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Cancer stem cells: a potential target for cancer therapy
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Abstract Current evidence indicates that a subpopulation

of cancer cells, named cancer stem cells (CSCs) or tumor-

initiating cells, are responsible for the initiation, growth,

metastasis, therapy resistance and recurrence of cancers.

CSCs share core regulatory pathways with normal stem

cells; however, CSCs rely on distinct reprogrammed

pathways to maintain stemness and to contribute to the

progression of cancers. The specific targeting of CSCs,

together with conventional chemotherapy or radiotherapy,

may achieve stable remission or cure cancer. Therefore, the

identification of CSCs and a better understanding of the

complex characteristics of CSCs will provide invaluable

diagnostic, therapeutic and prognostic targets for clinical

application. In this review, we will introduce the dys-

regulated properties of CSCs in cancers and discuss the

possible challenges in targeting CSCs for cancer treatment.

Keywords Cancer-initiating cell � Self-renewal �
Tumorigenesis � Tumor metastasis

Introduction

Cancer stem cells (CSCs), or tumor-initiating cells, are a

subset of cancer cells with the abilities to self-renew and

differentiate and to drive the growth and metastasis of tu-

mors, whereas the majority of cancer cells have only

limited proliferative potential [1, 2]. CSCs were first

identified in acute myeloid leukemia (AML) [3, 4] and

were subsequently discovered in breast cancer [5] and

other types of solid tumors. A distinctive repertoire of cell

surface markers are used to identify and enrich CSCs from

human tumor tissues and cancer cell lines (Table 1).

Compared to low-tumorigenic bulk cancer cells and normal

stem cells, CSCs exhibit dysregulated signaling pathways

and abnormal phenotypes. Recent studies have demon-

strated that CSCs are involved in the initiation, growth,

metastasis, therapy resistance and recurrence of human

cancers [1, 2]. Here, we summarize the characteristics of

CSCs in cancers and discuss the possibility of targeting

CSCs as a therapeutic strategy for the treatment of human

cancers.

Dysregulated self-renewal and differentiation
capacities of CSCs

Normal stem cells have evolved various defense mechan-

isms to prevent tumor development. Normal stem cells also

exhibit regulated life cycles that include tightly controlled

self-renewal and committed lineage differentiation. Current

evidence demonstrates that dysfunction of self-renewal-

and differentiation-related genes endows normal stem cells

and/or their differentiated progeny with the capacity for

continuous self-renewal and dysregulated differentiation,

which may promote the bypass of certain protective
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mechanisms in cells, ultimately resulting in cancers.

Combined p53 and PTEN mutations can promote c-Myc

activation to enhance self-renewal capacity and impair

differentiation of glioblastoma-initiating cells [37]. CSCs

can be established by overexpressing H-Ras (L61) in p53-

deficient neural stem cells, while Sox11 prevents tumori-

genesis of CSCs by inducing neural differentiation [38];

however, only a fraction of cancer cells display the ca-

pacity to give rise to cancer cells in the long term [39].

Similar to normal stem cells, CSCs also display a com-

mitted differentiation ability. Glioblastoma stem cells

(GSCs) can differentiate into astrocytes, oligodendrocytes

or neurons [40] (Fig. 1). Interestingly, GSCs can transdif-

ferentiate into vascular endothelial cells and pericytes to

support vessel function and tumor growth [41–44].

In addition to glioblastoma, the self-renewal and dif-

ferentiation abilities of CSCs are also documented in other

types of cancers. CSCs from prostate cancer specimens can

differentiate into three prostate epithelial cell lineages and

reconstitute the original human tumor in vivo [45]. Head

and neck squamous cell carcinoma encompasses a sub-

population of CD44? cancer cells that can be serially

passaged and that reproduce the original tumor hetero-

geneity. CD44? cells express high levels of BMI1, whereas

CD44- cancer cells express the differentiation marker in-

volucrin and resemble differentiated squamous epithelium

cells [28]. Colon CSCs are able to form large lumen-con-

taining colonies, which consist of three types of

differentiated colon epithelial cells in three-dimensional

matrigel culture. Some single cells from these colonies can

reconstitute themselves and form tumors in immunodefi-

cient mice [46]. Notably, CSC-derived differentiated

cancer cells are usually major components of tumors and

also play important roles in sustaining tumor growth.

Dysregulation of cell death in CSCs

In addition to sustained proliferation, cancer cells can

disrupt the balance between proliferation and death by

evading signals from apoptotic factors. Compared with

other cells, CSCs are more resistant to apoptosis. CD133?

colon CSCs secrete IL-4 to protect themselves from

apoptosis [47]. When nutrition transport is prevented by

blood vessel growth blockage, most colon cancer cells will

die, while CD133? colon CSCs are apoptosis resistant [48].

Moreover, colon CSCs can escape the apoptosis stimulant

by entering into a reversible quiescent state [49]; however,

some treatment strategies can induce apoptosis sensitivity

in CSCs. For example, the removal of phosphatase Wip1

inhibits APC-driven polyposis through lowering the

threshold for p53-dependent apoptosis of colon CSCs [50].

BMI1 deficiency promotes cell death and delays cell cycle

progression in lung cancers [51]. In conjunction with ir-

radiation, TRAIL-expressing mesenchymal stem cells

(MSCs) enhance glioma stem cells to undergo apoptosis

[52]. Transient exposure of leukemia stem cells (LSCs) to a

DNA methylation inhibitor causes an antitumor ‘‘memory’’

without immediate toxicity [53]. Delta12-prostaglandin-J3,

an omega-3 fatty acid-derived metabolite, selectively tar-

gets LSCs for apoptosis in murine bone marrow and spleen

[54]. Niclosamide inhibits the formation of spheroids and

induces the apoptosis of breast CSCs [55].

Table 1 Cancer stem cell markers in tumors

Types of tumor CSC markers References

Breast cancer CD44?CD24-, ALDH1? [5, 6]

Glioblastoma CD133?, CD15? [7, 8]

Colon cancer LGR5?, CD133?, CD44?v6 [9–11]

Liver cancer CD24?, CD133?, CD90? [12, 13]

Lung cancer CD133?, ALDH1? [14, 15]

Leukemia CD34?CD38-, CD117 [16–18]

Melanoma CD20?, CD271? [19, 20]

Gastric cancer CD44?, Lgr5? [21, 22]

Ovarian cancer CD44?CD117?, CD133? [23, 24]

Pancreatic cancer CD44?CD24?EpCAM? [25]

Prostate cancer CD44, TRA-1-

60?CD151?CD166?

[26, 27]

Head and neck

cancer

CD44?, c-MET? [28, 29]

Osteosarcoma CD133?, CD117?Stro-1? [30, 31]

Chondrosarcoma CD133? [32]

Synovial sarcoma CD133? [33]

Ewing’s sarcoma CD133?, ALDH? [34, 35]

Rhabdomyosarcoma CD133? [36]

Fig. 1 Schema of glioblastoma stem cells (GSCs) displaying self-

renewal and multiple-lineage differentiation. GSCs can maintain their

stemness through self-renewal and differentiation into oligodendro-

cytes, astrocytes and neurons
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CSCs and angiogenesis

Angiogenesis is considered as an important property of

tumors and is required for tumor growth and metastasis.

CSCs have the capacity to give rise to angiogenesis,

whereas differentiated tumor cells are non-angiogenic [56].

CD105-positive renal CSCs release microvesicles to sti-

mulate angiogenesis and the formation of premetastatic

niches, which results in cancer cell metastasis to the lungs

[57]. In glioblastoma, GSCs promote angiogenesis by se-

creting vascular endothelial growth factor (VEGF) and

stromal-derived factor 1 (SDF-1) [58, 59] (Fig. 2). In

contrast, VEGF promotes cancer stemness by stimulating

angiogenesis in a paracrine manner and providing a

perivascular niche for CSCs [60]. SDF-1 and its receptor

CXCR4 can stimulate glioma stem cells to secrete VEGF

to promote glioma growth and angiogenesis [61]. CSCs can

promote vasculogenesis by serving as tumor vasculogenic

progenitors [62]. CD133? liver CSCs promote tumor an-

giogenesis by upregulating IL-8 and CXCL1 signaling

[63]. When endothelial cells are selectively eliminated in

glioblastomas, the self-renewal ability of CSCs is down-

regulated, suggesting that endothelial cells are also critical

for the maintenance of GSCs [64]; however, anti-angio-

genic therapies have the potential to trigger a more

invasive and metastatic phenotype in some tumors [65].

The anti-angiogenic agent increases the population of

breast CSCs by generating a hypoxic niche [66]. Hypoxia

inducible factors (HIFs) contribute to angiogenesis by

binding to the HIF element and activating downstream

pathways. Unlike HIF-1a, which is expressed in abundant

hypoxic niche cells, HIF-2a is only expressed in GSCs and

regulates the self-renewal and survival of GSCs but not that

of non-stem tumor cells or normal neural progenitors [67].

HIF-2a might, therefore, represent a promising target to

inhibit tumor angiogenesis. Interestingly, in glioblastoma,

subsets of GSCs are able to transdifferentiate into vascular

endothelium cells [41, 42]; however, a new study demon-

strates that GSCs preferentially transdifferentiate into

vascular pericytes but not endothelial cells. The selective

deletion of GSC-derived pericytes in vivo impairs

glioblastoma tumor growth and progression [43, 44].

Increased invasive and metastatic capabilities
in CSCs

Metastasis can be divided into several steps. First, tumor

cells disseminate into the surrounding tissues and enter

capillaries. Second, the disseminated tumor cells are cir-

culated in the blood and reach their target organs. Finally,

tumor cells infiltrate from the blood and colonize to form

metastatic tumors (Fig. 3). Recent evidence reveals that the

epithelial to mesenchymal transition (EMT) is involved in

cancer cell invasion and metastasis to distant organ sites

[68]. Moreover, EMT contributes to the generation of

CSCs with mesenchymal cell-like properties [69]. Our

work reveals that Twist2 endows breast and liver cancer

cells with mesenchymal phenotypes and stemness [70, 71].

Interestingly, CSCs display a combination of epithelial and

mesenchymal phenotypes, indicating that cancer cells may

adapt EMT programming to gain stem cell status [72].

Multiple genes contribute to regulate both self-renewal and

Fig. 2 Schema of tumor angiogenesis. During tumor angiogenesis,

cancer stem cells release molecules that send signals to surrounding

endothelial cells and encourage the growth of new blood vessels.

Blood vessels are depicted as red tissues

Fig. 3 Schema of metastasis. Cancer stem cells from a primary

tumor disseminate to distant organs through the circulation and

subsequently initiate macrometastatic deposition
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EMT. The EMT activator Twist1 can interact with BRD4

to control the properties of basal breast CSCs by regulating

Wnt5A [73]. YAP is important for stem cell pluripotency

[74] and has also been implicated in regulating EMT [75].

Although EMT is very important for tumor dissemina-

tion, mesenchymal to epithelial transition is required for

the colonization of tumor cells. Yang et al. [76] reported

that the reversion of EMT is required for the disseminated

tumor cells to proliferate and metastasize to distant sites.

miR-200s promote the expression of E-cadherin by in-

hibiting ZEB but also regulate metastatic colonization by

targeting metastasis-suppressing proteins [77]. Breast

CSCs secrete TGF-b to stimulate stromal cells in the lungs

expressing periostin, which interacts with Wnt1 and Wn-

t3A to augment Wnt signaling in CSCs [78].

CD133?CXCR4? CSCs are found in the invasive front of

pancreatic tumors, and deletion of this subpopulation ab-

rogates tumor metastasis [79]. Autocrine CCL5 signaling

activates the NF-jB pathway, leading to enhanced matrix

metallopeptidase 9 (MMP9) secretion that promotes ovar-

ian CSC invasion of stromal tissue [80]. CD117?Stro-1?

osteosarcoma CSCs show high invasive capacities, and

CSC-derived tumors metastasize at a higher frequency

[31]. CD44v6-expressing colorectal CSCs can initiate the

process of tumor metastasis [11]. Therefore, CSCs are

crucial for metastatic colonization [2].

CSCs and genomic instability

Genomic instability provides the engine power for the

genetic mutations and epigenetic alterations that promote

tumorigenesis and tumor progression. Cancer can be

caused by the sequential accumulation of genetic mutations

and epigenetic modifications that initiate the transforma-

tion of neoplasms. Shiras et al. [81] found that genomic

instability in glioblastomas promotes the development of

an immortalized clone into a CSC-like clone with the ca-

pacity of self-renewal, indicating that genomic instability

contributes to the formation of CSCs.

Chromosome translocation is involved in the initiation of

CSCs and tumorigenesis. The translocation of chromosomes

9 and 22 generates the new fusion protein Bcr-Ab1, and the

continuously activated Bcr-Ab1 results in unregulated cell

division in chronic myeloid leukemia (CML) [82]. Recently,

a fused FGFR-TACC gene was found in glioblastoma. The

tyrosine kinase coding domains of FGFR are translocated to

the coding domains of TACC. The FGFR-TACC fusion

protein exhibits tumor-initiating activity [83]. Similarly,

chromosomal inversion between 3q21 and 3q26 brings the

GATA2 distal hematopoietic enhancer into close proximity

with the EV1 gene, leading to the hyper-activation of EV1

and the formation of AML [84, 85]. The active site mutation

(R132H) of isocitrate dehydrogenase (IDH) was found in a

high percentage of glioblastoma and AML patients [86, 87].

This type of mutant IDH acquires the ability to catalyze the

NADPH-dependent reduction of a-ketoglutarate to R(–)-2-

hydroxyglutarate but loses the ability to catalyze the con-

version of isocitrate to a-ketoglutarate [88]. IDH1 (R132H)

transgenic mice exhibit an increased number of early he-

matopoietic progenitors [89]. The IDH1 (R132H) mutation

can also prevent some of the histone demethylation that is

required for specific stem cell differentiation [90]. This

evidence indicates that point mutations can affect stem cell

maintenance and the incidence of CSC formation. Although

random mutations are abundant, only one or two mutations

are usually enough to drive the malignant progression of

AML. Subsequent, continuous gene mutations may then

contribute to cancer progression or relapse [91]. Interest-

ingly, ultraviolet (UV) and mitomycin C, which induce

DNA damage, can increase the quantity of CSCs in na-

sopharyngeal carcinoma [92]. DNAmethylation and histone

deacetylase inhibitors can induce redifferentiation in CSCs

by promoting the re-expression of silenced genes [93].

CSCs, immune surveillance and inflammatory
responses

Immune evasion or dysfunction may contribute to the de-

velopment of tumors. Tumors transplanted in

immunodeficient mice grow faster than those in normal

animals. There is also a higher incidence of malignant

neoplasms in organ transplant recipients and HIV-infected

individuals [94]. These findings indicate that the immune

system plays an important role in preventing tumorigene-

sis. CSCs might successfully escape immune surveillance

and reconstitute a new tumor mass in new organs or re-

cipients. GSCs contribute to the immune evasion of tumors

by inhibiting T-cell proliferation and activation and by

inducing regulatory T cell apoptosis [95]. CSCs in renal

carcinoma escape immune surveillance by expressing low

levels of Fas, natural killer receptors and complement

regulatory proteins [96]. A recent study demonstrates that

EMT contributes to the inhibition of cytotoxic T lympho-

cyte-mediated breast tumor cell lysis [97], indicating that

CSCs potentially escape from immune surveillance via the

EMT program. In addition, AML stem cells attenuate

macrophage-mediated phagocytosis through SIRPa/CD47
signaling [98].

To some extent, tumors can be regarded as unhealed

chronic inflammatory diseases. Chronic inflammation also

contributes to the development of cancer. Hepatitis B in-

fection is the main risk factor for hepatocellular carcinoma

(HCC) in Asia. Helicobacter pylori is the most common

bacteria found in the human stomach and is a high risk
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factor for gastric cancer [99]. Inflammation can lead to

aberrant DNA methylation in PcG target genes, which

promotes the malignant transformation of intestinal tissues

[100]. IL-6 is the most common inflammatory cytokine

secreted by T cells and macrophages to stimulate immune

responses [101]. The cytokine IL-6, which is generated by

inflammatory cells, transforms prostate stem cells to

prostate CSCs [102]. IL-6 cooperates with tumor-associ-

ated macrophage-derived MFG-E8 to promote CSC self-

renewal and anticancer drug resistance by activating

STAT3 and Sonic Hedgehog pathways [103]. Let-7 inhi-

bition promotes IL-6-mediated activation of the STAT3

signal, which is necessary for the transformation of breast

cells to CSCs [104]. Interferon regulatory factor 7 pro-

motes the maintenance of glioma stem cells by activating

IL-6 and Notch signaling [105]. Both GSCs and tumor-

associated macrophages are enriched in the perivascular

niche. Recently, GSCs have been found to secrete periostin

to recruit monocyte-derived macrophages from the pe-

ripheral blood to support tumor growth [106]. Other

immune and inflammatory cells and their secreted factors

also play important roles in regulating CSCs. Therefore,

CSCs may not only escape immune destruction but they

may also hijack and adapt the reprogrammed immune re-

sponses and inflammatory cells and cytokines to promote

self-maintenance and proliferation.

CSCs and dysregulated metabolism

In contrast to normal cells, which rely on mitochondrial

oxidative phosphorylation to produce energy, cancer cells

employ glycolysis, even in the presence of oxygen. This

phenomenon is termed the ‘‘Warburg effect’’ [107]. This

aerobic glycolysis metabolism provides cancer cells with

an acidic environment that promotes cancer cell invasion

into normal stromal tissue. Moreover, the metabolites

generated by glycolysis can be used as intermediate ma-

terials to support the rapidly proliferating cells. The

embryonic M2 isoform of pyruvate kinase (PKM2) is ex-

clusively expressed in cancer cells and contributes to the

Warburg effect. Aerobic glycolysis can be switched off by

expressing PKM1 instead of PKM2, leading to reduced

lactate production, increased oxygen consumption and a

reduced ability to form tumors [108]. When cancer cells

are stimulated by certain growth factors, phosphotyrosine

signaling can regulate PKM2 to divert glucose metabolites

toward anabolic processes instead of energy production

[109]. Thus, it has been proposed that only cells experi-

encing the Warburg effect undergo the genetic aberrations

that transform cells into CSCs [110].

CSCs are also maintained by the metabolic switch that is

caused by gene dysfunction-mediated decreased oxygen

consumption and low levels of reactive oxygen species

[111]. Compared with non-CSCs, CSCs preferentially per-

form glycolysis over oxidative phosphorylation. Forced

activation of pyruvate dehydrogenase, a key regulator of

oxidative phosphorylation, inhibits CSC self-renewal in vit-

ro and in vivo [112]. AMPK activation establishes a

metabolic barrier to reprogramming and imposes a normal-

ized metabolic flow away from glycolysis, the process

required to promote stemness and pluripotency [113]. Gly-

colytic and aldehyde dehydrogenase (ALDH) activities are

elevated in mesenchymal GSCs. Inhibition of ALDH1A3

sensitizes mesenchymal GSCs to irradiation [114].

Dichloroacetate inhibits pyruvate dehydrogenase kinase and

shifts the metabolism from glycolysis to glucose oxidation,

but it cannot promote the production of reactive oxygen

species. In conjunction with irradiation, dichloroacetate in-

duces Bax-dependent apoptosis [115]. VHL loss of function

in renal carcinoma cells significantly increases HIF-1 ac-

tivity and the switch from oxidative phosphorylation to

glycolysis. Inhibition of HIF-1 can make cancer cells more

sensitive to chemotherapy [116]; however, one study showed

thatGSCs are less glycolytic than differentiated glioma cells.

CSCs rely on oxidative phosphorylation to produce more

energy that correlates with radioresistance [117]. Most

studies support the role of glycolysis in maintaining the

stemness of CSCs. Therefore, metabolic therapy is a poten-

tial avenue for human cancer treatment.

CSCs and therapeutic resistance

Currently, therapeutic resistance is a fundamental obstacle

to human cancer radiotherapy and chemotherapy. CSCs

have been shown to contribute to therapeutic resistance and

cancer treatment failure [118]. CSCs have channel proteins

to efflux chemical compounds. Moreover, compared with

non-CSCs, CSCs activate higher levels of survival signal

pathways, which make them difficult to be eradicated.

The ABC super-family of transporters is a class of

transmembrane proteins that induce multidrug resistance

by effluxing drugs out of cells, thus reducing their toxicity

[119]. Stem cells are able to pump out Hoechst 33342, so

stem cells capable of exporting this dye are known as side

population cells [120]. Side population cells express high

levels of the transporter genes, ABCA3 and ABCG2, and

exhibit a greater ability to expel cytotoxic drugs, leading to

an enhanced survival of CSCs [121]. LSCs display a higher

drug efflux than non-CSCs and contribute to leukemia re-

lapse [122]. Therefore, ABC transporters in CSCs are

potential targets for cancer treatment.

CD133? GSCs contribute to radioresistance by prefer-

entially activating DNA damage repair pathways in these

cells compared with non-CSCs [123]; however, the detailed
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mechanism of radioresistance in CSCs is not well defined.

c-Myc is involved in radioresistance by activating CHK1

and CHK2 in nasopharyngeal CSCs [124]. CD133? HCC

cells promote chemoresistance through the preferential ac-

tivation of the Akt and Bcl-2 survival signaling pathways

[125]. TGF-b is induced as a negative feedback mechanism

in breast cancer after chemotherapy treatment. The in-

creased TGF-b signal contributes to breast cancer

recurrence through the IL-8-mediated expansion of CSCs,

and inhibition of the TGF-b pathway prevents the devel-

opment of drug-resistant CSCs [126]. Temozolomide is one

of the common chemical drugs used in treating GBM pa-

tients; however, subsets of quiescent GSCs escape the

drug’s effects and are responsible for tumor relapse after

treatment [127]. The quiescent bladder CSCs can be acti-

vated into proliferative cycles when tumors are exposed to

chemotherapy. Blocking this PGE-induced CSC repopula-

tion by a PGE-neutralizing antibody significantly attenuates

chemoresistance in bladder tumors [128]. Receptor kinase

inhibitor is a common cancer treatment with fewer side

effects. A recent report reveals that treatment with high

concentrations of an EGFR inhibitor in lung cancer patients

results in not only EMT features but also stem cell-like

properties [129]. In addition to involvement in the

metastatic cascade and acquirement of stemness of cancer

cells, the EMT program contributes to radioresistance and

chemoresistance. The EMT inducer ZEB1 is found to be

stabilized by ATM and to interact with USP7 to stabilize

CHK1, which promotes the DNA damage repair response in

breast CSCs [130]. miR-30c sensitizes breast cancer cells to

paclitaxel and doxorubicin by regulating TWF1 that pro-

motes EMT [131]. Moreover, some cancers evade drugs

through a loss of the expression of key proteins. For ex-

ample, prostate CSCs that fail to express the androgen

receptor do not respond to hormonal treatment, leading to

the failure of hormone-based therapies [132]. Overall, CSCs

can employ diverse mechanisms to acquire therapeutic re-

sistance, and thus, targeting CSCs directly may be more

effective than current treatment regimes and may improve

the overall survival of cancer patients.

CSCs as therapeutic targets in cancer

Currently, drug candidates that target CSCs are being

screened (Table 2). Salinomycin can specifically induce

the loss of expression of breast CSC genes and reduce the

proportion of CSCs in breast cancers [150]. Another drug,

thioridazine, antagonizes dopamine receptors to selectively

impair leukemic CSCs without affecting normal blood

stem cells [151]. Finally, DECA-14 was identified to

specifically target neuroblastoma CSCs without affecting

normal pediatric stem cells [152].

The Bcl-2 family proteins are important anti-apoptotic

proteins. The inactivation of Bcl-2, Bcl-xl, and Mcl-1 in-

duced by an EGFR inhibitor, lapatinib, significantly

promotes breast CSC apoptosis, suggesting that the Bcl-2

family proteins can be used as therapeutic targets in breast

Table 2 Drugs that target cancer stem cells

Drugs Targets CSC types Mechanisms References

WZB117 GLUT1 Pancreatic, ovarian, glioblastoma Regulating metabolism [133]

PTC-209 BMI-1 Colorectal Inhibiting self-renewal [134]

PF-2341066 c-Met Head and neck squamous carcinomas Eliminating CSC, inhibiting metastasis [135]

ABT-737 BAD Breast Inducing CSC apoptosis [136]

SP600125 JNK Pancreatic Inhibiting self-renewal [137]

AD-01 CD44 Breast Inhibiting self-renewal, inducing differentiation [138]

All-trans retinoic acid Nuclear receptor Breast Inhibiting self-renewal [139]

IIIA4 EphA3 Glioblastoma Inducing apoptosis [140]

1B50-1 Calcium channel Liver Inhibiting self-renewal [141]

Rituximab CD20 Melanoma Inhibiting metastasis [142]

GSI c-Secretase Ovarian Inhibiting self-renewal [143]

C3B3 HLA class I Myeloma Inhibiting self-renewal [144]

Echinomycin HIF1a Leukemia Inhibiting self-renewal [145]

GLPG0187 a(v)-Integrins Prostate Inhibiting metastasis [146]

Transtuzumab HER2 Breast Inhibiting self-renewal [147]

7G3 CD123 Acute myeloid leukemia Impairing homing to bone marrow [148]

21M18 DLL4 Colon Inhibiting self-renewal [149]
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cancer [153]. ABT-737, a Bcl-2 inhibitor, can specifically

kill AML stem cells without affecting normal hematopoi-

etic cells by inducing the disruption of the BCL-2/BAX

complex and the BAK-dependent activation of the apop-

totic pathway [154]. Docetaxel exposure can target the

Notch and Hedgehog pathways to deplete CSCs by in-

hibiting Akt and Bcl-2 activities in prostate cancer [155].

The inhibition of TGF-b signaling by a compound was also

identified to dramatically decrease the tumorigenicity of

glioma stem cells by inducing cell differentiation [156].

A prostate stem cell antigen-based vaccine could affect

long-term protection against prostate cancer progression in

transgenic mice [157]. In addition, vaccination using den-

dritic cells that present CSC-associated antigen to stimulate

cytotoxic T lymphocytes against CSCs prolongs the sur-

vival of animals bearing CSC-derived glioblastoma [158].

The monoclonal antibody against the epitope of CSCs

exhibits an anti-cancer effect by suppressing the invasion

of cancers or the expansion of CSCs [159, 160].

siRNA also exhibits therapeutic potential in targeting

CSCs. A recent study has shown that the targeting of

thymosin b4 by siRNA leads to the loss of chemoresistance

in breast CSCs [161]. Inhibiting c-Myc expression by

siRNA significantly suppresses CSC maintenance [162].

Recently, we reported that the transcription factor, ZFX,

could regulate c-Myc to maintain the tumorigenic potential

of GSCs [163]. Therefore, using siRNA to target CSC

transcription factors represents an additional cancer treat-

ment strategy.

CSCs show high glycolytic activity and low mitochon-

drial respiration, indicating that CSCs are more resistant to

metabolic drugs [164]. In view of the phenomenon that

CSCs display deregulated characteristics and drug resis-

tance, combination therapy may be a better option for

targeting CSCs. Sorafenib has been used to treat prostate

cancer by inhibiting tyrosine protein kinases (VEGFR and

PDGFR) and Raf kinases; however, sorafenib treatment

can result in NF-jB activation, which promotes the sur-

vival of cancer cells. Treatment in combination with

sulforaphane can completely suppress sorafenib-induced

NF-jB activity and decrease ALDH1 activity in pancreatic

CSCs [165]. Synergistic treatment with TRAIL and PI3K

inhibitor-perifosine leads to the decrease of CD34? cells in

AML patients [166]. Blockade of Akt/HIF-1a signaling

with inhibitors can suppress tumor growth and prolong the

survival of animals by eliminating liver CSCs [167]. In

addition, inducing differentiation by arsenic trioxide has

been identified as an effective strategy to treat acute

promyelocytic leukemia [168, 169], but treatment that in-

duces differentiation has a limited effect on solid tumors.

Recently, the CSC conference held in Cleveland led to

more knowledge regarding CSC-targeting therapy [170].

Because CSCs exhibit preferentially active signaling

pathways than non-stem cancer cells or normal cells, tar-

geting signaling pathways is paid particular attention in

clinical trials. For example, OMP-18R5, a monoclonal

antibody targeting the Wnt receptor FZD7, inhibits the

growth of breast, pancreatic, and colon cancer and is cur-

rently in clinical trial phase 1 [171]. Tarextumab (anti-

Notch2/3) inhibits CSC self-renewal, induces cell differ-

entiation and displays broad-spectrum anti-tumor ability.

Clinical results demonstrate that the diabetic drug met-

formin has an antineoplastic effect by inhibiting CSC self-

renewal and tumor metastasis [172]. More clinical eval-

uations of metformin on other solid tumors are ongoing.

Concluding remarks

Targeting CSCs provides a promising prospect for cancer

treatment with few side effects and a better prognosis;

however, the ratios of CSCs vary greatly in different

patients. Moreover, CSCs themselves are heterogeneous

and evolve continuously within a patient [173], and the

different properties and phenotypes of CSCs do not

necessarily coexist in the same subpopulation of CSCs.

CSCs are heterogeneous among the different types of

tumors. The strategy targeting CSCs in one specific tu-

mor may not be effective in other types of tumors.

Furthermore, non-tumorigenic cells might be transformed

to tumorigenic cells in the presence of the appropriate

microenvironmental cues [174–176]. Currently, whether

the reversion of non-CSCs to CSCs is a universal phe-

nomenon among all types of tumors remains unknown.

Most importantly, both CSCs and non-stem cancer cells

have to adapt multiple strategies to overcome various

specific microenvironmental growth barriers [177].

Therefore, synergistically targeting CSCs and non-CSCs,

together with targeting the tumor microenvironment,

should be considered to achieve better therapeutic effects

and less adverse reactions.

As shown in Table 1, most types of CSCs share the

same cell surface protein as the CSC marker. Moreover,

normal stem cells have the same antigen markers and

properties with CSCs. For example, CD133 is the marker

for neural stem cells and GSCs. Therefore, the drug used

for targeting CSCs may inevitably attack normal stem

cells. Due to the short lifespan and the severe symptoms of

patients with malignant tumors, the negative effects of

CSC-targeting therapy are difficult to be detected or are

often neglected. Therefore, much research remains to

identify the specific markers that only exist in the CSCs

and not in normal stem cells.

The drug or antibody delivery efficiency is also a

limitation of targeting CSCs. CSCs are only a small

population of tumor cells. Some CSCs are located in the
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hypoxic niche where there are fewer blood vessels.

Therefore, whether the compound drug and antibody are

able to target CSCs in hypoxic regions is still unknown.

Furthermore, the blood–prostate barrier and blood–brain

barrier are other concerns that need to be resolved. These

types of barriers lead to drug delivery failure, which re-

sults in primary or metastatic tumors that cannot be

effectively regressed. Therefore, developing notable drugs

that effectively target CSCs will also be a major project in

the next generation. Taken together, we still need to ex-

plore the characteristics of CSCs, which will lead to a

better understanding of tumorigenesis and metastasis and

will lay a solid foundation for cancer treatment in the

future.
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