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Abstract Formation of metastasis is the most important

and lethal step in cancer progression. Circulating and dis-

seminated cancer cells (CTCs/DTCs) in blood and bone

marrow are considered as potential metastases-inducing

cells. Their detection and characterization has, therefore,

become a field of major interest in translational and clinical

research in oncology. The main strategy to detect these

cells relies thus far on the epithelial characteristics of

carcinoma cells and epithelial cell adhesion molecule

(EpCAM) represents the most commonly used epithelial

marker to capture CTCs/DTCs. Recent data, however,

demonstrated a dynamic expression of EpCAM associated

with a loss during epithelial-to-mesenchymal transition.

The present review summarizes the potential mechanisms

and reasons for a dynamic expression of EpCAM.
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EpCAM provides access to (early) systemic cancer

Over the last decade, we have learned that dissemination of

metastatic precursor cells can occur early during tumor

development and that the evolutionary dynamics underly-

ing systemic progression can be very complex, resulting in

heterogeneous and rather inefficient metastatic potential

[1–4]. Concomitantly, the introduction of rationally

designed molecular therapeutics addressing specific aber-

rant pathways in cancer cells has led to the need for

biomarkers for effective patient selection and accurate

assessment of pharmacodynamics [5–7]. To address these

needs and to enable more successful anti-metastatic ther-

apies, early detection, precise monitoring and molecular

characterization of (early) systemic cancer would be

required. In this context circulating tumor cells (CTCs)

gained much attention since they might provide direct

access to systemic cancer.

CTCs are cancer cells that have left the primary tumor

site and that can be detected as rare events within the blood

circulation, correlated with progressive disease and poor

outcome in metastatic and non-metastatic cancer, sug-

gesting an active role for these cells in driving metastatic

disease [8–10]. Despite enormous recent technical

advancements, the detection and isolation of CTCs remain

to be difficult. One problem relates to the low blood vol-

ume that is commonly analyzed making CTC detection

unreliable, especially in patients with very low CTC

numbers in the circulation [11, 12]. This problem could be

overcome using high blood volume techniques, such as

leukapheresis [11] or a functionalized Seldinger guidewire,

which is inserted in the cubital vein of the cancer patient

[13]. A more complex problem relates to the detection of

the extremely rare CTCs in the absence of any tumor-

specific marker. So far, epithelial CTCs are mainly iden-

tified by their histogenetic difference to the mesenchymal

hematopoietic cells. The group of Gert Riethmüller pio-

neered this strategy almost 30 years ago, applying

immunoassays with antibodies directed against
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cytokeratins and the transmembrane epithelial cell adhe-

sion molecule EpCAM to trace clinically occult single

disseminated cancer cells in bone marrow of non-meta-

static cancer patients [14]. In the meantime, EpCAM

became one of the most commonly used membrane-asso-

ciated proteins for capturing CTCs from blood samples

(reviewed in [15]), while cytokeratins commonly serve to

identify CTCs after isolation. Alternatives such as tumor-

specific antigen 9, keratin 19 and pre-progastrin-releasing

peptides have been reported [16]. The rationale to use

EpCAM as a capturing antigen is based on its strong

expression in most carcinomas and the specificity for epi-

thelial cells [17, 18]. Expression of EpCAM in non-

epithelial cells is restricted to embryonic stem cells and

rare subsets of adult stem and precursors cells [18–22].

Another factor promoting EpCAM as prime marker for

CTCs was clearly the success of the CellSearch system, the

only U.S. Food and Drug Administration (FDA) cleared

CTC detection assay. The CellSearch system relies on the

automated immuno-magnetic enrichment of EpCAM?

cancer cells [23], which are then further qualified as CTCs

based on expression of cytokeratins (CK), nuclear coun-

terstain with 40,6-diamidino-2-phenylindole (DAPI), and

absence of CD45 expression [24]. Clinical studies dem-

onstrated the validity of the prognostic relevance of CTC

baseline counts (C5 CTC/7.5 mL blood) in metastasized

breast [24–26], prostate [27], and (C3 CTC/7.5 mL blood)

colorectal cancer [28]. More recently, large studies

revealed the prognostic value of CTCs even in non-meta-

static breast cancer, although CTCs were detected

markedly less frequently than in metastatic disease [29,

30].

Since, the extracellular domain of EpCAM provides a

target for antibodies to capture CTCs without the need to

permeabilize cells, vital CTCs can be isolated. Using this

opportunity, Bacelli et al. [31] could recently reveal that

FACS-sorted EpCAM? CTCs comprise indeed metastases-

inducing cells (MICs) in metastatic breast cancer patients.

Down-regulation of EpCAM on cancer cells impedes

effective CTC capturing

At the time of its introduction into CTC assays, EpCAM

was perceived as an epithelial cell adhesion molecule [32].

Its steady expression throughout cancer progression

remained unquestioned for a long time, until observations

of a dynamic EpCAM expression were reported and con-

cerns were raised to miss relevant CTCs if EpCAM is used

as exclusive CTC capturing antigen. One of the first

comparative studies of EpCAM-based isolation platforms,

including CellSearch, OncoCEE microchannel, and On-Q-

ity’s CTC chip, demonstrated a comparable performance

but the capture efficiency of all assays was clearly related

to the EpCAM expression level on the target cells. Con-

sequently, more ‘‘aggressive’’ mesenchymal cancer cell

phenotypes could escape EpCAM-dependent capturing

[33]. Sieuwerts et al. [34] reported that cells of the normal-

like breast cancer subtype, a mesenchymal, vimentin-

positive phenotype with aggressive features, were not

efficiently isolated using CellSearch in comparison to the

basal, HER2-positive, and luminal A/B subtypes. Besides

EpCAM-negativity of specific cancer entities/subtypes,

data indicated that EpCAM becomes down-regulated on

cancer cells during dissemination into the blood stream

[35]. Here, the molecule expression per cell was found to

be approximately tenfold lower in CTCs compared to pri-

mary tumors or metastasis (49,700 vs. 400,000). A recent

transcriptome profiling in colorectal cancer validated Ep-

CAM down-regulation on CTCs compared to primary

tumors [36]. Similarly, down-regulation was noted in dis-

seminated cancer cells (DTC) detected in bone marrow of

esophageal carcinoma patients, where two-thirds of

patients harbored EpCAM-negative DTCs despite a strong

expression of EpCAM in primary tumors [37]. Interest-

ingly, EpCAM? DTCs associated with the occurrence of

lymph node metastases and poor survival, which possibly

reflects the role or even requirement of EpCAM in prolif-

eration of micrometastases. Zhang et al. [38] recently

underscored the importance of EpCAM- CTCs by gener-

ating cell lines from EpCAM-/ALDH?/CD45- CTCs with

pronounced metastatic capacity in mice. Interestingly,

EpCAM?/ALDH?/CD45- CTCs could be also kept

in vitro but did not survive more than 14 days under the

applied culture conditions.

EMT as important trigger for EpCAM down-regulation

in CTCs and DTCs

A first experimental evidence for dynamic expression of

EpCAM on human cancer cells in the blood circulation

came from xenograft experiments. Gorges and colleagues

established metastasizing xenograft mouse models with

EpCAM-expressing breast cancer cell lines. While tumors

at the injection site and metastasis expressed EpCAM, its

mRNA expression was absent on CTCs and became down-

regulated within the first hour after injection into the blood

stream [39]. Interestingly, genes associated with epithelial-

to-mesenchymal transition (EMT) were concomitantly up-

regulated in EpCAM- circulating cancer cells [39].

EMT is a tightly controlled process occurring physio-

logically during embryonic development and wound

healing, allowing cells to switch phenotypes between epi-

thelial and mesenchymal states. It is believed that EMT is

essential for metastasis by promoting motility, invasion,
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and dissemination in epithelial cancer cells [40–42]. The

reverse process, termed mesenchymal-to-epithelial transi-

tion (MET), allows then cancer cells to regain their

epithelial features including adhesion and proliferation [43,

44], thereby promoting the development of macro-metas-

tases from (single) DTCs. Both, paracrine and autocrine

signals including activation of TGFb receptors [45–47] and

WNT-dependent signaling [48] are involved in the transi-

tion from the epithelial to the mesenchymal state. These

central pathways impact on the expression and function of

essential transcription factors such as ZEB1, snail, slug and

twist, which finally execute EMT programs [40]. Addi-

tional mechanisms, which are instrumental during EMT,

became recently better understood and rely mainly on

epigenetic changes. Here, polycomb group factors operate

at the level of chromatin remodeling, e.g. histone modifi-

cations, including the placement of activating and

inhibiting methylation marks at histone 3 lysine residues

(H3K4 and H3K27 methylation) (reviewed in [49] On the

contrary, Rho family GTPases such as rac1 and cdc42 are

required for the reverse conversion to an epithelial state

[50]. Furthermore, microRNAs of the mir200 and 205

cluster were demonstrated to promote MET [51]. These

regulatory mechanisms have also been shown for EpCAM

in prostate cancer cells. Induction of chemoresistance was

associated with EMT and loss of EpCAM, whereas treat-

ment of chemoresistant cells with miRNA 200 or 205

induced MET and restored EpCAM expression [52]. Sim-

ilarly, treatment of lung and esophageal carcinoma cells

with TGFb resulted in substantial loss of EpCAM mem-

brane expression, but obviously based on different

molecular mechanisms [37]. While reduction of EpCAM

expression was seen at the transcriptional and post-trans-

lational level in A549 lung cancer cells, post-translational

EpCAM down-regulation was seen in esophageal cancer

cells.

It is important to stress that in EMT, epithelial and

mesenchymal phenotypes must be seen as the two extremes

of a broad range of cellular states that can be partly or

completely acquired by tumors cells. In other words, car-

cinoma cells undergo EMT or MET in a gradual manner,

with epithelial cells partially acquiring mesenchymal but

retaining selected epithelial features, and vice versa [49].

Interestingly, this plasticity might not necessarily reflect

targeted, cell-autonomous changes, but could be the result

of stochastic changes occurring in cells under given con-

ditions and depending upon inputs from the

microenvironment they reside in [53]. In this model, tumor

heterogeneity reflects an equilibrium between various

states of phenotypes with the proclivity to metastasize. In

fact, epithelial/mesenchymal phenotypes can be mixed in

CTC populations as demonstrated by Yu et al. [54], who

applied a quantifiable, dual-colorimetric RNA-in situ

hybridization to assess epithelial and mesenchymal tran-

scripts of individual CTCs. Not only CTC phenotypes were

mixed within the patients, but also individual CTCs

showed a mixed epithelial/mesenchymal phenotype.

Interestingly, an increase of CTCs with mesenchymal

phenotype was observed in patients with progressive dis-

ease after systemic therapy [54]. In accordance with these

findings, previous studies indirectly demonstrated the

expression of EMT-associated markers and of the matrix

metalloproteinase 1 in CTCs [33, 55, 56], thus underlining

the important contribution of phenotypic changes during

disease progression and the need to include CTCs with

mesenchymal phenotypes into screening and therapeutic

approaches.

The molecular mechanisms leading to rapid down-reg-

ulation of EpCAM in response to EMT remain

incompletely understood. Indications for a potential

mechanism came from in vitro observations of human

migrating EpCAM? cancer cells. Here, a progressive loss

of EpCAM expression at the membrane along with the

appearance of EpCAM-positive speckles in the cytoplasm

was observed. These findings were suggestive of endocy-

tosis and subsequent degradation of EpCAM in

intracellular compartments [37]. Endocytosis of EpCAM

was already indicated by studies on the internalization of

fusions of toxins with EpCAM-specific antibodies [57].

Similarly, a loss of EpCAM at the plasma membrane and

increased cytoplasmic staining was reported in invading

colorectal cancer cells budding from the primary tumors

[58] as well as in advanced breast cancer [59], further

pinpointing to endocytosis as a relevant mechanism for

EpCAM withdrawal from the cell surface. From the

mechanistic and molecular point of view, the presence of

an NPXY consensus motif within the intracellular domain

of EpCAM was mentioned and suggested a clathrin-

dependent endocytosis of the molecule [18]. Intriguingly,

this stated NPXY motif cannot be found in the currently

available amino acid sequence of human EpCAM. Hence,

endocytosis of EpCAM and its molecular basis remain as

open questions to be addressed in more detail.

Other mechanisms leading to EpCAM down-regulation

The observed loss of EpCAM expression on the cell sur-

face of cancer cells could be further explained based upon

the published mode of activation of the protein [60]. Ep-

CAM undergoes a regulated intramembranous proteolysis

(RIP), beginning with cleavage of the extracellular ecto-

domain of EpCAM (EpEX) by sheddases of the ADAM

family [61, 62]. Additional insight came from work by

Hachmeister et al. [63] who demonstrated the additional

cleavage of murine EpCAM by the protease BACE-1,
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which is enzymatically active in endo- and lysosomes at

low pH of 4–5. Accordingly, inhibition of a pH shift in

lysosomes using bafilomycin as well as inhibition of

clathrin-dependent endocytosis resulted in stabilization of

EpCAM in lysosomes or retention at the plasma mem-

brane, respectively (OG, unpublished data). Thus,

endocytosis and RIP of EpCAM might represent separate

as well as converging routes of EpCAM withdrawal from

the plasma membrane.

A more classical understanding of loss of EpCAM

expression is based on the transcriptional down-regulation

of the EPCAM gene through hypermethylation of its

promoter, which was observed in breast cancer cells [64]

and human embryonic stem cells [65]. In line with these

findings, Tai et al. [66] reported on the hypermethylation

of the EPCAM promoter and decreased expression of

EpCAM with increasing invasiveness of lung adenocar-

cinoma cell lines. At the molecular level, silencing of the

EPCAM gene in differentiating human embryonic stem

cells was reported to depend on the loss of transcription

activating methylation marks on the tails of histone three

molecules (H3K4me3) and an increase of inhibitory

H3K27 trimethylation via the polycomb protein SUZ12

[65]. ZEB1, a transcription factor that regulates EMT

induction, has further been reported to bind to the pro-

moter of the EPCAM gene in zebrafish to down-regulated

EpCAM expression during gastrulation [67]. Comparable

results were obtained in human cancer cell lines, sug-

gesting a role for ZEB1 in the regulation of EpCAM

during tumor progression too [67]. In addition, mutations

of the EPCAM gene might further contribute to the per-

turbed expression of the protein. However, so far

mutations of the EPCAM gene involved in cancer phe-

notypes have rarely been described and actually impacted

on the expression of the DNA mismatch repair protein

MSH2, encoded by a gene located 3-prime of EPCAM.

Mutation of EPCAM resulted in genetic silencing of

MSH2, increased genomic instability and strongly

increased incidence of cancer—a phenotype known as the

Lynch syndrome [68, 69].

Initial understanding of EpCAḾs role in systemic

tumor progression

Conceptually, a dynamic expression of EpCAM could

either be a result of EMT/MET (‘‘passenger’’) or represent

a driving force of phenotypic changes (‘‘driver’’). The

major functions assigned to EpCAM speak in favor of a

‘‘driver’’ role in the regulation of the epithelial phenotype,

i.e. cell–cell adhesion [32], maintenance of epithelial

integrity [70], regulation of contractility and morphogenic

movements [71, 72], and regulation of proliferation [60,

62] (see Fig. 1 for a schematic view of EpCAM expres-

sion in tumor progression). EpCAM-mediated cell

adhesion is associated with the full-length molecule,

where the extracellular domains of EpCAM molecules on

opposing cells interact, while the intracellular domains

connect the protein to the cytoskeleton [73]. It must,

however, be noted, that EpCAM, at the same time, was

reported to interfere with E-cadherin-dependent functions

and thereby appeared to weaken cell adhesion [74]. On the

contrary, EpCAM was also demonstrated to cooperate

with proteins of the claudin family and to contribute to the

formation of tight junctions in the intestine [75]. In full

accordance, knock-out of EpCAM in the mouse resulted in

embryonic or perinatal lethality, which was associated

with severe hemorrhagic diarrhea [76] and intestinal

dysfunction [75]. Thus, EpCAM’s role in cell adhesion

remains somewhat inconclusive and would profit from

experimental revision. Especially, a competition of Ep-

CAM with cadherins appears questionable in the light of

present publications. Rather, EpCAM seems to foster

actomyosin-dependent contractility and cell adhesion at

the level of inhibition of protein kinase C (PKC) signaling

[70–72]. A function of EpCAM in the increase of cell

adhesion might explain the observed decrease in expres-

sion during EMT in migrating cells. However, the

reported EpCAM-dependent increase in motility observed

under physiological conditions in early gastrulation of

Xenopus laevi appears controversial and speaks in favor of

a migratory phenotype of EpCAM-positive cells [71, 72]

In line with this notion, siRNA-mediated knock-down and

p53-dependent down-regulation of EpCAM in breast

cancer cell lines resulted in substantially reduces prolif-

eration, migration and invasion [77, 78]. Controversially,

reduction of EpCAM expression in esophageal cancer

cells induced migration and invasion under conditions of

low nutrition [37]. Similar observations were made in

head and neck CSCs [37, 79]. In accordance with a

potentially dual role in adhesion and proliferation,

expression of EpCAM was associated with the formation

of larger tumors and an epithelial phenotype of cells [37,

62, 79]. Reinforcing these contrasting results, down-reg-

ulation of EpCAM resulted in loss of proliferation and

tumor formation capacity in breast epithelial-type cells,

whereas induction of EpCAM expression had no impact

on mesenchymal-type cells [80], arguing for a differential

expression and role of EpCAM in cellular subtypes. Fur-

thermore, modulation of EpCAM expression was

oppositely affecting proliferation in Her2-positive versus

Her2-negative breast cancer cell lines and correlated with

favorable or unfavorable prognosis, respectively [81].

Thus, the role of EpCAM in the regulation of proliferation

and migration appears somewhat conflicting throughout

different tumor cell systems and certainly requires further
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experimental approaches. At present, no valid explanation

can be given for the observed opposing effects of EpCAM

on migration and invasion, except for a potential role of

nutrition availability and a mixed phenotype due to

additional effects of EpCAM on proliferation and cell

metabolism [82–84].

The molecular basis for EpCAM’s direct involvement in

the regulation of proliferation was described long time after

its role in cell–cell adhesion [77, 83] and was demonstrated

to depend on RIP [62]. Proteolytic cleavage results in the

generation of extracellular EpEX domains and intracellular

domains, EpICD, which translocate into the nucleus in

combination with FHL2 and b-catenin to bind Lef-1 con-

sensus sites and induce the transcription of target genes

such as cyclin D1 [62, 85] and stemness genes [65].

Implication of EpCAM in the regulation of WNT signaling

primary tumour local invasion

EpCAMhigh

• epithelial
• proliferative
• adhesive

EpCAMlow

• mesenchymal
• migratory
• invasive

extravasation

circulation in blood/lymph stream

intravasation

micrometastases in secondary organ macrometastases in secondary organ

EpCAMlow/high

• mesenchymal epithelial
• quiescent /proliferative
• migratory/adhesive

EMT

MET

EpCAMhigh

• epithelial
• proliferative
• adhesive

F

A B

C

D

E

Fig. 1 Schematic

representation of EpCAM

expression throughout tumor

progression. a EpCAM is

strongly expressed in most

carcinomas, associates with an

epithelial phenotype, and

regulates proliferation. b Initial

phases of local invasion are

characterized by epithelial-to-

mesenchymal transition with a

loss of EpCAM expression at

the plasma membrane

(EpCAMhigh to EpCAMlow), a

gain of migratory and invasive

capacity, and a mesenchymal

phenotype. c, d Invasive tumor

cells gain access to the blood or

lymph stream upon

intravasation and begin to

circulate in the body. These

circulating tumor cells have a

mesenchymal, rather quiescent

phenotype. Circulating tumor

cells leave the blood or lymph

stream (extravasation) and

invade secondary organs at

locoregional or distant sites.

e Disseminated tumor cells

generate novel malignant seeds

and develop into

micrometastases.

f Micrometastases perform a

mesenchymal-to-epithelial

transition, re-express EpCAM,

regain proliferative capacity,

and grow to form macro-

metastases
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was also reported to occur in an indirect manner. Here,

EpCAM sequestered Kremen-1/Dickkopf2 complexes,

inhibitors of the Wnt receptor Lrp6 during hepatocytic

differentiation. Thereby, EpCAM fosters Lrp6 retention at

the membrane and its signaling through Wnt2bb, repre-

senting a licensing factor for the endodermal differentiation

towards hepatocytes in zebrafish [86]. This function of

EpCAM as a de-repressor of Wnt signaling and induction

of endodermal differentiation is of great interest with

respect to the loss of EpCAM during EMT, as it might

represent a means to repress endodermal differentiation to

allow mesodermal differentiation.

Proteolysis of EpCAM was analyzed in a cohort of

different cancer types using staining of EpEX and EpICD

on consecutive sections. The authors defined a membra-

nous, full-length EpCAM when both subdomains of

EpCAM were present at the membrane, and a truncated

variant, when EpICD was lacking at the membrane as

compared to EpEX. This study revealed strongest cleavage

in cancers of the endometrium and the bladder, interme-

diate cleavage in gastric, colorectal, esophageal, and

pancreatic cancers, and low cleavage in lung, ovarian,

breast and prostate cancers [87]. Owing to the compulsory

initial extracellular shedding of EpCAM to release EpICD

[62, 63], the presence of EpCAM molecules composed of

extracellular and transmembrane domains but lacking

EpICD appears counterintuitive, but has been reported by

various groups [62, 87, 88]. Such staining patterns might

reflect retention of EpEX at the plasma membrane or in the

interstitium in the vicinity of cells or, alternatively, a RIP-

independent and selective degradation of EpICD from

intact EpCAM molecules. Interestingly, cytoplasmic and

nuclear localization of EpICD correlated with an aggres-

sive phenotype of thyroid cancers [88–90]. Additional

evidence for a role of cleavage products of EpCAM in the

regulation of migration and invasion is, to the best of our

knowledge, currently lacking.

In summary, the present data support a role of EpCAM

in actively supporting an epithelial phenotype at the

expense of mesenchymal differentiation (Fig. 1). The main

contribution of EpCAM to tumor progression appears at the

moment to relate to proliferation [62, 77, 85, 91] and the

response to growth factors [92], but direct effects on dif-

ferentiation and pluripotency of cells are conceivable in

light of the repeatedly observed effects of EpCAM and

EpICD in embryonic stem cells [21, 22, 65]. Alternatively,

EpCAM could only induce proliferation and be pheno-

typically associated with epithelial cells, whilst

functionally unrelated to mesenchymal cells. Future studies

including cancer and stem cells should aim at the eluci-

dation of the actual role of EpCAM in differentiation,

which could potentially differ in stem cells, normal and

malignant epithelia.

Consequences for CTC-research and concluding

remarks

Circulating tumor cells appear currently as promising sur-

rogate markers for the actual targets of systemic cancer

therapy, i.e. metastases-inducing cells. Assuming that

EMT-CTCs reflect early steps of progression including

detachment from the primary tumor and circulation of

tumor cells, it seems imperative to use EMT markers in

isolation protocols to include EMT-CTCs in monitoring

procedures. Interesting marker candidates for EpCAM-

independent capturing, are the epidermal growth factor

receptor EGF-R and the hepatocyte growth factor receptor

c-Met [31, 33]. However, expression profiles of these

membrane proteins on CTCs remain to be further defined

and might eventually harbor similar problems and draw-

backs as EpCAM, including a loss of expression during

EMT/MET. Alternatively, marker-independent enrichment

of CTCs using selection by size with filtration techniques

[11, 93, 94] seems to be a very promising approach. Efforts

to characterize the phenotype and capacities of EMT-CTCs

might generate new options to inhibit early progression. On

the other hand, the expression of EpCAM on CTCs (and

DTCs) was generally strongly associated with metastasis

and reduced overall survival [24–26, 28, 37, 95–97].

Assuming that EpCAM-positive CTCs/DTCs reflect a

rather late stage within the metastatic cascade, potentially

associated with MET and the re-expression of epithelial

proteins, EpCAM gains impact as a therapeutic target to

suppress metastatic outgrowth. Therefore, future work

should address the role of EpCAM in non-EMT-CTCs

(MET-CTCs) with regard to proliferation and adhesion.

Detailed knowledge on EpCAM’s implication in the

functionality of proliferation versus migration/invasion is

of utmost importance when aiming to counteract such

functions in a therapeutic setting. Potential therapeutic

interventions cover a full range of methods and agents,

which have been reviewed elsewhere [19, 20, 98, 99].

Traditionally, EpCAM could be targeted by humanized

monoclonal, bi-specific and tri-functional antibodies or

recombinant variants such as BiTEs [19, 98]. However, in

view of the EpCAM signaling described here, novel

options emerge. These include delivery of protease inhib-

itors to EpCAM-positive CTCs/DTCs in form of antibody

conjugates, but also combinatorial therapies composed of

EpCAM-specific antibodies and protease inhibitors.

Antagonizing antibodies and small molecule inhibitors

interfering with RIP and nuclear translocation of EpICD,

respectively, could be further interesting options to inhibit

the outgrowth of MET-CTC/DTC.
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