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muscle wasting that prevails in numerous pathological states, 
such as immobilization, denervated conditions, neuromuscu-
lar disease, aging, AIDS, cancer, and diabetes.
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Introduction

Skeletal muscle mass represents 40–50 % of human body 
weight, making it the largest tissue mass in the body. 
Muscle homeostasis is essential to the body’s integrity 
and maintenance, and the muscle impairment associ-
ated with several diseases leads to a poor quality of life. 
Skeletal muscle exhibits remarkable adaptive capabili-
ties in response to such stimuli as environmental factors 
(hypoxia), nutritional interventions, loading conditions, and 
contractile activity. All of these stimuli induce changes in 
energy metabolism and muscle mass, especially by alter-
ing fiber composition or the balance between protein syn-
thesis and protein degradation [1, 2]. In this respect, the 
forkhead box class O (FoxO) subfamily proteins—which 
are transcription factors belonging to the forkhead box 
protein family (Fox proteins)—are increasingly taken into 
consideration. They are highly conserved through evolution 
and essential to various cellular processes such as regulat-
ing the expression of the genes involved in the cell cycle 
[3, 4], DNA damage repair [5], oxidative stress resistance 
[6–8], energy metabolism [9], and apoptosis [10, 11]. Fox 
proteins contain a sequence of 80–100 amino acids form-
ing a motif that binds to DNA: the forkhead motif. This 
motif is also known as the winged helix due to the butter-
fly-like appearance of the loops in the protein structure of 
the domain [12]. In addition to the forkhead DNA-binding 
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homeostasis through the control of glycolytic and lipolytic 
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lators of protein breakdown, as they modulate the activity of 
several actors in the ubiquitin–proteasome and autophagy–
lysosomal proteolytic pathways, including mitochondrial 
autophagy, also called mitophagy. FoxO proteins have also 
been implicated in the regulation of the cell cycle, apoptosis, 
and muscle regeneration. Depending of their activation level, 
FoxO proteins can exhibit ambivalent functions. For exam-
ple, a basal level of FoxO factors is necessary for cellular 
homeostasis and these proteins are required for adaptation to 
exercise. However, exacerbated activation may occur in the 
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opment of new therapeutic approaches to prevent or limit the 
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domain motif, FoxO factors possess a nuclear localization 
sequence (NLS), a nuclear export sequence (NeS), and a 
transactivation domain in their C terminal region in which 
a helical motif (LXXLL, where L is a leucine and X any 
amino acid) is quite important for full activation of FoxO 
transcriptional activity [13] (Fig. 1). Four FoxO family 
members are expressed in mammals, FoxO1 (also known 
as FoxO1a), FoxO3 (also known as FoxO3a), FoxO4, and 
FoxO6, and all of them are expressed in skeletal muscles 
[14, 15]. Nonetheless, it is notable that, contrary to FoxO1, 
3 and 4, which are expressed relatively ubiquitously, 
FoxO6 is expressed predominantly in the central nervous 
system [16], although it is also present in oxidative mus-
cles [15]. Also of note, FoxO3- and FoxO4-null mice are 
viable, but FoxO1-null mice die during embryonic develop-
ment due to impaired vasculogenesis [17–19]. FoxO3-null 
mice, although viable, present age-dependent infertility due 
to abnormal ovarian follicular development [17, 18] and, 
interestingly, they are characterized by severely impaired 
muscle regeneration [20]. Indeed, FoxO3-null mice show a 
downregulation of MyoD transcription, a key regulator of 
myogenesis that is a direct target of FoxO3 in myoblasts 
[20]. Moreover, hearts from FoxO3-null mice have a hyper-
trophic phenotype associated with increased expression of 
the modulatory calcineurin-interacting protein 1, exon 4 
isoform (MCIP1.4) [19]. These data suggest that FoxO3 
contributes to cell growth in striated muscle. On the other 
hand, FoxO4-null mice do not seem to be affected by any 
consistent abnormalities under physiological conditions 
[18]. However, under stress conditions like acute coli-
tis, FoxO4 deficiency has been associated with increased 

nuclear factor-kappa B (NF-κB) activity in colonic epi-
thelial cells [21]. Last, mice lacking FoxO6 are viable 
but show substantial impairment of contextual and object 
memory consolidation [16]. However, the precise roles of 
this last member are largely unknown to date, especially in 
skeletal muscle.

In the present review, we outline the most recent 
advances on the roles and functions of FoxO proteins in 
the regulation of skeletal muscle homeostasis. The mode of 
regulation of these proteins, especially their dynamic con-
trol by two major actors in skeletal muscle homeostasis, Akt 
and AMPK, are detailed, as is the implication of each FoxO 
member in the regulation of cellular processes in response 
to physiological and pathophysiological conditions.

Post‑translational modifications of FoxO factors 
in skeletal muscle

Multiple signals converge on FoxO factors via various 
types of post-translational modifications, including phos-
phorylation, mono- or polyubiquitination, acetylation, gly-
cosylation and arginine or lysine methylation (for a review, 
see Ref. [22]). Few of these post-translational modifica-
tions of FoxO have been investigated in skeletal muscle, 
but these changes can differentially regulate FoxO mem-
bers and modulate their subcellular localization, DNA-
binding ability, transcriptional activity, protein–protein 
interactions, and degradation. Thus, FoxO3 activity in skel-
etal muscle is negatively regulated by acetylation of lysine 
262 and ubiquitination [23]. The histone acetyl-transferase 

Fig. 1  Description of mamma-
lian FoxO proteins expressed in 
skeletal muscle. The following 
are indicated: locations of the 
forkhead domain (FD), nuclear 
localization sequence (NLS), 
nuclear export sequence (NeS) 
and helical motif (LXXLL), 
Akt phosphorylation sites (blue 
circles) and AMPK phospho-
rylation sites (red circles)
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p300 targets and acetylates FoxO3, leading to its cytosolic 
relocalization and proteasomal degradation through the e3 
ligase murine double minute 2 (Mdm2) [23]. Interestingly, 
overexpression of p300 in muscle alters FoxO3 nuclear 
localization and FoxO3 and 4 activities but, conversely, 
increases nuclear localization of FoxO1 [24]. In addition, 
an increase in p300 histone acetyltransferase activity raises 
some FoxO1-dependent gene transcription (Gadd45α and 
cathepsin L) [24]. Thus, acetylation may be an important 
mechanism to differentially regulate the FoxO homologues.

An essential regulator of FoxO activity is the IGF-1/
PI3K/Akt signaling pathway (Fig. 2), which represents 
the canonical pathway of skeletal muscle hypertrophy. 
Recently, its implication in muscle protein synthesis and 
hypertrophy was extended to loading models [25]. Akt, 
also known as “protein kinase B” (PKB), is a serine/thre-
onine protein kinase that plays a key role in insulin and 
PI3K/Akt/MTOR signaling pathways, thus contributing to 
the regulation of energy metabolism and protein synthesis. 
In the presence of mitogenic growth factors, Akt activates 
the mechanistic target of rapamycin (MTOR) via phos-
phorylation and inhibition of tuberous sclerosis complex 2 
(TSC2) [26, 27], which is a negative regulator of MTOR. 
Akt also phosphorylates and inhibits the proline-rich Akt 

substrate of 40 kilodaltons (PRAS40), leading to increased 
MTORC1 signaling [28]. The IGF-1/PI3K/Akt pathway 
critically mediates FoxO inhibition since pharmacological 
inhibition of phosphatidylinositol 3-kinase (PI3K) reduces 
Akt phosphorylation and allows FoxO1 protein transloca-
tion to the nucleus [29]. Akt has been shown to phosphoryl-
ate FoxO3 on residues Thr32, Ser253, and Ser315, leading 
to its inhibition. Thr32 and Ser253 phosphorylation induces 
its exclusion from the nucleus and cytoplasmic retention 
through 14-3-3 chaperone protein binding [10]. Moreover, 
such phosphorylation promotes the alteration of FoxO bind-
ing to target DNA sequences [30, 31]. In non-muscle cells, 
FoxO1 and FoxO4 are also phosphorylated by Akt [32, 33]. 
Furthermore, using Akt1 and Akt2 knockout mice, a recent 
study demonstrated that BCL2/adenovirus e1B 19-kDa 
protein-interacting protein 3 (BNIP3) and GABA(A) recep-
tor-associated protein-like 1 (GABARAPL1) transcripts, 
two autophagy-related genes regulated by FoxO3, are sig-
nificantly elevated in muscle, confirming the importance of 
Akt in FoxO transcriptional activity regulation in vivo [34].

Unlike Akt, the adenosine monophosphate-activated 
protein kinase (AMPK), positively regulated by stimuli that 
decrease cellular energy levels (for a review, see Ref. [35]), 
phosphorylates FoxO3 at six regulatory sites (Thr-179, 

Fig. 2  Antagonist regulation 
of FoxO proteins by the IGF-1/
PI3K/Akt axis and AMPK. 
FoxO transcription factors 
are directly phosphorylated 
(at Thr32 and Ser253/315 for 
FoxO3) and inhibited by Akt via 
14-3-3 binding in response to 
insulin/growth factor stimula-
tion, whereas AMPK phospho-
rylates and activates FoxO3 
under conditions of energy 
stress. AMPK also induces 
FoxO deacetylation and activa-
tion by modulating the activity 
of the histone deacetylases 
SIRT1 and SIRT3. Moreover, 
FoxO3 and FoxO4 can be 
acetylated by the histone acetyl-
transferase p300, and cytosolic 
FoxO3 can be degraded by 
the murine double minute 2 
(Mdm2) via the ubiquitin–pro-
teasome system. IRS1 insulin 
receptor substrate 1, PIP2 
phosphatidylinositol 4,5-bispho-
sphate, PIP3 phosphatidylino-
sitol 3,4,5-triphosphate, PDK1 
phosphoinositide-dependent 
kinase 1
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Ser-399, Ser-413, Ser-355, Ser-588, and Ser-626) in vitro 
and promotes its activation [36] (Fig. 2). Importantly, the 
phosphorylation of Ser-413 and Ser-588 after AMPK acti-
vation by AICAR has been found in muscle cells [37, 38] 
and the AMPK-mediated activation of FoxO3 is associated 
with myofibrillar proteolysis through the activity of the 
muscle atrophy F-box (MAFbx/atrogin-1) and the muscle 
ring-finger protein 1 (MuRF1) [39].

The effects of AMPK on cellular movements of FoxO 
show discrepancies, depending on the duration of AMPK 
activation. In C2C12 myotubes, Sanchez et al. [37] showed 
that the activation of AMPK by AICAR activates FoxO3 
and promotes transient nuclear translocation from 30 min 
to 6 h, but not at 24 h. These data are consistent with the 
results of Tong et al. [38] who reported that AICAR treat-
ment in the same cell line caused FoxO3 nuclear reloca-
tion through a decrease in FoxO3 phosphorylation at Thr-
318/321. Nevertheless, williamson et al. [40] reported that 
longer AICAR treatment (24 h)—again, in the same cell 
line—led to a decrease in nuclear FoxO3 content through 
a peroxisome proliferator activator receptor γ coactiva-
tor-1 α (PGC-1α)-dependent mechanism. Taken together, 
these data suggest that a pool of FoxO3 is rapidly directed 
toward the nucleus under AMPK activation and thereafter 
translocates into the cytosol and/or is degraded. Alterna-
tively, Greer et al. suggested that AMPK does not modify 
FoxO3 localization and affects only the activity of the 
FoxO3 already present in the nucleus of HeK293T cells. 
Since FoxO3 cycles constantly in and out of the nucleus, 
AMPK may activate the fraction of FoxO3 that is always 
present in the nucleus [36].

Moreover, in a situation of energy stress, AMPK 
enhances the activity of histone deacetylase sirtuin 1 
(SIRT1) by increasing the cellular NAD+ level, which 
results in the deacetylation and activation of FoxO1 and 
FoxO3 in muscle [41]. During fasting and after exercise, 
AMPK promotes SIRT1-dependent deacetylation of FoxO1 
and PGC-1-α, leading to the modulation of mitochondrial 
and lipid utilization genes [42]. Interestingly, the deacetyla-
tion of these substrates is reduced in AMPKγ3 KO mice, 
suggesting that the decreased SIRT1 activity could be con-
sequent to the observed unresponsiveness of intramuscular 
levels of NAD+ to fasting in these mice [42].

Concerning the transcriptional regulation of FoxO by 
AMPK, Nystrom and Lang found that 6 h after AICAR 
injection into mouse skeletal muscle, FoxO1 and FoxO3 
mRNA levels increased but not FoxO4, which is also the 
case in response to sepsis [43]. In the same study, 24 h of 
AICAR and metformin (another AMPK activator) treat-
ment decreased the mRNA content of FoxO1 and FoxO3 
in C2C12 myotubes [43], and 2DG treatment for 8 h led to 
an increase in FoxO3 but a decrease in FoxO1 and FoxO4 
mRNA levels. Furthermore, in the same cell model, AICAR 

treatment of shorter duration (i.e., 6 h) increased the mRNA 
content of FoxO1 and FoxO3 [39]. Thus, these data suggest 
that pharmacological activators of AMPK increase FoxO1 
and FoxO3 mRNA levels during short-term treatment in 
myotubes and in vivo, and that longer treatments lead to a 
decrease in said content in muscle cells. Concerning pro-
tein levels, it has been reported that dominant negative 
AMPK in muscle cells leads to a critical decrease in FoxO3, 
whereas AICAR treatment for 6 h elicits an accumulation of 
FoxO1 and FoxO3 [37, 39], in accordance with previously 
described AICAR effects on FoxO mRNA content.

In summary, these cumulative data demonstrate that 
FoxO proteins are regulated on several fronts. In skeletal 
muscle, the most studied post-translational modifications of 
FoxOs are acetylation, ubiquitination, and phosphorylation 
(Fig. 2). AMPK and Akt have opposite effects on FoxO3 
localization and activity. while Akt inhibits FoxO1, 3 and 
4 by phosphorylation and 14-3-3 binding under mitogenic 
activation, AMPK phosphorylates FoxO3 at two regulatory 
sites (Ser-413/588) in skeletal muscle, leading to its activa-
tion under stress conditions. Moreover, AMPK activation 
is associated with increasing levels of FoxO1 and FoxO3 
mRNAs and protein content.

Regulation of skeletal muscle homeostasis by FoxO 
proteins

FoxO1 and FoxO3 regulate energy metabolism

FoxO1 plays a particularly significant role in the regula-
tion of muscle energy homeostasis (Fig. 3). It is an impor-
tant regulator of glucose metabolism in skeletal muscle, as 
it is in liver [44], pancreas [45], adipose tissue [45], and 
bone [46]. First, FoxO1 was shown to affect muscle energy 
homeostasis through a reduction in carbohydrate catabo-
lism during fasting [47]. FoxO1 can bind directly to the 
promoter region of the pyruvate dehydrogenase kinase 4 
(PDK4) gene, a key factor in maintaining the blood glu-
cose level, to promote its expression during energy dep-
rivation in skeletal muscle [47]. High levels of PDK4 
induce a decrease in the activity of pyruvate dehydroge-
nase (PDH), which catalyzes the reaction from pyruvate to 
acetyl-CoA and leads to lower use of carbohydrates as an 
energy substrate [48]. Thus, the increase in PDK4 expres-
sion mediated by FoxO1 results in the conservation of 
glucose and gluconeogenic substrates (lactate, pyruvate, 
and alanine) and a decrease in glycolytic flux by inacti-
vating the pyruvate dehydrogenase complex (PDC) [49]. 
Interestingly, it was recently found that FoxO1 activation 
correlates with PDK4 expression, and consequently with 
PDC activity, during exercise after several days of high-fat 
diet in humans [50]. Furthermore, FoxO1 is an important 
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metabolic regulator of muscle fat oxidation, a finding first 
reported in the 1980s in a study showing that FoxO1 lev-
els are correlated with lipoprotein lipase (LPL) expression, 
the enzyme that hydrolyses plasma triglycerides into fatty 
acids and glycerol for uptake by muscle cells under fasting 
or exercise [51]. Moreover, overexpression of FoxO1 was 
found to increase LPL expression in C2C12 [52], strength-
ening these earlier results. FoxO1 also alters the subcellular 
localization of the membrane fatty acid translocase/cluster 
of differentiation 36 (FAT/CD36) [49] that permits fatty 
acid uptake into muscle cells. Last, FoxO1 regulates the 
expression of adiponectin receptors (AdipR), which trans-
mit a signal for increased fatty acid oxidation in muscle, 
and adiponectin sensitivity [53]. Taken together, these data 
demonstrate that FoxO1 acts as a switch for a shift toward 
the use of lipids instead of glucose as fuel substrate under 
several stress conditions. Concerning FoxO3, its role in 
mitochondrial energy metabolism under nutrient restriction 
has recently been assessed [54]. In this study performed 
in myotubes, the authors showed that a low-glucose con-
dition raises FoxO3 accumulation into mitochondria in an 
AMPK-dependent manner. Glucose restriction induces the 
formation of a multiprotein complex composed of FoxO3, 

SIRT3 (a mitochondrial sirtuin [55]), and mitochondrial 
RNA polymerase at mitochondrial DNA-regulatory regions 
(mtDNA-RR). The association of FoxO3 with mitochon-
drial DNA was found to correlate with activation of mito-
chondrial transcription. In this model, SIRT3 mediates 
FoxO3 binding to mtDNA-RR and the transcription of 
mitochondrial-encoded core or catalytic subunits of the 
oxidative phosphorylation machinery, thus increasing mito-
chondrial respiration. These data extend our understanding 
of FoxO proteins function into mitochondria, the central 
governors of energy metabolism, and suggest attractive 
perspectives for metabolic disorder research.

In summary, in the FoxO family, FoxO1 appears to be 
the major regulator of muscle energy homeostasis through 
the regulation of glycolytic and lipolytic flux. Importantly, 
the function of FoxO3 in mitochondrial metabolism is 
emerging. The involvement of FoxO4 and 6 in skeletal 
muscle energy metabolism still remains to be characterized.

FoxO1 and FoxO3 govern protein breakdown

The role of FoxO transcription factors in the regulation of 
skeletal muscle protein degradation has been studied over 
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Fig. 3  Role of FoxO in skeletal muscle homeostasis. FoxO transcrip-
tion factors negatively regulate glycolysis by increasing the transcrip-
tion of the pyruvate dehydrogenase kinase 4 (PDK4), which leads 
to the inhibition of the pyruvate dehydrogenase complex (PDC), 
and promote fatty acid (FA) degradation by increasing lipopro-
tein lipase (LPL), fatty acid translocase/cluster of differentiation 36 
(FAT/CD36), and adiponectin receptor (AdipR) transcription. FoxO3 
regulates transcription of mitochondrial-encoded core or catalytic 
subunits of the oxidative phosphorylation machinery, thus increasing 
mitochondrial respiration. FoxO proteins increase the transcription 

of the muscle atrophy F-box (MAFbx/atrogin-1), muscle ring-finger 
protein 1 (MuRF1), zinc finger protein 216 (ZNF216), mitochon-
drial e3 ubiquitin protein ligase 1 (Mul1), autophagic genes (Atgs), 
Bcl-2 interacting mediator of cell death (Bim) and BCL2/adenovirus 
e1B 19-kDa protein-interacting protein 3 (BNIP3) in myotubes lead-
ing to atrophy. FoxO1 inhibits the differentiation from myoblasts to 
myotubes in early steps but promotes myotube fusion in later steps of 
myogenic differentiation. FoxO1 binds and inhibits PGC-1α and the 
Ca2+/calmodulin-dependent protein kinase II (CaMKII), leading to a 
decrease in type I fiber expression
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the last 10 years. FoxO has been shown to regulate the two 
major systems of protein breakdown in skeletal muscle, the 
ubiquitin–proteasome and the autophagy–lysosomal path-
ways [29, 56, 57] (Fig. 3).

The ubiquitin–proteasome system is assumed to play 
a major role in muscle protein degradation since the dis-
covery of two e3 ubiquitin ligases, MAFbx/atrogin-1 and 
MuRF1, which are overexpressed in various atrophy mod-
els like fasting, denervation, immobilization, and hindlimb 
suspension [58, 59]. The function of e3 ubiquitin ligases 
is to target specific protein substrates for degradation by 
the 26S proteasome. FoxO1 and 3 are required for the tran-
scription of MAFbx/atrogin-1 and MuRF1 [56, 60], which 
leads to the ubiquitination of several proteins involved in 
skeletal muscle maintenance. MAFbx/atrogin-1 catalyzes 
the breakdown of the myogenic transcription factors MyoD 
and myogenin, as well as the eukaryotic initiation factor of 
translation eIF3f [61–64]. As a result, MAFbx/atrogin-1 
inhibits the transcription and translation of muscle genes 
and prevents the replacement of degraded muscle proteins. 
MAFbx/atrogin-1 has also recently been shown to ubiq-
uitinate and target sarcomeric proteins (i.e., desmin and 
vimentin) for degradation, expanding its activities to the 
degradation of myofibrillar proteins [65]. MuRF1 recog-
nizes myosin heavy chain protein (MyHC) [66] and other 
myofibrillar proteins such as myosin light chain 1 and 2 
(MLC1 and 2, respectively) and myosin-binding protein C 
(MyBP-C) [67] for breakdown by the proteasome. Interest-
ingly, the thin filament components (actin, tropomyosin, 
troponins) and Z-band (α-actinin) decrease during atrophy 
by a mechanism not requiring MuRF1, but rather Trim32 
(tripartite motif-containing protein 32), a distinct RING 
finger ubiquitin ligase [68, 69]. In addition to these e3 
ligases, zinc finger protein 216 (ZNF216) also seems to be 
involved in muscle atrophy. Indeed, ZNF216 expression is 
upregulated in denervation and fasting-induced models of 
muscle atrophy, and mice lacking ZNF216 exhibit resist-
ance to atrophy [70]. ZNF216’s ability to directly bind to 
polyubiquitin chains and its association with the 26S pro-
teasome suggests it may function by shuttling proteins tar-
geted for degradation to the proteasome. Moreover, FoxO4 
increases ZNF216 expression in C2C12 myoblasts, sug-
gesting that ZNF216 may also function as a downstream 
effector of FoxO proteins in muscle atrophy [70]. Further 
studies are needed to determine the role of this potential 
FoxO4/ZNF216 axis in skeletal muscle homeostasis and 
its involvement in both physiological and pathological 
situations.

The second system is the autophagy–lysosomal path-
way, an important mechanism for maintaining cell metabo-
lism and protein turnover. This machinery is implicated in 
the turnover of organelles and long-lived proteins, as well 
as in the clearance of damaged cell components and the 

degradation of cell material in order to allow energy sup-
ply and cell survival during starvation and stress [71]. It 
involves, first, the sequestration of substrates into a vacu-
olar system called the autophagosome. The autophagosome 
then fuses with the lysosome to form an autolysosome, in 
which the content is degraded by lysosomal hydrolases. 
Autophagy requires the Atg (autophagy-specific gene) pro-
teins implicated in the formation of autophagosomes [72] 
and two ubiquitin-like conjugation systems. The first one 
involves the Atg12/Atg5/Atg16 complex [73, 74], which 
is essential for the formation of the autophagosomal mem-
brane [75, 76]. The second implicates the conjugation sys-
tem of Atg8, also known as microtubule-associated protein 
1 light chain 3 (LC3) in mammals [77]. Pro-LC3 is first 
cleaved by the cysteine protease Atg4 to its mature form, 
LC3I. The former is then lipidated to LC3II by Atg7 and 
Atg3, this event contributing to membrane fusion and the 
substrate selection for degradation [78]. It is noteworthy 
that two other complexes (Unc-51-like kinase (Ulk1)/Atg1 
and Beclin1/vacuole protein sorting 34 (vps34)/PI3K) 
are important for the initiation of the autophagic process 
[79–82]. These proteins operate in conjunction with other 
Atgs to mediate the initial assembly of the autophago-
somal membrane. Recently, it was shown in vivo dur-
ing starvation-induced atrophy that FoxO3 regulates the 
transcription of several Atgs, including LC3B and BNIP3 
[57]. FoxO3 controls the skeletal muscle ubiquitin-protea-
some and autophagy–lysosomal pathways independently, 
and BNIP3 appears to mediate the effect of FoxO3 on 
autophagy. Moreover, FoxO3 regulates the transcription of 
several other Atgs, Beclin, GABARAPL1, PI3KIII, Atg4B, 
Atg12 l, and Ulk2, during fasting [83]. This study [83] also 
reported that expression of a constitutively active form of 
FoxO3 promotes LC3 lipidation, which could reflect the 
induction of autophagy. Moreover, FoxO1 directly tar-
gets cathepsin L, a lysosomal protease in muscle [84], and 
induces its expression during fasting [84] or cachectic con-
ditions [85], promoting a role of FoxO factors in lysosomal 
degradation. Although the implication of FoxO proteins in 
the transcription of Atg and lysosomal hydrolases has been 
partially described, their potential role in the genesis of lys-
osomes has not been investigated. Similarly, the potential 
role of FoxO1 in skeletal muscle autophagy remains to be 
characterized.

In order to assess the function of autophagy in skeletal 
muscle, Masiero and colleagues performed experiments on 
mice with muscle-specific knockout of Atg7, a gene neces-
sary for the unfolding of the autophagy program. Interest-
ingly, these mice showed obvious signs of muscle weak-
ness and atrophy exacerbated by aging. Indeed, these mice 
presented an accumulation of degraded proteins and free 
radicals, deterioration in the internal cellular structures, and 
activation of the apoptotic program. The authors clearly 



1663FoxO proteins in skeletal muscle

1 3

demonstrated that inhibition of basal autophagy does not 
protect from the skeletal muscle atrophy induced by dener-
vation or starvation but, on the contrary, contributes greatly 
to muscle degeneration. A similar atrophic phenotype was 
also obtained in muscle-specific Atg5 knockout mice [86]. 
Thus, autophagy in muscle is a complex process that can 
be beneficial or deleterious, depending on its activation 
level and cellular environment. Further work is needed to 
determine whether autophagy during muscle wasting has a 
protective function, a causative role, or is the result of the 
disease process itself.

Last, the involvement of FoxO3 in mitochondrial 
autophagy (also called mitophagy) has recently been char-
acterized. Fission and selective fusion govern mitochon-
drial segregation and elimination by autophagy, and an 
increase in mitochondrial fission was reported to be per-
missive for mitophagy [87]. enhanced FoxO1 and FoxO3 
activity during muscle wasting results in increased tran-
scription of the mitochondrial e3 ubiquitin protein ligase 
1 (Mul1), which in turn ubiquitinates and degrades mito-
fusin-2 (Mfn2) [88], a mitochondrial fusion protein criti-
cal for the maintenance and genomic stability of mito-
chondrial DNA [89]. These events promote fragmentation, 
depolarization, and clearance of mitochondria through the 
autophagy–lysosomal pathway [88].

Collectively, these recent studies highlight that FoxO1 
and 3 are central regulators of protein breakdown. Although 
FoxO1 seems to be more involved in the ubiquitin–protea-
some pathway, FoxO3 has a role in both the ubiquitin–pro-
teasome and autophagy–lysosomal systems. Importantly, 
these two proteins were recently identified as having a role 
in skeletal muscle mitophagy through the regulation of the 
activity of the mitochondrial e3 ligase Mul1.

Cell proliferation, differentiation, and muscle regeneration 
are regulated by FoxOs

In addition to the effect of FoxO factors on protein degra-
dation, their role in myogenesis has also been addressed. 
Muscle progenitor cells, called satellite cells, reside 
between the sarcolemma and basement membrane of termi-
nally differentiated muscle fibers. These are normally qui-
escent in adult muscle, but play a major role in muscle cell 
differentiation and tissue regeneration in response to injury. 
Overexpressed FoxO3 decreases muscle precursor cell 
proliferation by increasing expression of p27KIP1, a cyclin-
dependent kinase inhibitor [90]. Moreover, a decrease in 
the activation of the p27KIP1 promoter was found to result 
from an IGF-I-related inhibition of FoxO1 activity in sat-
ellite cells [91]. In addition, the forkhead box protein K1 
(Foxk1) interacts with the winged helix of FoxO4 and 
promotes muscle progenitor cell proliferation by repress-
ing FoxO4 transcriptional activity [92, 93]. Reciprocally, 

repression of FoxO4 results in decreased FoxO4 target 
gene (p21CIP, p27KIP1, p57, and Gadd45α) expression and 
increased cellular proliferation of the muscle progenitor 
cells [93]. It is noteworthy that the gastrocnemius mus-
cles of FoxO4-null mice, which show increased cellular 
proliferation, also show altered regeneration and smaller 
myofibers following cardiotoxin injury [93]. These delete-
rious effects seem to be linked to the decreased expression 
of cell cycle inhibitors, especially p21CIP [93], and suggest 
the prominent role of FoxO4 as a key cell cycle regulator 
of progenitor cells. Furthermore, the expression of a con-
stitutively active form of FoxO4 controls C2C12 myoblast 
cycle progression by G(2) arrest [6]. In these cells, oxida-
tive stress activates the stress-inducible gene Gadd45 pro-
moter in a FoxO-dependent manner, resulting in a greater 
abundance of Gadd45 protein, as well as G(2) arrest [6]. 
In summary, these data indicate that FoxOs act as negative 
regulators of cell proliferation.

In addition to their role in the control of the cell cycle, 
FoxO proteins are also implicated in myogenic differentia-
tion. Illustrating the great complexity of the FoxO system, 
the studies on myoblast differentiation have shown substan-
tial differences, according to the step of differentiation. For 
example, Hribal et al. [94] reported that overexpression of 
a constitutively active form of FoxO1 in C2C12 myoblasts 
results in the inhibition of muscle differentiation induced 
by constitutively active Akt, whereas dominant-negative 
mutant FoxO1 causes a slight but significant increase in 
the expression of differentiation markers. The results from 
Kitamura et al. [95] confirmed the inhibitory effect of 
FoxO1 on myoblast differentiation and demonstrated that 
FoxO1 and Notch pathways cooperate in the regulation of 
muscle differentiation. Last, the study by wu and cowork-
ers also showed that FoxO1 inhibits C2C12 myoblast dif-
ferentiation, and these authors demonstrated that activa-
tion of an inducible mutant of FoxO1 leads to proteasome 
degradation of MTOR pathway components (i.e., RPTOR, 
MTOR, p70S6K, and TSC2) [96], which are required for 
differentiation, by controlling the expression of IGF-II 
[97]. By contrast, Bois and Grosveld reported that FoxO1 
is required for myotube formation of primary mouse myo-
blasts after the initiation of differentiation [98]. These 
authors showed that FoxO1 translocates to the nucleus 
and regulates the fusion of differentiating primary myo-
blasts during later steps of myogenic differentiation. Taken 
together, these studies highlight the complex role of FoxO1 
during myogenesis. FoxO1 may also have a dual role, 
depending on the stage of myogenesis.

Notably, inhibition of basal FoxO1 activity decreases 
myostatin expression and Smad transcriptional activity, 
whereas it increases MyoD expression, satellite cell pro-
liferation, and fusion, and leads to muscle hypertrophy 
in normal muscle [95, 99]. Reciprocally, expression of 
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constitutively active FoxO1 in C2C12 myotubes enhances 
myostatin promoter activity, and mutation of the FoxO-
binding sites in the myostatin promoter reduces its activity 
[100]. Thus, FoxO1 regulates the expression of myostatin, 
which contributes to the control of muscle cell growth and 
differentiation [100]. Collectively, these data demonstrate 
that basal levels of FoxO transcription factors play a role 
in limiting muscle growth, especially by repressing satellite 
cell activation.

In summary, while the muscle proteins FoxO1, 3, and 4 
inhibit cell proliferation, FoxO1 expression inhibits myo-
blast differentiation, but only in the early steps. Indeed, it 
has also been reported that FoxO1 is required for myotube 
formation of primary myoblasts after the initiation of the 
differentiation process. Further experiments are needed to 
clarify the molecular basis of such divergent roles.

Regulation of muscle mass by FoxO1 and 3

Skeletal muscle atrophy occurs under a variety of condi-
tions and can result from alterations in both protein synthe-
sis and protein degradation. The role of FoxO transcription 
factors in skeletal muscle atrophy has been investigated 
over the past few years. One study showed that FoxO1 is 
markedly upregulated in skeletal muscle under energy-
deprived states such as fasting and severe diabetes [52]. The 
study by Kamei et al. [60] demonstrated that FoxO1 trans-
genic overexpression in skeletal muscle induces a decrease 
in body size and muscle mass associated with an upregu-
lation of MAFbx/atrogin-1 and MuRF1 expression. It was 
also established that genetic activation of FoxO3 results in 
atrophy associated with upregulation of MAFbx/atrogin-1, 
whereas knockdown of FoxO3 by siRNA prevents muscle 
atrophy [56]. Similarly, the expression of a dominant-nega-
tive form of FoxOs inhibits the MAFbx/atrogin-1, MuRF1, 
cathepsin L, and BNIP3 mRNA increases associated with 
cancer cachexia and sepsis, resulting in an inhibition of 
muscle fiber atrophy [85]. Interestingly, inactivation of 
autophagic flux by LC3 silencing partially prevents FoxO3-
mediated muscle loss, suggesting the major role of the 
autophagic pathway in FoxO3-mediated atrophy [57]. Con-
cerning the e3 ligases, MuRF1 knockdown attenuates mus-
cle atrophy in response to synthetic glucocorticoid treat-
ment, contrary to MAFbx/atrogin-1 deletion. Moreover, the 
muscle sparing in MuRF1-null mice is related to the main-
tenance of protein synthesis rather than the attenuation of 
muscle protein breakdown [101]. In view of these elements, 
we can assume that FoxOs/MuRF1 controls both protein 
synthesis and degradation in skeletal muscle, but the under-
lying mechanisms remain to be elucidated. Furthermore, 
recent data have established a link between mitochondrial 
dysfunction and atrophy, showing that expression of the 
fission machinery leads to muscle wasting by triggering 

organelle dysfunction and AMPK activation [102]. Impor-
tantly, the essential role of FoxO1- and FoxO3-dependent 
mitophagy has been characterized during muscle wasting. 
Thus, the previously described Mul1/mitophagy axis was 
reported to have a significant deleterious role in denerva-
tion and dexamethasone atrophy models [88].

In FoxO-dependent atrophy, FoxO1 activation induces 
apoptosis in a DNA-binding-dependent manner in mature 
myotubes [103]. Apoptosis can be directly linked to skeletal 
muscle atrophy through induction of mitochondria-asso-
ciated proapoptotic genes and DNA fragmentation during 
mechanical unloading and denervation [104–107]. Thus, 
the apoptotic genes, Bcl-2-interacting mediator of cell death 
(Bim) and BNIP3—which can promote apoptosis through 
their ability to trigger mitochondrial disruption [108, 109]—
are induced by FoxO1 during muscle atrophy [103]. None-
theless, it is noteworthy that activation of FoxO1 does not 
lead to apoptosis in primary myoblasts, conversely to what 
has been found in other cell types [11, 98].

FoxO1 and FoxO3 mRNAs are upregulated during dexa-
methasone treatment [47, 110] and glucocorticoids seem 
to induce the activation of FoxO factors by decreasing the 
activity of the PI3K/Akt pathway. In agreement, FoxO 
transcription factors in cultured myotubes can be inhibited 
by IGF-1 following dexamethasone treatment [29]. Inter-
estingly, under the same treatment, IGF-1 is not able to 
block MAFbx/atrogin-1 or MuRF1 expression in the pres-
ence of a constitutively active FoxO1 mutant that cannot 
be phosphorylated by Akt [10]. This finding demonstrated 
that IGF-1/PI3K/Akt-related inhibition of atrophy requires 
the blockade of FoxO1. Recently, it was shown in acute 
inflammation that the FoxO pathway activation linked to 
increased glucocorticoid production plays a more crucial 
role in the induction of proteolytic systems than decreased 
IGF-I production and an increased tumor necrosis factor α 
(TNF-α)/NF-κB pathway [111].

The implication of FoxOs in aged-mediated atrophy has 
also been investigated. FoxO proteins play key roles in the 
aging process, especially with respect to their ability to 
reduce the generation of reactive oxygen species and DNA 
damage [112, 113]. Sandri and coworkers recently estab-
lished that the modulation of the Akt/FoxO pathway and the 
proteolytic systems is modest in the aging process and that 
sarcopenia is not due to FoxO activation [114]. Similarly, 
it was suggested that apoptosis contribution could be more 
important than MAFbx/atrogin-1- and MuRF1-linked pro-
tein degradation in declining aged-muscle functions [115]. 
Pardo and colleagues reported a mechanosensitive signaling 
mechanism in the diaphragm, responsible for the regulation 
of FoxO transcription factors in aging [116]. Indeed, they 
found that the alteration in the mechanical properties of 
the aged diaphragm is associated with a decrease in FoxO1 
and FoxO3 nuclear content. Such a decrease is correlated 
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with higher basal activation of Akt during aging. However, 
in the same model, nuclear FoxO4 content remains unaf-
fected and its stability seems to be dependent on the c-Jun 
N-terminal kinases (JNKs), which are highly activated in 
sarcopenia [116]. Thus, these data suggest that FoxO4 is 
the principal homologue responsible for FoxO-dependent 
transcriptional activity in the aging diaphragm. In a study 
investigating the cause of the skeletal muscle mass loss in 
sarcopenia, edström et al. [117] found that, contrary to the 
acute atrophies induced by caloric restriction, chronic atro-
phies induced by disuse, disease and denervation lead to 
MAFbx/atrogin-1 and MuRF1 downregulation in the skel-
etal muscle of 30-month-old rats. The authors suggested 
that Akt activated by the IGF-1 receptor is responsible for 
the inactivation of FoxO4 and the subsequent inhibition of 
MAFbx/atrogin-1 and MuRF1. Moreover, this study con-
firmed the results of Furuyama et al. [118] and showed that 
caloric restriction limits sarcopenia as well as the effects of 
aging by acting on Akt phosphorylation, FoxO4 inhibition, 
and MAFbx/atrogin-1 and MuRF1 transcript regulation.

Thus, FoxO1 and FoxO3 act through an exacerbation 
of the ubiquitin-proteasomal and autophagy–lysosomal 
degradation pathways in muscle atrophy. Moreover, FoxO 
factors, especially FoxO3, are involved in mitochondrial 
dysfunction and elimination by regulating the mitophagic 
pathway under atrophy. Nonetheless, the involvement of 
apoptosis in the aging process seems to be more important 
than FoxO-dependent proteolysis.

Regulation of muscle fiber type by FoxOs

Regarding muscle typology, FoxO-mediated atrophy is 
associated with a decreased expression of type I (slow 
oxidative) fiber-related genes and proteins (i.e., troponin I 
(slow) and myoglobin), a diminished number of type I fib-
ers, and smaller type I and type II fibers [60]. A target of 
FoxO1 is PGC-1α, a metabolic transcriptional coactivator 
that was originally identified in vitro as a coactivator of 
the peroxisome proliferator-activated receptor γ (PPAR-γ) 
[119]. PGC-1α, which is notably induced by endurance 
exercise [120, 121], promotes fiber-type switching from 
glycolytic toward more oxidative fibers [122, 123]. Inter-
estingly, FoxO1 expression stimulates the promoter activity 
of PGC-1α via interaction with insulin response sequences 
(IRSs) in liver HepG2 cells [124], but to our knowledge, 
no muscle study has yet supported this finding. However, 
the study of Kamei et al. [60] showed that PGC-1α mRNA 
levels are increased in muscle-specific FoxO1 transgenic 
mice, suggesting that FoxO1 may promote PGC-1α gene 
expression in muscle. Thus, these studies suggest that the 
alteration in muscle oxidative capacity mediated by FoxO1 
cannot be directly linked to an alteration in PGC-1α mRNA 
content, but FoxO1 may bind to PGC-1α and inhibit certain 

functions of this factor. Along the same lines, FoxO6 was 
recently shown to form a regulatory loop with PGC-1α for 
setting the oxidative metabolism level in muscle cells [15], 
but the authors did not investigate whether this mechanism 
is modulated during muscle wasting. Nevertheless, PGC-
1α is downregulated in various types of muscle atrophy, 
including denervation, streptozotocin-induced diabetes, 
renal failure, and cancer [125]. electroporation of PGC-1α 
in rodent muscles diminished FoxO3 transcriptional activ-
ity and reduced denervation- and fasting-induced atrophy 
by decreasing MAFbx/atrogin-1 and MurF1 expression 
levels, while increasing several genes involved in gly-
colysis and oxidative phosphorylation [125]. Moreover, 
overexpression of PGC-1β or PGC-1α in mouse muscles 
decreases denervation-induced atrophy, MAFbx/atrogin-1 
and MuRF1 induction, and NF-κB activity [126], this last 
being especially activated during skeletal muscle wasting. 
In addition to PGC-1α, type I fiber gene expression is also 
regulated by the transcription factor myocyte enhancer fac-
tor 2c (Mef2c) and the Ca2+/calmodulin-dependent kinase 
II (CaMKII), and levels of both proteins are significantly 
reduced in transgenic mice overexpressing FoxO1 [60]. 
It was also reported that FoxO1 is expressed preferen-
tially in fast-twitch fibers and overexpression of FoxO1 
induces the formation of fast-twitch fibers [127]. Yuan 
et al. [127] found that FoxO1 decreases oxidative capacity 
in C2C12 myotubes, at least in part through inhibition of 
the calcineurin pathway, a master chief regulatory signal-
ing pathway of slow fiber-selective gene expression [128]. 
Interestingly, FoxO1 can exert different actions according 
to the fiber type, and it was shown that FoxO1 mRNA is 
upregulated in both the soleus and plantaris muscles dur-
ing hindlimb unloading, but this effect is correlated only 
with a lower oxidative capacity of soleus muscle [129]. In 
this study, the percentage of type I fibers is decreased and 
the percentage of glycolytic fibers is increased in the soleus 
muscle but not in plantaris, strongly suggesting that slow 
fibers are affected by FoxO1 more than fast fibers.

Altogether, these studies clearly demonstrate that FoxO 
transcription factors are negative regulators of type I fiber-
related gene expression in muscle atrophy, which results in 
a shift of muscle phenotype from slow oxidative to fast gly-
colytic (Fig. 3). The significance of the FoxO6-PGC1-α reg-
ulatory loop during muscle wasting should be investigated 
in order to open new perspectives and assess the importance 
of this FoxO member in skeletal muscle homeostasis.

FoxO1 and 3 are involved in skeletal muscle adaptation 
to exercise

Besides the involvement of FoxO proteins in muscle 
wasting, recent studies have demonstrated that FoxO1 
and FoxO3 are involved in skeletal muscle adaptation 
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to exercise. In human skeletal muscle, the FoxO1 gene 
increased at 3 h and returned to baseline by 48 h during 
recovery from an exhaustive bout of high-intensity cycling 
[130]. The FoxO3 gene also increases after a marathon 
[131]. Consistent with this, it was reported that certain 
autophagic markers (i.e., LC3bII and Atg12 protein expres-
sion), MuRF1 mRNA level, and proteasome β2 subunit 
activity are increased after ultra-endurance exercise [132]. 
Furthermore, some of these adaptations also occur during 
moderate exercise [133–135]. Thus, the rise in catabolic 
pathways regulated by FoxO1 and 3 could provide amino 
acids as an alternative energy substrate during prolonged 
exercise and probably optimizes protein turnover during 
recovery. The removal or recycling of damaged cell con-
stituents is also needed in skeletal muscle during exercise. 
In addition, mechanical stimuli induce changes in gene 
expression that affect metabolism and promote adaptations 
in muscle function and muscle mass. In support of a role 
for FoxOs in the adaptations of skeletal muscle to resist-
ance exercise, Goodman et al. [136] showed that total and 
phosphorylated FoxO1 and 3 were elevated with chronic 
mechanical overload that induces significant hypertrophy 
and remodeling. Interestingly, the increase in total FoxO1 
was an MTOR kinase-dependent event, suggesting that 
MTOR is involved in the protein degradation increase 
observed in response to mechanical overload. Furthermore, 
in mice, He and coworkers reported that the autophagic 
process is required for the beneficial metabolic effects of 
exercise on skeletal muscle [137]. Indeed, mice that have 
mutations in BCL2 phosphorylation sites, which prevent 
stimulus-induced disruption of the BCL2-beclin-1 complex 
and autophagy activation, present decreased endurance and 
altered glucose metabolism during acute exercise. These 
emergent studies support the essential role of FoxO tran-
scriptions factors in muscle adaptations to exercise. Future 
research to further elucidate these events will be key to 
achieving a better understanding of the molecular adapta-
tions of skeletal muscle to exercise. For example, direc-
tions for future research include the possible involvement 
of FoxO/mitophagy and mitochondrial network remod-
eling during exercise. Because exercise is associated with 
improved quality of life and constitutes one of the best 
approaches to limit atrophy and metabolic disorders, these 
research directions are crucial in the battle against a wide 
spectrum of metabolic and muscle diseases.

Summary and conclusions

In summary, significant progress has expanded our under-
standing of the prominent roles played by FoxO transcrip-
tion factors in skeletal muscle homeostasis. These proteins 
control muscle cell growth, differentiation, and apoptosis, 

as well as energy metabolism, this last one by acting as a 
switch for a shift toward the use of lipids instead of glu-
cose as fuel substrate and by regulating mitochondrial 
metabolism. FoxO factors regulate protein breakdown, 
with FoxO1 seemingly more involved in the regulation of 
the ubiquitin–proteasome pathway, whereas FoxO3 plays 
a role in both the ubiquitin–proteasome and autophagy–
lysosomal systems. Furthermore, FoxO1 and FoxO3 have 
recently been implicated in the regulation of mitophagy 
through activation of the e3 ligase Mul1. A basal level of 
FoxO1 and 3 is necessary for maintaining cellular home-
ostasis and responding to the metabolic stress related to 
exercise, but the exacerbated activation that occurs in sev-
eral diseases results in atrophy, mitochondrial dysfunction, 
and a detrimental shift in the muscle phenotype. A basal 
level of protein breakdown is necessary for maintaining 
muscle homeostasis, and the complex process of autophagy 
can be beneficial or deleterious, depending on its activa-
tion level. The physiological relevance of the autophagic 
pathway in skeletal muscle is emerging, as recent studies 
have demonstrated its deleterious role in wasting and, con-
versely, its crucial role in cellular homeostasis during exer-
cise. In the light of these results, additional work is neces-
sary to further elucidate the precise role of these proteins, 
especially in mitochondrial homeostasis, for the develop-
ment of new therapeutic approaches. This will be important 
in preventing or limiting the muscle wasting that prevails 
in numerous physiological and pathological states such as 
immobilization, aging, denervated conditions, neuromuscu-
lar diseases, AIDS, cancer, and diabetes.
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