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Endochondral bone formation starts with the condensation 
of mesenchymal cells, which differentiate into chondro-
cytes characterized by the production of specific extracellu-
lar matrix (ECM) proteins such as type II collagen (Col II) 
and aggrecan. The chondrocytes proliferate unidirection-
ally to form orderly parallel columns which accumulate a 
cartilaginous matrix [2]. These cells then exit the cell cycle, 
differentiate further to become hypertrophic, and produce 
type X collagen (Col X) [4]. In growth plates, maturing 
chondrocytes are organized into zones, including a resting 
zone, a proliferating zone, a prehypertrophic zone, and a 
hypertrophic zone [5]. Once the hypertrophic chondrocytes 
have terminally differentiated, the cartilaginous matrix is 
mineralized and the cells undergo apoptosis. These mature 
chondrocytes express vascular endothelial growth factor 
(VEGF) to induce blood vessel invasion and matrix metal-
loproteinases (MMPs) to aid in the degradation of the carti-
laginous matrix by chondroclasts, and the primary ossifica-
tion center is developed [6, 7] (Fig. 1).

The process of chondrocyte proliferation and differen-
tiation is regulated by various transcription factors, growth 
factors, ECMs, and cell–matrix interactions [2, 8–10]. In 
addition, recent studies have revealed the importance of 
epigenetic and microRNA-mediated control in cartilage 
development. Defects in the factors involved in the devel-
opment of growth plate cartilage are often associated with 
skeletal dysplasias and short stature [11]. In this review 
article, I will mainly address the mechanisms regulating the 
development of growth plate cartilage.

Transcriptional control of chondrogenesis

Sox9 is a member of the Sox family of transcription factors 
characterized by a high-mobility-group-box DNA binding 

Abstract  In vertebrates, most of the skeleton is formed 
through endochondral ossification. Endochondral bone for-
mation is a complex process involving the mesenchymal 
condensation of undifferentiated cells, the proliferation of 
chondrocytes and their differentiation into hypertrophic 
chondrocytes, and mineralization. This process is tightly 
regulated by various factors including transcription factors, 
soluble mediators, extracellular matrices, and cell–cell and 
cell–matrix interactions. Defects of these factors often lead 
to skeletal dysplasias and short stature. Moreover, there is 
growing evidence that epigenetic and microRNA-mediated 
mechanisms also play critical roles in chondrogenesis. 
This review provides an overview of our current under-
standing of the regulators for the development of growth 
plate cartilage and their molecular mechanisms of action. 
A knowledge of the regulatory mechanisms underlying the 
proliferation and differentiation of chondrocytes will pro-
vide insights into future therapeutic options for skeletal 
disorders.
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Introduction

Most of the skeleton, including the long bones of the limbs 
and the vertebral columns, is formed through endochondral 
ossification, involving a cartilaginous intermediate [1–3]. 
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motif related to that of the sex determining factor SRY, and 
plays a central role in chondrogenesis. In chondrocyte line-
age cells, the expression of Sox9 starts at the mesenchy-
mal osteochondroprogenitor stage and remains high during 
differentiation. Mutations in the human SOX9 gene result 
in camptomelic dysplasia characterized by severe skel-
etal malformation, indicating the critical role of SOX9 in 
skeletogenesis [12, 13]. Accumulating evidence in mice 
also has revealed that Sox9 is indispensable for chondro-
cyte differentiation [3, 14]. Sox9 transcriptionally controls 
the expression of cartilage-specific genes such as Col2a1 
encoding Col II [15, 16]. Two other Sox family members, 
Sox5 (L-Sox5) and Sox6, cooperate with Sox9 to activate 
the chondrocyte-specific enhancers in the genes for ECM 
components [15, 17, 18]. Other transcription factors, such 
as members of the activating transcription factor (ATF)/
cyclic AMP response element binding protein (CREB) 
family and the AP1 family member c-Fos, are required to 
maintain the proliferative capacity of early chondrocytes 
[19–21]. RhoA is a Rho GTPase, which functions as a reg-
ulator of cytoskeletal dynamics. RhoA signaling through its 
main effector ROCK inhibits chondrogenesis by suppress-
ing the expression of Sox9 [22, 23].

A decrease in the expression and/or activity of the Sox 
proteins is required for the hypertrophic maturation of 
chondrocytes. In addition to the negative regulation by 
Sox proteins, other transcription factors, such as the Runt 
domain family members Runx2 and Runx3, function to 
promote chondrocyte hypertrophy [24]. Mice lacking 
both Runx2 and Runx3 lack hypertrophic chondrocytes 
[24]. Runx2 directly binds and activates the genes Ihh 
(Indian hedgehog), Col10a1 encoding Col X, and MMP13 
[25–27]. A recent study using a doxycycline-inducible 
conditional knockout of Sox9 has revealed that Sox9 sup-
presses the expression of Runx2 and β-catenin signaling 
and thereby inhibits the progression from proliferation to 

prehypertrophy of chondrocytes [28]. Twist-1 is a basic 
helix-loop-helix-type transcription factor, which represses 
the expression of Runx2 in the perichondrium. Runx2 
enhances the expression of fibroblast growth factor 18 
(Fgf18) and exerts an indirect negative effect on chondro-
cyte maturation [29]. Osterix regulates the calcification 
and degradation of cartilaginous matrix through MMP13 
expression in association with Runx2 [30].

MADS-box transcription factors Mef2c and Mef2d 
(myocyte enhancer factor 2c and 2d) are also involved in 
chondrocyte hypertrophy. Genetic deletion of Mef2c in 
endochondral cartilage impairs hypertrophic maturation, 
while the forced expression of a superactivating form of 
Mef2c resulted in precocious chondrocyte hypertrophy 
[31]. The activity of Runx2/3 and Mef2c/d is inhibited by 
the histone deacetylase HDAC4 [31–33]. Other transcrip-
tion factors, such as Msx2, the AP1 family member Fra2, 
and FoxA family transcription factors, also positively con-
trol chondrocyte hypertrophy [34–37].

The developmental growth plate is hypoxic, especially 
in its interior. The transcription factor hypoxia-induci-
ble factor I (HIF-1) is one of the major regulators of the 
hypoxic response in mammals. Genetic evidence obtained 
from mice lacking HIF-1α suggests its role in chondrocyte 
survival and the regulation of Vegf expression [38]. Condi-
tional overexpression of VEGF164 in chondrocytes lacking 
HIF-1α rescued the phenotype of HIF-1α-deficient growth 
plate only partially, indicating VEGF-independent func-
tions of HIF-1α in developing growth plate cartilage [39]. 
It is also reported that HIF-1α regulates collagen hydroxy-
lation and secretion in developing cartilage [40].

Soluble mediators involved in chondrogenesis

Ihh, a member of the hedgehog family of signaling mol-
ecules, is expressed in prehypertrophic chondrocytes, and 
regulates the onset of hypertrophic differentiation through 
a negative feedback loop with parathyroid hormone-related 
protein (PTHrP). Ihh increases the expression of PTHrP in 
perichondrial cells and chondrocytes at the ends of long 
bones, which inhibits chondrocyte hypertrophy through its 
cognate receptor expressed in proliferating chondrocytes 
and keeps the cells in the proliferating stage [41]. Moreo-
ver, it is also reported that Ihh stimulates the proliferation 
and maturation of chondrocytes independently of PTHrP 
[42, 43]. Activation of Wnt and bone morphogenetic pro-
tein (BMP) signaling is suggested to be involved in the 
PTHrP-independent role of Ihh to regulate chondrocyte 
hypertrophy [44].

Fibroblast growth factors (FGFs) also play important 
roles in skeletogenesis by activating signaling through 
FGF receptors (FGFRs) [45]. Gain-of-function mutations 

Fig. 1   Schematic representation of molecules involved in the devel-
opment of growth plate cartilage
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in human FGFR3 result in chondrodysplasias and dwarf-
ism [46–49]. As to FGF ligands, Fgf2 was first identified 
to be expressed in chondrocytes [50], and is also expressed 
in periosteal cells and osteoblasts [51, 52]. However, Fgf2-
knockout mice demonstrate no defects in chondrogenesis 
[52, 53]. Fgf9 is also expressed in immature chondrocytes 
in mesenchymal condensation. In the perichondrium, the 
expression of Fgf7, Fgf8, Fgf9, Fgf17, and Fgf18 has been 
reported [54–58]. Evidence obtained from mouse models 
indicates profound role for Fgf18 in chondrogenesis [56, 
57]. Fgf9 was also proven to regulate early hypertrophic 
chondrocyte differentiation and skeletal vascularization 
by the defects in chondrogenesis in Fgf9-knockout mice 
[59]. Among the FGFRs, Fgfr3 is expressed in chondro-
cytes undergoing mesenchymal condensation and pro-
liferating chondrocytes, whereas Fgfr1 is expressed in 
prehypertrophic and hypertrophic chondrocytes [60–62]. 
Genetic and functional studies demonstrated that the sign-
aling through FGFR3 negatively regulates the chondrocyte 
proliferation and differentiation [63–66]. The effects of 
FGFR3 in chondrogenesis are partly exerted by direct sign-
aling in chondrocytes, and in part indirectly through the 
regulation of Ihh/PTHrP/BMP signaling [67]. In achondro-
plasia, constitutive activation of FGFR3 results in the acti-
vation of downstream pathways including STAT1 and ERK 
signaling [45]. The growth plates of mice lacking Fgf18 
have a similar histology to those of Fgfr3-knockout mice, 
suggesting that FGF18 is a physiological ligand for FGFR3 
in chondrocytes [56, 57].

C-type natriuretic peptide (CNP) controls cell behavior 
through the activation of two transmembrane receptors, 
NPR1 and NPR2 [68–70]. Since these receptors synthe-
size cyclic GMP in response to ligand binding, NPR1 and 
NPR2 are also called guanylyl cyclase A and B (GC-A 
and GC-B), respectively. CNP exerts its signal mainly 
through NPR2/GC-B. The importance of CNP signaling 
in chondrogenesis was shown by the severe dwarfism of 
CNP-knockout mice and the finding that CNP stimulated 
the longitudinal growth of cartilage in organ cultures [71, 
72]. NPR2-null mice display a similar phenotype to CNP-
knockout mice [73]. CNP promotes endochondral bone 
growth through several mechanisms, including the stimula-
tion of chondrocyte proliferation, an acceleration of chon-
drocyte hypertrophy, and an increase of ECM production. 
In humans, loss-of-function mutations in the NPR2 gene 
cause acromesolic dysplasia, type Maroteaux, character-
ized by severe dwarfism [74]. We have recently identified 
a novel gain-of-function type mutation of the NPR2 gene 
in a family with overgrowth [75]. Such evidence indicates 
the critical role of CNP/NPR2 signaling in chondrogenesis 
both in humans and in mice.

The skeletal phenotype in CNP-deficient mice resembles 
that in cases of achondroplasia. Overexpression of CNP in 

cartilage rescued the skeletal phenotypes in a mouse model 
of achondroplasia, suggesting an intimate link between the 
FGF and CNP signaling [73]. CNP signaling inhibited the 
activation of the ERK pathway induced by FGF signaling, 
while FGF signaling blocked CNP-induced cGMP produc-
tion in a MAPK-dependent manner [73]. In addition to the 
ERK pathway, recent studies demonstrated the possible 
involvement of the p38MAPK and PI3K/Akt pathways in 
the regulation of chondrocyte development by CNP [76]. 
CNP analogues are promising as new drugs for the dwarf-
ism associated with skeletal dysplasias [77].

Studies have established the involvement of signaling 
mediated by epidermal growth factor receptor (EGFR) in 
chondrogenesis. Delayed primary endochondral ossifica-
tion associated with defective osteoclast recruitment was 
reported in mice lacking EGFR [78]. Ubiquitous over-
expression of betacellulin, a ligand for EGFR, resulted in 
defects in growth plates characterized by a smaller zone 
of hypertrophic chondrocytes in mice [79]. In addition, 
cartilage-specific inactivation of EGFR in mice as well as 
the administration of an EGFR-specific small-molecule 
inhibitor, gefitinib, into rats caused hypertrophic cartilage 
enlargement [80].

Other growth factors such as Wnts, BMPs, transform-
ing growth factor-beta (TGF-β), insulin-like growth fac-
tors (IGFs), thyroid hormone, and connective tissue growth 
factor (CTGF) also play roles in chondrogenesis. There are 
several excellent review articles on their actions [81–83].

Regulation of chondrogenesis by the ECM

In the early stages of chondrogenesis, cell–cell interaction 
via adhesion molecules such as N-cadherin and N-CAM 
plays a role in cellular condensation and the subsequent 
chondrogenesis [84, 85]. As chondrocytes mature, they 
produce abundant matrix proteins, and the cell–matrix 
interactions come to have important roles. Integrins bind 
various extracellular components such as ECMs and other 
cell surface proteins [86]. The binding of ligands to inte-
grins leads to the formation of focal adhesion complexes, 
and transduces the signaling from the ECM to intracellu-
lar effectors such as cytoskeleton [87, 88]. Integrins exist 
as dimers of an α subunit and a β subunit, and chondro-
cytes express several integrin subunits including fibronectin 
receptors (α5β1, αnβ3, αnβ5), a laminin receptor (α6β1) 
and collagen receptors (α1β1, α2β1, α10β1) [89–92]. The 
importance of β1 integrin-mediated signaling in chondro-
genesis was demonstrated by the chondrodysplasia-like 
phenotype of chondrocyte-specific β1 integrin-knockout 
mice [93]. Growth plates of these mice exhibited unorgan-
ized proliferative columns and an abnormal cell shape due 
to the loss of adhesion to Col II. The chondrocytes isolated 
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from these mice displayed reduced proliferation caused by 
a defect in G1/S transition and cytokinesis.

Inactivation of the α10 integrin gene also resulted in 
growth plate dysfunction, which was associated with an 
abnormal cell shape and increased apoptosis of chondro-
cytes [94]. On the other hand, knockout of the gene for α1 
integrin resulted in osteoarthritis but no abnormalities in 
the growth plates, despite this gene’s predominant expres-
sion in hypertrophic chondrocytes [95].

Activation of integrin-mediated signaling triggers the 
formation of a complex consisting of multiple proteins, 
which regulate various cellular processes. Integrin-linked 
kinase is one of the components, and the knockout of its 
gene caused a chondrodysplasia-like phenotype resembling 
that of chondrocyte-specific β1 integrin-knockout mice 
[96]. In these mice, reduced proliferation of chondrocytes 
was the main cause for the skeletal phenotype, and the 
expression of chondrocyte-specific genes such as Col2a1 
was comparable with that in wild-type mice.

CD44 is a cell surface glycoprotein that functions as a 
receptor for collagens and hyaluronan. It was reported that 
the blocking of CD44-hyaluronan binding on chondrocytes 
resulted in degradation of the cartilage matrix, suggesting 
a role for CD44 in cartilage homeostasis [97]. Annexin V 
acts as a receptor for collagen, specifically for a fragment 
of Col II in articular chondrocytes [98]. Antibodies against 
annexin V inhibited the binding of chondrocytes to Col II 
[99]. It is also suggested that annexin V is involved in regu-
lating the apoptosis of growth plate chondrocytes [100].

Cartilage contains abundant proteoglycans. The sulfate 
transporter SLC26A2 is responsible for sulfate uptake by 
chondrocytes, and mutations in its gene lead to undersulfa-
tion of cartilaginous proteoglycans, resulting in a chondro-
dysplasia called diastrophic dysplasia. In dtd mice with a 
knock-in Slc26a2 mutation, the resulting undersulfation of 
glycosaminoglycans such as chondroitin destroys the artic-
ular surface and correlates with the rate of chondroitin syn-
thesis across epiphyseal cartilage [101]. Chondroitin sulfate 
N-acetylgalactosaminyltransferase 1 (CSGalNAcT-1) is an 
enzyme that participates in the initiation of the biosynthe-
sis of chondroitin sulfate. Mice lacking the gene encoding 
CSGalNAcT-1 exhibit shorter, disorganized chondrocyte 
columns in the growth plates with a rapid catabolism of 
aggrecan [102].

In addition to providing signals to cells by binding to 
integrins and other ECM receptors, ECM proteins regulate 
chondrogenesis through the binding, storage, and release 
of soluble factors. TGF-β is produced by chondrocytes as 
a high molecular weight macromolecule in association with 
latent TGF-β binding protein (LTBP), which functions in 
the storage of TGF-β in the ECM [103, 104]. Proteoglycans 
such as decorin, biglycan, and fibromodulin also regulate 
TGF-β activity by sequestering TGF-β in the ECM [105]. 

Most FGFs bind to heparan sulfate proteoglycans. They 
bind to cognate receptors in the context of heparan sulfate 
proteoglycans and evoke signaling into the cells. Genetic 
evidence obtained with mice lacking sulfate-modifying fac-
tor 1 (Sumf1) has suggested that the desulfation of proteo-
glycans regulates chondrocyte proliferation and differentia-
tion by limiting FGF signaling [106].

Signals from the ECM itself and those triggered by solu-
ble mediators appear to interplay to regulate chondrogen-
esis. We have demonstrated that vinculin plays a role in 
chondrogenesis [107]. Vinculin is a component of multimo-
lecular complexes which function in adhesion and/or sign-
aling between the extracellular microenvironment and the 
cell, via integrins and cadherins. Impaired functioning of 
vinculin by knockdown in primary chondrocytes and organ 
cultures of metatarsal explants resulted in the reduced 
expression of Col2a1, aggrecan, Col10a1, and Runx2. In 
addition, knockdown of vinculin in the metatarsals abro-
gated IGF-I-induced growth, and inhibited the up-regula-
tion of Col2a1 and aggrecan expression by IGF-I. These 
results suggest that vinculin regulates the expression of 
chondrocyte-specific genes via the integration of signaling 
from the ECM and soluble factors such as IGF- I (Fig. 2). 
It is also reported that cell adhesion via integrin regulates 
the activation of growth factor receptors. The orchestration 
of the signaling of soluble factors and the ECM should be 
considered a factor in the regeneration of cartilage [107].

Epigenetic and microRNA‑mediated regulation  
of chondrogenesis

There is growing evidence that epigenetic and microRNA-
mediated mechanisms play roles in chondrogenesis as well 

Fig. 2   Vinculin regulates the production of type II collagen and 
aggrecan by orchestrating the signal of extracellular matrix and that 
of IGF-1
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as in pathogenesis of osteoarthritis [108]. Histone modi-
fications involving acetylation and deacetylation have an 
impact on the phenotype of chondrocytes. Among the his-
tone deacetylases (HDACs), HDAC4 has been suggested 
to prevent premature chondrocyte hypertrophy by block-
ing the activity of Runx2, as described above [32]. HDAC1 
and HDAC2 were shown to repress the expression of some 
cartilage-specific genes including Col2a1, and the Snail 
transcription factor was identified as a mediator of the 
repression [109]. The up-regulation of HDAC7 expression 
was suggested to contribute to the cartilage degradation by 
promoting the expression of MMP13 [110].

SIRT1 is a NAD+-dependent histone deacetylase, and 
enhances the expression of cartilage-specific ECM genes, 
such as Col2a1, by recruiting co-activators to the enhancer 
and promoter and facilitating Sox9-mediated transcription 
[111]. In addition, SIRT1 has been suggested to regulate 
chondrocyte apoptosis [112].

DNA methylation at CpG dinucleotides is commonly 
associated with gene repression. An in vitro study dem-
onstrated that the induction of COL10A1 during the 
chondrogenesis of mesenchymal stem cells correlated 
with the demethylation of 2 CpG sites in the COL10A1 
promoter [113]. It was reported that DNA methylation 
inversely correlated with the expression of cartilage-
specific genes including COL9A1, but not catabolic 
genes such as MMP13, during fetal femur development 
in human [114]. Moreover, recent reports have suggested 
that the methylation of a specific CpG site inhibits the 
transactivation of MMP13 by transcription factors HIF-
2α and CREB [115, 116].

MicroRNAs (miRNAs) are a class of ~22 nucleotide 
noncoding RNAs that regulate the expression of other 
genes at the posttranscriptional level. Knockout of Dicer, 
an enzyme required for miRNA synthesis, led to severe 
skeletal growth defects caused by decreased chondro-
cyte proliferation and accelerated differentiation in mice, 
indicating the critical roles of miRNAs in chondrogen-
esis [117]. Specific miRNAs have been identified to have 
roles in chondrocyte differentiation. miR-199a was shown 
to be responsive to BMP and to regulate chondrogenesis 
by directly targeting Smad1 [118]. Mice lacking miR-140 
showed a mild skeletal phenotype with a short stature and 
age-related OA-like changes associated with the elevated 
expression of ADAMTS-5, suggesting that miR-140 regu-
lates cartilage development and homeostasis [119]. miR-
145 was reported to directly target Sox9 and regulate 
chondrogenic differentiation of mesenchymal stem cells 
[120]. miR-675, whose production is positively regulated 
by Sox9, increases the expression of COL2A1 in human 
articular chondrocytes [121]. These findings have estab-
lished the importance of miRNA-mediated regulation in 
cartilage development.

Conclusion

The development of growth plate cartilage is a complex 
process, regulated by transcription factors, soluble factors, 
cell–cell and cell–matrix interactions, and epigenetic fac-
tors. These factors interplay to control the proliferation and 
differentiation of chondrocytes. Failure in the development 
of growth plate cartilage is often associated with skeletal 
dysplasias, for which currently there is no effective treat-
ment. Understanding the mechanisms regulating chondro-
genesis may lead to new therapeutic drugs for these dis-
eases, such as CNP analogues.
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