment for diseases, it will 
be necessary to ensure there are no deleterious effects on 
cardiac function, hypertension or immunity.

Studies will be required to determine whether long-term 
treatment with FXRα modulators affects testosterone syn-
thesis in men and to verify the interactions with AR sign-
aling pathways. The inhibition of androgens could affect 
secondary sexual characteristics. Additionally, there could 
be a long-term impact on pathologies, including the devel-
opment of prostate cancer.

Pregnancy cholestasis leads to an increased risk of pre-
term delivery and perinatal mortality [153]. This condition 
is associated with increased bile acid levels and are treated 
with either cholestyramine or ursodeoxycholic acid. Previ-
ous reports have described a role for FXRα during preg-
nancy, and it is associated with increased hepatic bile acid 
concentrations in mice and reduced FXRα function [154]. 
Thus, we must analyze mouse models to determine the 
impact of FXRα agonists on fetal health before treating 
patients with preclinical diabetes.

Perspectives

As FXRα agonists are explored as potential therapeutic 
drugs for the treatment of several diseases, the develop-
ment of strategy to avoid systemic effects will be needed. 
It will be necessary to target this receptor in a cell-specific 
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manner. It will be important to take into consideration the 
patient history (hormonal status) for developing personal-
ized therapy. This highlights the fact that drug develop-
ment must rely on a strong fundamental research in inte-
grative physiology and that drugs cannot be developed 
based on molecular mechanisms characterized in vitro 
or in vivo in a single organ. This is a challenging, open 
field for future research that will require interdisciplinary 
approaches.
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