
REVIEW

Chromosomal translocations among the healthy human
population: implications in oncogenesis

Mridula Nambiar • Sathees C. Raghavan

Received: 11 April 2012 / Revised: 4 August 2012 / Accepted: 13 August 2012 / Published online: 5 September 2012

� Springer Basel AG 2012

Abstract Chromosomal translocations are characteristic

features of many cancers, especially lymphoma and

leukemia. However, recent reports suggest that many

chromosomal translocations can be found in healthy

individuals, although the significance of this observation

is still not clear. In this review, we summarize recent

studies on chromosomal translocations in healthy indi-

viduals carried out in different geographical areas of the

world and discuss the relevance of the observation with

respect to oncogenesis.
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Background

Chromosomal translocations are genomic alterations that

result in the joining of heterologous chromosomes. Such a

misjoining can lead to either the juxtaposition of certain

oncogenes to the enhancer/promoter elements of other loci

or novel fusions resulting in the formation of activated

oncoproteins (Fig. 1) [1–3]. Many chromosomal translo-

cations have been reported to date; however, an unusual

and interesting observation has been their frequent inci-

dence in cancers of the hematopoietic origin, namely

leukemia and lymphoma [4–15]. Together, they constitute

only around 8–10 % of the total cancer cases, yet more

than 500 different translocations have been described thus

far. Lack of in-depth studies and appropriate techniques

hampered detection of such translocations in solid tumors.

However, recently a tremendous advancement has been

made in the identification of such chromosomal abnormalities

in carcinomas and sarcomas. Studies have shown that com-

mon epithelial cancers like breast, prostate, thyroid cancer,

and renal carcinoma also possess gene fusions as a result of

translocations [16–20]. This has opened a new window in the

use of such translocations as biomarkers in diagnosis and

prognosis of cancers like carcinoma and sarcoma, which so far

was the case only in leukemia and lymphoma.

Translocations in cancer

The Philadelphia chromosome was the first translocation to

be identified and described in the literature [4]. It results in

the fusion of chromosome 22 and 9, which brings together

the BCR and ABL genes, leading to the formation of an

activated tyrosine kinase [21–23]. The t(14;18) transloca-

tion, between the BCL2 gene on chromosome 18 and the

immunoglobulin heavy chain (IgH) locus on chromosome

14, is the most common translocation in human cancer. It is

characteristically present in follicular lymphoma (FL) and

some cases of diffuse large B cell lymphoma (DLBL) [3].

It juxtaposes the BCL2 gene along with its promoter to the

IgH enhancer, thereby leading to its overexpression [24–

28]. The majority of the breaks in chromosome 18 occur in

the BCL2 major breakpoint region or minor breakpoint

cluster region and recently the mechanism of fragility of

these regions was identified [28–30]. Some other well-

known translocations are the c-MYC-IgH translocation in

Burkitt’s lymphoma, NPM-ALK translocation in anaplastic

large cell lymphoma, and the diverse translocations

involving the BCL6 gene in DLBL [31–36]. As mentioned
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above, not many translocations had been described in

carcinomas and sarcomas, until recently. Some of the

translocations that have been identified are TMPRSS2-ETS

translocations in prostate cancer, EWS translocations in

Ewing’s sarcoma, ETV6-NTRK3 translocations in breast

carcinoma, and others, as described previously [16–20, 37,

38]. Recently, the incidence and mechanism of these

translocations in cancer have been extensively reviewed

and summarized [11, 39–41].

Translocations in healthy individuals

In the recent past, an important yet puzzling observation

has changed the outlook towards translocations being used as

biomarkers in cancer. Multiple studies have shown the pres-

ence of some of these translocations in lymphocytes of

peripheral blood of healthy individuals [42–46]. Though the

number of such cells in circulation is low, it nevertheless leads

to ambiguity during diagnosis of these cancers using chro-

mosomal translocations as markers and while studying the

progression of the disease. The translocations detected among

the healthy individuals include those involving the BCL2-IgH,

BCR-ABL, NPM-ALK, BCL1-IgH, and BCL6 loci.

The BCR-ABL translocation or the Philadelphia chro-

mosome is the genetic hallmark of chronic myelogenous

leukemia (CML) [1]. During follow-up studies on CML

patients, the presence of the BCR-ABL fusion mRNA was

detected even in those patients who were cured following

treatment [47]. Further studies found blood cells from 23

out of 117 healthy individuals, including both children and

adults to have BCR-ABL translocation [47]. Moreover, the

occurrence seemed to be age-dependent, being more in

adults, which could be explained since CML occurs rarely

in children [47]. Alternatively, increased probability of

accumulating mutations or exposure to stimulating agents

could augment the development of translocations in adults.

Similar incidence of this translocation was also reported by

another group (Table 1) [48]. However, there are no studies

to identify the molecular mechanism responsible for the

development of the BCR-ABL translocation in healthy

individuals. Since the number of positive cases in healthy

individuals for this translocation exceeds that of the dis-

ease, it remains to be seen how many of them will actually

be at risk of developing CML.

The t(2;5) translocation involving the NPM and ALK

genes is characteristically found in anaplastic large cell

lymphoma (ALCL) [49, 50]. Similar to the Philadelphia

Fusion product

Gene A Gene B

A

B

Fig. 1 Chromosomal translocations resulting in juxtaposition of

promoter/enhancer elements to oncogenes or chimeric fusion pro-

teins. In hematological cancers, like leukemia and lymphoma,

translocations can result in the juxtaposition of the coding region of

a gene (gene A) to enhancer/promoter elements of another gene (gene

B) (a). This results in the enhanced expression of the gene A under

the influence of either the enhancer or alternative promoters.

Alternatively, translocations can also result in the formation of a

fusion/chimeric protein, which may have a novel or enhanced

function (b). For example, upon translocation, gene A can join with

gene B, resulting in a fusion product. Altogether, these alterations can

lead to changes in the cellular physiology and morphology, thereby

resulting in malignant transformation
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chromosome, this gene fusion also results in the formation

of a constitutively activated tyrosine kinase, which has

oncogenic potential. The t(2;5) translocation alone is

insufficient to cause the lymphoma, which was reiterated

by the fact that it was found to be circulating in the

peripheral blood of healthy individuals [49, 50]. In one

study, which used a combination of RT-PCR and Southern

blotting techniques, 14 of 29 healthy volunteers (48 %)

showed the presence of the t(2;5) translocations in lym-

phocytes [49]. Another study followed, showing similar

results using both cytogenetic and sensitive molecular

biology methods [50]. However, it is not yet clear whether

the cells containing this translocation persist due to a sur-

vival advantage or arise due to multiple, independent

translocations. More studies involving analysis of a larger

number of healthy individuals as well as follow-up on

positive cases is a pre-requisite to better understand the

origin of translocation and its prognosis in ALCL.

Another translocation detected in healthy individuals is

the t(11;14) translocation, involving the BCL1 gene present

in mantle cell lymphoma (MCL) [13, 14]. However, the

frequency at which it was found was very low (1 in a group

of 100 individuals) from a European population [51].

Studies from an Indian population also showed that the

incidence of this translocation is rare [52]. Out of the 210

healthy Indian volunteers studied, none was positive for

this translocation [52]. Both these studies have used sen-

sitive detection assays of quantitative real-time PCR and

nested PCR followed by Southern hybridization, respec-

tively. It is hypothesized that this translocation may not be

the initiating event in the pathogenesis of MCL and addi-

tional preceding mutations may be required. This would

Table 1 Leukemia/lymphoma-associated gene fusions in healthy individuals

Translocation Assay system Cells Frequency Reference

t(9;22) Nested RT-PCR Peripheral blood leukocytes p190 BCR/ABL 11/16 (69 %)

p210 BCR/ABL 4/15 (27 %)

Bose et al. [48]

Nested RT-PCR Peripheral blood leukocytes 23/117 (19.7 %) Biernaux et al. [47]

t(2;5) RT-PCR, Southern

hybridization

Peripheral blood leukocytes 14/29 (48.3 %) Trumper et al. [49]

Real-time PCR Lymph nodes and spleen 20/31 (64.5 %) Maes et al. [50]

t(11;14) Real-time qPCR Peripheral blood leukocytes 1/100 (1 %) Hirt et al. [51]

t(14;18) Nested PCR Peripheral blood leukocytes 19/230 (8.3 %) Paltiel et al. [102]

Nested PCR Peripheral blood mononuclear cells 40/254 (15.7 %) Zignego et al. [71]

Nested PCR Peripheral blood leukocytes 31/55 (56.4 %) Henriksson et al. [103]

Nested qPCR Peripheral blood mononuclear cells 10/23 (43.5 %) Scheerer et al. [104]

Semi nested PCR Bone marrow aspirates

Peripheral blood lymphocytes

89/224 (39.7 %) Rauzy et al. [105]

Nested qPCR Peripheral blood mononuclear cells,

umbilical cord cells

69/127 (54.3 %) Liu et al. [106]

Seminested qPCR Peripheral blood mononuclear cells 26/57 (45.6 %) Dolken et al. [56]

Nested qPCR Peripheral blood leukocytes 30/34 (88.2 %) Fuscoe et al. [57]

PCR Southern blot/

seminested PCR

Lymph node tissue 19/48 (39.6 %) Molina et al. [107]

Nested qPCR Peripheral blood mononuclear cells 25/64 (39.1 %) Cole et al. [108]

Seminested PCR Peripheral blood mononuclear cells,

granulocytes, lymphocytes

6/9 (66.7 %) Limpens et al. [58]

Seminested qPCR,

P32-labelling

Peripheral blood mononuclear cells 70/146 (47.9 %) Ji et al. [68]

Nested qPCR Peripheral blood leukocytes 57/122 (46.7 %) Bell et al. [69]

PCR Lymph nodes 18/108 (16.6 %) Corbally et al. [109]

Nested qPCR Peripheral blood lymphocytes 40/84 (47.6 %) Liu et al. [55]

Seminested PCR and

Southern blot

Lymphoid tissue 10/25 (40 %) Aster et al. [62]

PCR and Southern blot Lymph nodes and tonsils 13/73 (17.8 %) Limpens et al. [110]

Real-time qPCR Peripheral blood mononuclear cells 287/644 (45 %) Dolken et al. [67]

Nested PCR, real-time

PCR

Peripheral blood mononuclear cells 16/125 (12.8 %) Ladetto et al. [111]
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explain its very low incidence in healthy individuals. A

follow-up study on healthy individuals carrying this

translocation showed that these t(11;14)-positive cells

could persist for a long period of time and probably expand

to acquire further aberrations before transformation [53].

Since only limited studies have analyzed this translocation,

further studies from different populations with an increased

sample size and more sensitive techniques are required.

In another study, inverse PCR was employed to detect

the presence of mixed lineage leukemia (MLL) transloca-

tions in the peripheral blood of healthy individuals [46]. Of

the healthy individuals, 49 % were shown to harbor the

MLL translocations. Two main types of rearrangements,

t(4;11) and t(9;11), were found upon sequencing, which

constituted 66 and 20 % of the total translocations,

respectively. It was suggested that the frequent breaks in

the 11q23 locus could be due to extended exposure to

various exogenous and endogenous chemical agents.

The t(14;18) translocation in healthy individuals

Among the different translocations studied, t(14;18) or the

BCL2-IgH translocation is the most commonly reported,

even among the healthy population. It is detected in nearly

90 % of the FL patients and around 20 % of the DLBL

patients. Using various types of PCR assays, this translo-

cation has been detected in the healthy individuals. The

prevalence of t(14;18) translocation in the healthy popu-

lation from Europe and America was determined to be

around 40–60 %, depending on the sensitivity of the assay

system, and the sample size of the donors (Table 1) [54–

60]. In a recent study, it was shown that the incidence of

t(14;18) translocation in Japanese population was lower

(16 %) when compared to that in the German population

(52 %) [61]. However, a previous study comparing the

frequency of t(14;18) translocation between Japanese and

American population did not find much difference between

the two [62]. This could probably be due to the small

number of samples analyzed during this study. More

recently, we have determined the incidence of t(14;18)

translocation among the healthy population in India [52].

We employed nested PCR followed by Southern hybrid-

ization using BCL2 specific probes and the sensitivity of

the assay was estimated to detect one translocation bearing

cell among 107 cells [52]. Upon analysis of the blood

samples from 253 healthy donors, we found that 87 indi-

viduals were positive for t(14;18) [52]. The observed

incidence of around 34 % was lower than that seen in the

American and European countries. It is worth pointing out

that the incidence of FL itself varies across geographic

regions. In the Western population, FL has a prevalence of

around 30–40 % among all the non-Hodgkin’s lymphoma

[63], while in India its occurrence has been estimated to be

only around 13 % [64, 65]. Hence, it could suggest a direct

correlation between occurrence of FL and the presence of

t(14;18) in healthy people, as the incidence of FL in

Western countries is much higher than that in India as well

as other Asian countries.

Previous studies on the transgenic mice expressing the

BCL2-IgH translocation showed accumulation of the B

cells, but development to the malignant lymphoma occur-

red only after a long latency period [24, 66]. This indicated

that the t(14;18) translocation alone was not sufficient for

initiating the development of FL and that further oncogenic

mutations may be required for transformation into a can-

cerous cell.

Factors influencing t(14;18) in healthy individuals

The role of additional elements other than those responsi-

ble for causing the t(14;18) translocation like RAGs or

DNA DSB repair proteins, in inducing translocations, has

been a subject of debate. Some studies, including ours,

have shown that with an increase in age, the frequency of

t(14;18) translocation increases [52, 55, 67, 68]. However,

a number of studies did not find any such correlation [57,

59–61]. This discrepancy could be due to the fact that in

the majority of the studies that did not find the correlation,

even though the number of individuals analyzed were more

than 200, the frequency of incidence of t(14;18) positives

was very low [59–61]. This could probably be due to the

smaller amount of DNA analyzed for each individual in

these studies. Moreover, in case of the study that analyzed

481 healthy subjects (one of the largest samples sizes

studied), real-time PCR assay could increase the chances of

false negatives, since this assay requires the presence of at

least ten copies of the rearranged allele for minimum

detection [59]. Therefore, an under-representation of the

frequency of t(14;18) translocation in healthy individuals

in these studies could be responsible for the inability to find

its correlation with age.

With respect to gender, one study suggested a higher

incidence of this translocation in males as compared to

females [68], which could explain why males are more

prone to non-Hodgkin’s lymphoma than females. However,

due to the insufficient sample size, this correlation could

not be proved to be statistically significant. Besides, in a

few other studies, no significant correlation between gender

and the occurrence of t(14;18) translocation could be

observed [52, 60]. In our study, we had analyzed for a

possible correlation between the ethnicity and the preva-

lence of the translocation in the Indian population. For this,

we classified all the 253 healthy volunteers, but were

unable to find any significant correlation (Table 2). In a
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different study, a positive correlation between smoking and

the occurrence of t(14;18) translocation was observed [69].

However, more studies are required in this direction to

draw any major conclusions. Another interesting observa-

tion has been that in patients having chronic hepatitis, liver

cirrhosis, or hepatocellular carcinoma due to hepatitis C

virus (HCV) infection, the incidence of t(14;18) was much

higher (26 %) as compared to HCV-negative patients

having similar liver abnormalities (3.6 %) [70, 71]. It is

possible that HCV infection may provide the necessary

antigenic stimuli for the maintenance of these cells in

circulation.

Exposure to environmental pollutants or carcinogens is

known to play a role in the generation of translocations in

normal individuals. In an interesting study, it has been

shown that the frequency of t(14;18) translocation in

healthy individuals exposed to benzene was lower than

normal age-matched controls [72]. By quantitative PCR

analysis, this study found that 37 workers with benzene

exposure had a decreased level of t(14;18) in their blood

cells. 16.2 % of these workers had more than ten copies of

the t(14;18) junctions as compared to 55 % of 20 controls

that were not exposed to benzene [72]. This data suggests

that the t(14;18)-bearing cells, a subset of B cells, could be

more susceptible to the toxicity of benzene, resulting in

their reduced numbers. However, studies have also shown

that increased incidence of t(14;18) translocation occurs in

farmers exposed to pesticides [73]. Previously, there has

been evidence to suggest pesticide exposure as one of the

major factors responsible for increased incidence of NHL

[74–76]. In particular, exposure to a commonly used

fumigant, phosphine, enhanced the development of chro-

mosomal rearrangements involving chromosome 14 [77].

In an interesting study, it was found that a correlation could

be drawn between chromosomal instability at specific

fragile sites in human genome and certain specific chemi-

cals, pesticides, and herbicides, suggesting a site-specific

cytogenetic effect within cells [75]. This is in tandem with

diverse chemicals having such site-specific consequences

in vitro [78]. It was observed that increased breaks at all

loci did not always lead to increased rearrangements as was

seen for fragile sites 1q21, 3p14, and 9q12 [75]. However,

in many cases, such an effect could be seen. In particular, it

was noted that individuals exposed to herbicides like

eradicane and 2,4-D had an elevated number of breaks at

chromosomal loci 18q21, which harbors the BCL2 onco-

gene and subsequently had its increased rearrangement

with 14q32, unlike the control and unexposed individuals

[75]. Hence, it is possible that increased exposure of such

chemicals could lead to increased double-strand breaks in

the genome, especially at fragile sites like the BCL2 major

breakpoint region and many others, thereby accounting for

the higher frequency of translocations in such exposedT
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individuals. More recently, a long-term study was carried

out to understand the relation between pesticide exposure

and follicular lymphomagenesis [79]. This study showed

that the t(14;18) clones persisted and expanded, particu-

larly in farmers exposed to pesticides rather than the

unexposed farmers. In addition, these cells represented

bona fide FL precursors at different stages of tumor pro-

gression. Therefore, now it remains to be seen whether one

can predict how many of these t(14;18) harboring healthy

individuals, would actually go on to develop the follicular

lymphoma.

Chromosomal translocations and the immune system

The majority of the chromosomal translocations in cancer

are largely confined to cells of the immune system and

have been shown to be caused by lymphoid-specific pro-

cesses such as V(D)J recombination or class switch

recombination (CSR). Interestingly, from our studies on a

healthy Indian population, it was observed that individuals

under the age of 20 years had a very high frequency of

incidence of the t(14;18) translocation as compared to all

other age groups. Even more interesting was the higher

incidence of the translocation in females as compared to

males. Although this phenomenon needs to be investigated

further, one can speculate the role of the immune system in

this regard. At a younger age, one can envisage a more

actively developing immune system and perhaps more of

the immunological processes like V(D)J recombination or

CSR to occur. It is known that with an increase in age there

is reduced V(D)J recombination activity and an overall

decreased immune response [80–82]. A lower Rag2

expression in pro-B cells has been shown in aged mice,

which could directly diminish the V(D)J recombinase

activity [83]. Another study showed that newborns dis-

played an increased nucleolytic processing, especially with

respect to Artemis protein (associated with V(D)J recom-

bination), indicating that it could be important for

modulating the immune system in children [84]. Hence, at

a younger age, these processes could increase the suscep-

tibility of the developing B and T cells to generate

chromosomal translocations. Interestingly, an increasing

number of translocations have been identified in leukemic

cells from children, which seem to be caused by the RAG

proteins during early development [85]. A remarkable

increase in the RAG-mediated HPRT deletions at func-

tional cryptic RSS at the later stages of fetal development

also suggests that cryptic RSS sites at various genomic loci

could be susceptible to RAG cleavage during specific

periods of pediatric development [86].

It is also becoming increasingly clear that there are

significant differences in the immune responses between

male and females. There are reports suggesting that

females mount a more vigorous immune response against

identical antigens and also carry larger numbers of resident

immune cells, thereby eliciting a stronger response [87].

Moreover, it was observed that females exhibit a higher

activity of TdT, a key enzyme involved in V(D)J recom-

bination, suggesting that modulation of the processing

machinery could affect the immune repertoire [84]. This

can probably explain the bias towards more females car-

rying the translocation in younger ages. However, further

studies are required to get a clear picture for this

observation.

Origin of chromosomal translocations

In the recent past, cancer stem cells have caught the attention

of researchers in the field of cancer biology [88]. Although

initially elusive, recent studies have been successful in iso-

lating this population from leukemic cells and have been

shown to be sufficient for the initiation, regeneration, and

maintenance of leukemia in mice [89, 90]. More recently

their presence has been detected in other forms of cancers

like those in the central nervous system, breast, lungs, and

colon [91–93]. However, the cellular origins of the cancer

stem cells have remained elusive thus far. Since hemato-

poietic stem cells (HSCs) and leukemic stem cells (LSCs) are

thought to be closely related and are similar in many ways,

the genesis of LSCs has always been an intriguing question.

HSCs have the capacity for self-renewal and are maintained

for longer periods of time in an organism. Hence, it can be

envisaged that LSCs could be derived from HSCs upon

induction of several mutations, especially chromosomal

translocations (Fig. 2a). Alternatively, various committed

progenitor cells could also be a source of LSCs, after accu-

mulation of mutations that render these cells ‘‘stem-cell like’’

by reactivation of the stem cell program machinery (Fig. 2b)

[94]. Different studies have now shown that some of these

stem cells or early progenitor cells could indeed harbor

pathogenic chromosomal translocations. It was reported that

in childhood acute lymphoblastic leukemia, the leukemic-

specific rearrangements t(9;22) and t(4;11) could be detected

in a high percentage of progenitor/stem cells, which were

CD34?CD19- [95]. In another study, it was shown that

ETV6-RUNX1 (TEL1-AML1) fusions were confined to B cell

progenitor cells CD34?CD38-CD19? and there was no

effect on the size of the normal HSC population by the LSC

expansion [96]. In contrast, the major breakpoint BCR-ABL1

fusions, encoding the P210 BCR-ABL fusion pro-

tein, were found to have an HSC origin and were present

in the CD34?CD33-CD19?, CD34?CD33?CD19- and

CD34-CD33?CD19- cells. Interestingly, the minor fusion

protein was shown to have a B cell progenitor origin, which
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suggests that the two types of BCR-ABL fusion represented

distinct tumor entities [96]. All these studies suggest that

there are different compartments in which cancer-initiating

cells responsible for causing different types of leukemia

and lymphoma can exist. Therefore, it is important to

identify the leukemia/lymphoma initiating cells in various

cancers so that these cells can be targeted more effectively

and specifically. Moreover, it is believed that HSCs are

generally more resistant to radiation and other therapies,

therefore targeting the translocation-bearing tumor initiat-

ing cells will be more appropriate during development of

therapeutic strategies.

Role of translocations in oncogenesis

Chromosomal translocations generally lead to deregulation

of genes and hence, differential expression of respective

proteins. The t(14;18) translocation results in the overex-

pression of the anti-apoptotic BCL2 protein thereby

providing the cells with a survival advantage. It is possible

that this could help in the persistence of such translocation-

bearing cells in circulation for a longer time, which upon

further oncogenic hits may get transformed into a malig-

nant cell. Recent studies suggest that the t(14;18)-bearing

cells in the healthy individuals might act as FL-like B cells

Haematopoeitic
stem cells (HSCs)

Chromosomal Translocation 
[t(a;b)] as a first hit 

HSCs
t(a;b)+ve

Maintenance of t(a;b)+ve

HSCs over long periods

Second and 
multiple hits   

HSCs
t(a;b)+ve

A

Committed progenitors

Primary hit 

Stem cell 
reprogramming  

“Stem cell- like”

Chromosomal translocation 
as  a secondary hit

t(a;b)+ve

Maintenance of t(a;b)+vecells

B

Fig. 2 Models for transformation of a normal cell into cancer cell.

a Hematopoietic stem cells can acquire chromosomal translocation as

a primary hit and these cells can either differentiate or be maintained

in stem cell compartments over long periods of time. The replicating,

differentiating cells (leukemic stem cells) can then acquire secondary

mutations over a period of time and develop into cancerous cells.

b Alternatively, committed progenitors cells might undergo cellular

reprogramming in order to get converted into stem cell-like cells,

which upon acquiring secondary hits could become like cancer stem

cells, responsible for the generation of the tumor over a period of time
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(Fig. 3) [97]. The translocation-bearing cells seemed to be

enriched in IgM memory cells (IgD?), further showing that

such t(14;18) bearing B cells were not naive [97, 98].

These cells, being CD27?, would have transited through

the germinal center. They also have additional features that

are more FL-like and therefore could act as novel inter-

mediates during the early steps of lymphomagenesis; but

how do such cells originate? The sequences of the break-

point junctions from both healthy individuals and patients

are mostly similar, suggesting that the translocations aris-

ing in healthy individuals are not mechanistically different

from those in patients [7, 54]. The translocation-bearing

healthy cells are also thought to overexpress BCL2; how-

ever, no studies have been performed to confirm this. Since

the t(14;18)-bearing normal cells are memory cells, they

would persist for a long time in circulation and upon

appropriate stimulation, by antigens (like the HCV antigen

described before), could proliferate more and attain further

oncogenic hits. Few studies have tried to establish this

long-term clonal persistence of such t(14;18)-bearing cells

in healthy individuals, by performing follow-up studies on

the positive cases over a period of few years [54, 97, 98].

Sequence analysis has also shown that while the majority

of the positive cases possess only one breakpoint, some do

show the presence of more than one breakpoint region [54].

It can therefore be suggested that though initially there is a

clonal expansion and persistence of a single t(14;18)-

bearing clone, with time, independent hits may lead to the

formation of multiple cells bearing different t(14;18)

translocation breakpoint junctions. Further long-term and

follow-up studies are needed to understand the step-by-step

progression of translocation-bearing cells into tumor cells.

In mouse models of the MLL-ENL translocation in MLL, it

was observed that DNA damage response (DDR) induces a

pro-senescence program to prevent MLL-ENL oncogene-

induced leukemogenesis [99]. This suggests that the gene

fusion alone, although causing myeloproliferation, cannot

promote progression into acute leukemia and requires DDR

inhibition. It was also noted that preventing the initiation of

senescence or DDR leads to augmentation in the LSC popu-

lation, suggesting that the fusion does not directly induce

tumorigenesis and requires an interplay of several other part-

ners. Recently, it was shown that in case of CML, the stem cell

population could survive independent of the BCR-ABL fusion

and was not oncogene addicted [100]. The BCR-ABL-depleted

stem cell population had the ability to maintain their population

in vivo and upon BCR-ABL expression could reinitiate trans-

formation into leukemia. This shows that unlike the MLL-ENL

fusion, in some cases the development of translocation could be

a secondary event, and may be required to trigger the process of

leukemia progression. In an interesting study, it was shown that

MLL fusions, in particular MLL-ENL, could influence hema-

topoietic lineage commitment when occurring in the T cell

progenitor cell and cause a switch from lymphoid to myeloid

lineage during leukemogenesis by reprogramming [101].

Therefore, it suggests that depending on the type of cell, the

translocation originates in, the gene fusion can exhibit alter-

native functions and promote tumorigenesis. However, this

also provides a plethora of proteins that could be identified and

act as novel therapeutic targets in the future.

Pre-B cell Immature 
B-cell 
[t(14;18)+]

t(14;18) 
translocation

V(D)J recombination

Bone Marrow Germinal Centre

Apoptosis

SHM, CSR

Selection 
and release of 

follicular  lymphoma-
like cells

Homing into 
niches (?)

Acquisition of multiple hits and transformation to cancer

[t(14;18)+]

Fig. 3 Model of initiation and progression of t(14;18)-bearing cell

into follicular lymphoma. The pre-B cells, in the bone marrow,

undergoing V(D)J recombination could develop the t(14;18) translo-

cation and generate t(14;18)? immature B cells. These cells upon

antigen presentation in the germinal center undergo somatic hyper-

mutation and class switch recombination, further acquiring possibly

pathogenic mutations and could get selected upon antigenic stimu-

lation. Such cells may evade apoptosis due to overexpression of the

BCL2 protein and may be released in circulation or homed into

undefined niches. These cells, which are more follicular lymphoma-

like, now act as intermediates and may accumulate secondary

aberrations in order to develop into the lymphoma
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Conclusions

It is evident that many chromosomal translocations can also be

seen in healthy individuals, besides their occurrence in patients.

In almost all of these cases, the frequency of translocation in

healthy individuals is many fold higher to the incidence of the

respective cancer. This implies that only a small fraction of

chromosomal translocation-bearing cells present in healthy

individuals can undergo malignant transformation. Therefore,

in the coming years, the focus of research may shift to the

identification of the environmental and physiological aspects

responsible for development of cancer, after a single cell in the

body acquires a particular translocation.

Perspective

The long-held view that chromosomal translocations are

genetic hallmarks of leukemia, lymphoma, and other types of

cancers, and can be used as biomarkers for identification of

tumor cells, is fast disappearing. It is increasingly becoming

clear that chromosomal translocations are not sufficient to

cause transformation of normal to cancer cells, but require-

ment of either additional preceding or succeeding mutations

is essential. Since many such genetic lesions do not lead to

any specific changes on the cell surface, expulsion of such

cells from the system by our immune response is not possible.

Evidence for presence of translocation-bearing HSCs or

progenitor cells can possibly explain the persistence of such

cells over long periods of time. It will be important to study

whether such stem/progenitor cells are more susceptible to

development of genomic rearrangements and thus strategies

can be developed to specifically target and eliminate them in

patients. At the molecular level, it is seen that the translo-

cation breakpoint junctions in healthy individuals are similar

to that in patients. However, as in the case of BCL2-IgH

translocation, it is not proven whether the differential

expression of the affected protein like BCL2, indeed occurs.

It is possible that there could be some mechanism by which

the aberrant expression of those oncoproteins, despite the

translocation, is suppressed in normal cells. However, with

the gradual acquiring of certain mutations, the oncoproteins

get expressed and activated. The microenvironment around

the translocation-bearing normal cells can also play a critical

role in transforming the cells more towards cancer-like.

Identification of specific niches where such translocation-

bearing cells reside could be a challenging yet critical aspect

in the future.
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