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Abstract Life-threatening invasive fungal infections are

becoming increasingly common, at least in part due to the

prevalence of medical interventions resulting in immuno-

suppression. Opportunistic fungal pathogens of humans

exploit hosts that are immunocompromised, whether by

immunosuppression or genetic predisposition, with infec-

tions originating from either commensal or environmental

sources. Fungal pathogens are armed with an arsenal of

traits that promote pathogenesis, including the ability to

survive host physiological conditions and to switch be-

tween different morphological states. Despite the profound

impact of fungal pathogens on human health worldwide,

diagnostic strategies remain crude and treatment options

are limited, with resistance to antifungal drugs on the rise.

This review will focus on the global burden of fungal in-

fections, the reservoirs of these pathogens, the traits of

opportunistic yeast that lead to pathogenesis, host genetic

susceptibilities, and the challenges that must be overcome

to combat antifungal drug resistance and improve clinical

outcome.
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TLR Toll-like receptors

TNF-a Tumor necrosis factor-a
Treg cell Regulatory T cell

VVC Vulvovaginal candidiasis

Introduction

The emergence of fungi occurred approximately 1.6 billion

years ago [1, 2]. With an estimated 1.5 million species

occupying a range of environments [3], fungal species are

extraordinarily diverse. Fungi are a major cause of disease

in insects, amphibians, plants and even other fungi, with

incidences of infection reaching unprecedented levels in

recent years. Strikingly, millions of acres of the world’s

forests have become victim to fungal infections. The blue

stain fungus Grosmannia clavigera has devastated North

American pine forests [4], and elm trees have been in

significant decline since the twentieth century due to Dutch

elm blight. Fungi also pose a major threat to food supplies,

being responsible for the destruction of wheat and barley

crops by wheat leaf rust and rice by rice blast fungus.

Additionally, fungi pose a significant threat to animals,

crippling bat and amphibian species worldwide [5].

Of the 1.5 million fungal species, around 300 are re-

ported to be pathogenic in humans, and only a minority of

these are common human pathogens [6]. Many fungi are

commensal, forming part of our natural microbiota. Indeed,

a recent study by Findley et al. [7] illustrated the diversity

of fungal species on three different foot sites, and there is a

growing appreciation that fungi have an important role in

defining commensal microbial communities [8]. This

commensal role allows fungi to infect humans in multiple

ways. Ranging from cutaneous infections affecting 29

million North Americans each year [9], to superficial skin

infections, to more than 2 million invasive fungal infec-

tions per year worldwide [10], commensal fungi have

important roles in disease, being capable of switching to

opportunistic pathogens. It is the opportunistic nature of

fungal pathogens that triggered a stark rise in fungal in-

fections in the late twentieth century, primarily in hosts

with impaired immunity due to medical interventions such

as chemotherapy for cancer, organ transplantation, or in-

fection with HIV [11]. Overall, fungi are the cause of

billions of infections worldwide, killing over 1.5 million

people annually [10, 12]. Species of Aspergillus, Candida,

Cryptococcus and Pneumocystis are at the forefront of

fungal infections, accounting for approximately 90 % of

human mortality cases [10]. Poor diagnostic tools and an-

tifungal drug resistance accounts for a 50 % or higher

mortality rate in patients with systemic fungal infections

[11].

It has been postulated that global warming is in part

responsible for the drastic increase in fungal infections,

leading to the devastating loss of forests and crops

worldwide. Remarkably, the common denominator of all

human pathogenic fungi is the ability to grow at host

temperatures [13, 14]. The steady rise in temperature upon

climate change will selectively enable adaptation of fungi,

broadening the array of species able to survive at host

temperature [15]. Indeed, clinical isolates of the generally

benign yeast Saccharomyces cerevisiae that exhibit en-

hanced capacity to grow at higher temperature (41 �C)

compared to laboratory strains, were able to survive in

mice [16]. The common fungal pathogens Cryptococcus

neoformans, Histoplasma capsulatum and Aspergillus fu-

migatus are found in environments as diverse as pigeon

excreta and soil, yet each retains the capacity to grow at

37 �C. Many of the genes required for growth at high

temperatures in these pathogens are necessary for virulence

and some are required for survival [17–19]. Consequently,

high temperature growth is essential for pathogenesis. This

review will focus on the reservoirs and mechanisms of

pathogenic yeast infections, the challenges faced upon in-

fection and the hurdles that must be overcome to combat

antifungal drug resistance.

Global burden of fungal infections

Superficial and mucosal fungal infections are extremely

common, but life-threatening systemic fungal infections

are generally limited to immunocompromised individuals

[20, 21]. The population of vulnerable individuals expe-

riencing some form of altered immune function due to the

HIV/AIDS epidemic, hospitalization, chronic illnesses,

antibiotic-mediated microbiota alteration, or che-

motherapies continues to increase [10, 22, 23], and has led

to billions of cases of invasive fungal infections

worldwide.

Cryptococcus

Cryptococcus neoformans is the leading cause of deaths

due to fungal infections, with a global burden of nearly 1

million cases annually, and more than 620,000 deaths

worldwide [23]. Cryptococcus is ubiquitous and globally

distributed, with more than 70 % of children older than 5

demonstrating serum reactivity against cryptococcal pro-

teins [24]. A major risk factor for cryptococcal infections is

immunosuppression due to HIV/AIDS. In resource-limited

areas with high rates of HIV/AIDS, the mortality rate ap-

proaches 70 % [23], and cryptococcal meningitis is

considered an AIDS-defining illness [25]. Left untreated,

cryptococcal meningitis is uniformly fatal.
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In Western Europe and North America, the overall

mortality rate of cryptococcal infections is 10 %, with

approximately 700 deaths per year [23]. However, nearly

20 % of cryptococcosis cases in the US are in non-HIV

patients [26], and the mortality rate of these infections can

be greater than 30 % [27]. Many of these infections are in

patients with conditions associated with immunosuppres-

sion or with solid organ transplants, although there are

some incidences of underlying genetic susceptibility to

fungal infections [26–28].

Another source of cryptococcosis in immunocompetent

individuals is infections due to Cryptococcus gattii, which

has caused an outbreak in the Pacific Northwest over the

last 15 years [29–31]. The majority of these cases have

been in immunocompetent individuals, and many cases

were fatal despite antifungal therapies [31]. Although the

origin of the outbreak was Vancouver Island, cases of C.

gattii infections have been documented along the pacific

coast and in Florida [32, 33].

An additional complication in cryptococcal treatment is

the occurrence of immune reconstitution inflammatory

syndrome (IRIS), where restoration of immune function

after starting highly active antiretroviral therapies

(HAART) results in enhanced and destructive immune

responses to subclinical or cleared microbial infections

[34]. Recent studies have reported that between 8 and 50 %

of AIDS patients develop cryptococcal IRIS after treatment

with HAART, and the mortality rate ranges between 30 and

60 % [35, 36].

Candida

Candida species are normal members of the human mu-

cosal microbiota; studies have estimated between 25 and

40 % of people are colonized with Candida albicans at any

given point [37, 38]. However, C. albicans also causes

more than 400,000 deaths per year due to invasive can-

didiasis [39]. Disseminated Candida infections have an

attributable mortality rate approaching 40 %, even with

antifungal therapies [39].

Patients with HIV/AIDS or other forms of impaired

immunity, especially neutropenia, are vulnerable to dis-

seminated candidiasis [25, 39, 40]. Additionally, Candida

species are the fourth most common cause of hospital-ac-

quired bloodstream infections, and the incidence of

Candida infections is increasing [41]. Candida albicans is

the most common causal agent of nosocomial infection

among the Candida species, followed by C. glabrata, C.

parapsilosis, and C. tropicalis [41]. Many of these infec-

tions may be due to breakdown of mucosal surfaces during

hospitalization or treatment, which then allows the super-

ficial Candida colonization access to the bloodstream [42,

43]. Finally, C. albicans can form biofilms on medically

implanted devices and catheters, creating a reservoir for

bloodstream infections [44, 45].

Recently, mortality rates due to C. albicans infections in

high-risk patients, such as stem cell transplant recipients or

those undergoing therapy for leukemia, have decreased due

to prophylactic fluconazole therapies [39, 42]. However,

resistance can occur [46, 47], and the Centers for Disease

Control and Prevention (CDC) has ranked fluconazole-re-

sistant Candida as a serious threat [48].

Pneumocystis

Pneumocystis is an almost ubiquitous colonizer of human

lungs, with approximately 80 % of children demonstrating

serum antibodies to the organism [49–51]. However, it can

also cause pneumocystis pneumonia (PCP) in immuno-

compromised hosts. In the early years of the AIDS

epidemic, PCP was the most common clinical manifesta-

tion of decreased immune function [52]. Before HAART,

approximately 65 % of AIDS patients in the United States

exhibited PCP [52, 53]. Recent studies in developing na-

tions have suggested that up to 40 % of HIV-infected

patients exhibit PCP [52, 54]. An extrapolation of the

current epidemiological reports suggests that there are

more than 400,000 cases per year [10, 54].

Pneumocystis pneumonia remains one of the leading

causes of morbidity and mortality worldwide [50]. In de-

veloped nations with readily available HAART, the

mortality rate has dropped to approximately 10 % [55, 56].

However, in a recent study of pulmonary disease in AIDS

patients in Uganda, the number of cases of PCP was lower

than for tuberculosis or cryptococcal pneumonia, but the

mortality was higher, with 75 % of the patients dying

within 2 months of admission [57]. Additionally, Pneu-

mocystis infections may also contribute to impaired lung

function and increased mortality of patients with chronic

obstructive pulmonary disease (COPD) [50, 58].

Aspergillus

Aspergillus is a ubiquitous filamentous fungus, and people

are faced with continuous exposure to Aspergillus spores.

As an opportunistic pathogen, Aspergillus mainly causes

disease in patients with impaired immune function. Most

infections are acquired exogenously instead of through

reactivation of latent infections [59]. The most vulnerable

population includes patients with neutropenia, organ or

bone marrow transplant, or those undergoing immunosup-

pressive therapies [42, 59, 60]. Invasive aspergillosis is

uniformly fatal if untreated, and even with current treat-

ment options, mortality remains at 50 % [42, 61]. Current

reports suggest that there are more than 200,000 cases of

invasive aspergillosis per year [10].
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Aspergillus can also cause allergic bronchopulmonary

aspergillosis (ABPA), and recent estimates suggest that the

global burden of ABPA is 4,837,000 patients [62, 63].

Patients with lung disease, such as COPD, cystic fibrosis,

or emphysema are especially susceptible to ABPA [59, 60,

63]. Infection with Aspergillus can increase the mortality of

these underlying diseases, contributing to the 100,000

deaths per year [10].

Histoplasma

Histoplasma capsulatum is endemic to the Midwest United

States and Central America, though it has a global distri-

bution [64]. Histoplasma is the most prevalent cause of

systemic mycosis in Central America, and it infects several

hundred thousand individuals annually [64, 65]. Recent

studies estimate nearly 80 % of the adult population in the

endemic areas show previous infections by Histoplasma

[64]. Most of these infections occur in immunocompetent

hosts, but the majority does not display symptoms. How-

ever, individuals who are exposed to large numbers of

spores can suffer from acute pulmonary histoplasmosis.

Additionally, the disease is more severe in patients with

underlying lung disease [64, 65]. Disseminated histoplas-

mosis usually only occurs in individuals with compromised

immune systems [64, 66]. Mortality due to disseminated

histoplasmosis remains at 30 %, but it can be reduced with

HAART [65].

Paracoccidioides

Paracoccidioides is an endemic dimorphic fungal patho-

gen in South America, and it is the most common cause

of invasive mycosis in this region [65]. Nearly 10 million

people are infected with this organism, but in most cases,

the host immune system can prevent the conidia from

causing disease [65]. However, individuals with compro-

mised immune systems or those with decreased lung

function, such as smokers, are vulnerable to expansion of

the yeast from the lungs into disseminated disease [22,

65]. Interestingly, there is not a strong association of

paracoccidiomycosis with HIV [67]. In some cases (be-

tween 5 and 13 %), patients experience relapse of

paracoccidiomycosis due to reactivation of quiescent yeast

cells [68].

Penicillium

Penicillium marneffei is an endemic fungal pathogen in

Southeast Asia, causing disease primarily in immunocom-

promised patients, although infections in immunocompetent

hosts also occur [69, 70]. In a study of AIDS patients in

northern Thailand, it was the third most common cause of

infection, after Mycobacterium tuberculosis and C. neofor-

mans [71]. As an opportunistic pathogen, the prevalence of

P. marneffei infections is increasing with the expansion of

the HIV epidemic in Southeast Asia [72].

Penicillium marneffei infections are more common in

the rainy season and are positively correlated with in-

creased humidity [73, 74]. This suggests that disease occurs

from primary infections shortly after exposure to the fun-

gus [73]. These disseminated infections are uniformly fatal

without antifungal treatments, but even with rapid admin-

istration of therapeutics, the mortality rate remains

approximately 20 % [71, 74]. In children with immune

deficiencies, the mortality rate is higher, at 55 % [70].

Coccidioides

Coccidiomycosis, also known as valley fever, is endemic to

the Southwestern United States and Central America, and it

causes thousands of hospitalizations and approximately

*400 deaths per year in the United States [75]. Coccid-

iomycosis is caused by Coccidioides immitis and

Coccidioides posadasii, which occupy different geographic

regions [76]. Although most infections are self-limiting

lung infections, Coccidioides can also cause disseminated

disease. Risk factors include compromised immune sys-

tems, but agricultural or construction work, outdoor

activity, African or Asian ethnicity, increased age, or

pregnancy also increase vulnerability to Coccidioides.

Additionally, uncontrolled diabetes increases the risk of

disseminated infections [77]. In patients with impaired T

cell function and disseminated infection, mortality rates

were 50 % [76].

Blastomyces

Blastomycosis is caused by infection with Blastomyces

dermatitidis, a dimorphic fungal pathogen that is endemic

in the Midwestern United States. Most infections are due to

spore inhalation during outdoor activities, and ap-

proximately 30–50 % of infections are asymptomatic [78].

Of the symptomatic infections, most can be treated with

antifungal drugs. However, mortality ranges between 4 and

22 % [78]. In a recent outbreak in Wisconsin, 70 % of the

cases were hospitalized and 5 % died [79]. Only 25 % of

the infected patients had any form of compromised im-

mune system. However, there appears to be genetic risk

factors for blastomycosis as the incidence rate is 12 times

higher for Asians [79].

Rhizopus and Mucor

Mucormycosis is due to infections by basal fungi, most

often by species of Rhizopus and Mucor [80]. Vulnerable
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populations include patients with hematopoietic stem cell

transplants or other hematological malignancies, those with

diabetes, and those with compromised immune systems

[80, 81]. The association between mucormycosis and dia-

betes is particularly strong; a recent study showed that

70 % of mucormycosis patients had diabetic ketoacidosis

[81]. The mortality rate can be as high as 90 % for dis-

seminated infections [82, 83]. Cutaneous mucormycosis

can also occur after natural disasters, when environmental

spores are disturbed and patients have open wounds [84].

The case-fatality rate for cutaneous mucormycosis can be

as high as 80 % [84, 85].

Sporothrix

Sporotrichosis is usually caused by traumatic inoculation

by material contaminated with Sporothrix schenckii,

although there are some cases of inhalational sporotrichosis

[86]. Although the infections are restricted to the site of

infection, there are cases of disseminated sporotrichosis,

mostly in immunocompromised individuals [67]. A recent

study of cases in HIV-infected patients in Brazil found that

the incidence of sporotrichosis was increasing to the point

where there the incidence was comparable to histoplas-

mosis and cryptococcosis [67]. Of the patients with both

HIV and sporotrichosis, almost 40 % were hospitalized for

disseminated infection [67].

Trichosporon

Like Candida, Trichosporon can exist as a member of the

normal human microbiota [87]. However, patients with

malignant hematological disorders are vulnerable to in-

fection with Trichosporon [87]. Trichosporon infections

are the second most common cause of disseminated fungal

infections in these patients, although the overall rate is low

[88]. The mortality rate of patients with hematological

disorders and Trichosporon remains at 11 %, even with

antifungal therapies [88].

Reservoirs and nature of infection

Here we discuss the reservoirs and nature of infection,

focusing on the predominant opportunistic yeast and yeast-

like pathogens, Cryptococcus, Candida, Histoplasma, and

Pneumocystis.

Cryptococcus

Cryptococcus species are found ubiquitously in nature, but

only C. neoformans and C. gattii are considered serious

human pathogens [89, 90]. The source of human infections

are thought to be exclusively environmental, as there is no

evidence of human to human transmission other than

through contaminated medical devices [91]. Furthermore,

concordance in phenotypic and genotypic characterization

between environmental and clinical isolates within the

same geographical region suggests they belong to the same

fungal population [89, 92, 93].

Environmental isolates of these yeasts have been re-

ported all around the globe, recovered from soil, dust,

avian excreta, trees and other plants, domestic and wild

animals, as well as marine mammals [94]. Cryptococcus

neoformans is most often found in excreta from pigeons

and other birds. In southern Africa, isolates are commonly

found in the decayed hollows of the mopane tree [95].

Cryptococcus gattii is mostly isolated from tropical and

subtropical regions in association with eucalyptus trees, as

well as from soil, trees, and animals in the Pacific North-

west [94, 96]. Plant materials have also been shown to

promote fertility and virulence of C. gattii [97].

Cryptococcal infection occurs upon inhalation of air-

borne fungal cells, generally spores or desiccated yeast [98].

Once inside the host lung, the yeast particles will encounter

either alveolar macrophages or dendritic cells and trigger an

immune response [99]. This can lead to clearance of the

infection, or result in a localized asymptomatic latent in-

fection that is contained within a granuloma, where the

yeast is enveloped by immune cells [99, 100]. This latency

period could last for years before reactivation of dormant

infection occurs and disease symptoms develop [89, 101].

In the case of C. neoformans, reactivation occurs when host

immunity is compromised, such as in patients with HIV/

AIDS [89]. Cryptococcus gattii infections appear to be new

events as they occur in both immunocompromised and

immunocompetent individuals [102].

Active infection in the lung leads to pneumonia-like

illness, with common symptoms including cough, fever,

and dyspnea, among others [103, 104]. Fungal cells can

subsequently disseminate from the lung through vascular or

lymphatic systems to cause systemic infections, with the

central nervous system (CNS) being the preferred desti-

nation [91, 100]. Cryptococcus can cross the blood–brain

barrier either directly by transcytosis through the en-

dothelial cells or with the aid of host monocytes [105–107].

Infection of the CNS and brain parenchyma is life threat-

ening and results in cryptococcal meningitis and

meningoencephalitis [104, 108]. Neurological symptoms

include headaches, visual and hearing impairment, sei-

zures, and mental status change [108, 109].

Candida

Although a large number of Candida species have been

documented, only a few are known to cause disease in
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humans [11, 110]. Over 90 % of all Candida infections are

caused by five species: C. albicans, Candida glabrata,

Candida parapsilosis, Candida tropicalis, and Candida

krusei. Among these, C. albicans is by far the most

prevalent, responsible for 90–100 % of superficial mucosal

infections and 40–70 % of disseminated infections [11,

110].

Unlike most other pathogenic fungi, Candida species are

a natural commensal of the human microbiome [111], found

rarely in the soil and external environments, suggesting

adaptation to a parasitic lifestyle [112]. The majority of

Candida infections are from endogenous sources, derived

from commensal populations acquired prior to disease de-

velopment [11, 113]. Exogenous sources of infection are

also common, especially in healthcare settings where

transmission can occur from healthcare workers, other pa-

tients, and contaminated medical devices [11, 114].

Normally, Candida species exist harmlessly on our skin

and mucosal surfaces as part of the commensal microbiota,

colonizing the skin, oral cavity, gastrointestinal tract, and

reproductive tract [111, 115]. However, disruption of the

normal microbial flora or compromising the immune sys-

tem may enable this fungus to overgrow, resulting in

symptomatic infections. Due to the long evolutionary his-

tory with the human host, C. albicans is well adapted to

survive and proliferate in the host environment. The switch

from commensalism to pathogenesis involves significant

changes in the fungus, including regulation of key viru-

lence genes that allows it to quickly sense and adjust to

different sites of infection in the body. Candida species

must overcome different stresses, such as changes in tem-

perature, pH, osmolarity, oxygen and nutrient availability

[14, 112, 115–118].

Inflammations of the genitourinary tract are common

clinical manifestations of Candida infections, which include

vulvovaginal candidiasis (VVC) in women, balanitis and

balanoposthitis in men, and candiduria in both sexes [119].

VVC, commonly referred to as thrush or yeast infection,

typically presents as isolated occurrences of mild to mod-

erate infection in otherwise healthy women, and are

generally easily controlled with a single-dose therapy [110].

Episodes can occur either sporadically or due to predispo-

sition resulting from a number of risk factors, including

antibiotic use, pregnancy, diabetes, and immunosuppression

[21, 120, 121]. A subgroup of patients will experience severe

or recurrent VVC, in which case more rigorous and long-

term antifungal therapies are required [110]. It is estimated

that the majority of women develop at least one episode of

VVC in their lifetime [122]. Candida balanitis occurs at a

lower frequency than VVC, though the exact incidence is

unclear due to the lack of population studies [119]. The

disease is generally sexually transmitted and has been as-

sociated with diabetes and antibiotic use [123]. Candiduria,

the presence of Candida species in the urinary tract, is

commonly diagnosed in hospitalized patients, especially

those with a urinary catheter [124–126]. Most cases of can-

diduria are asymptomatic or self-limiting, though it can

cause increased vulnerability to bloodstream infections in

high-risk patients, as well as increased mortality rates and

hospital costs [119, 127].

Candida infections can also develop in the mouth or

throat, resulting in oropharyngeal candidiasis. Clinical

manifestations are typically characterized by white or red

lesions on the surfaces of the tongue and oropharynx,

which result in pain and burning sensations, alteration in

taste, and tissue damage [128, 129]. Infection is generally

associated with immunosuppression, antibiotic use, en-

docrine alterations, and denture use [128, 130]. It is

estimated that over 90 % of HIV-infected patients will

develop oropharyngeal candidiasis at some point during the

progression of their illness [131].

Invasive candidiasis occurs when Candida species break

the mucosal barrier, penetrating into deeper tissue and

gaining access to the bloodstream [132]. Dissemination via

the bloodstream allows the fungus to invade almost all

body sites and organs, resulting in lethal systemic disease

[110]. Major risk factors include immunosuppression, in-

vasive medical procedures, and extended stay in the

intensive care unit [11, 133, 134]. Early clinical symptoms

of invasive candidiasis are non-specific and resemble other

nosocomial infections, which impede accurate diagnosis

and delays treatment, contributing to increased mortality

[132, 135, 136].

Pneumocystis

Pneumocystis species are ubiquitous in nature, infecting a

wide variety of mammalian hosts [11, 137]. While rodents

were originally thought to be a natural reservoir, it is now

known that Pneumocystis is not zoonotic. Current pheno-

typic and genetic evidence indicates that each mammalian

species that contracts the disease has its own species of

Pneumocystis [137–139]. Pneumocystis jirovecii is re-

sponsible for human infections. However, study of the

organism has been hindered by the inability to culture

Pneumocystis in vitro. Much of what we now know about

P. jirovecii is based on direct clinical evidence or ex-

trapolated from related animal models [50, 140].

PCR-based strategies have been used to type and track

the spread of P. jirovecii [141, 142]. Children and im-

munocompromised individuals are identified as the most

important sources of P. jirovecii infection [142–145].

While some environmental sources have been identified,

transmission is thought to mostly occur through inhalation

of airborne pathogens that spread from human to human

[146, 147].
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Pneumocystis has strong tropism for the lung, where it

exists as an alveolar pathogen without invading the host

[140]. Infections are typically asymptomatic or subclinical

in the healthy host, but can develop into pneumocystic

pneumonia in immunocompromised individuals, especially

those with HIV infections [50]. Common clinical symp-

toms include progressive dyspnea, nonproductive cough,

low-grade fever, and eventual respiratory failure with dis-

ease progression [140].

Histoplasma

Histoplasma capsulatum exists as a mold in soil environ-

ments and is often associated with bird and bat droppings,

which enhance proliferation of the organism by accelerat-

ing sporulation [148]. Once contaminated, soil can yield

the organism for years after the birds are gone [64]. In-

fections occur through inhalation of the aerosolized H.

capsulatum from disturbed soils. Air currents can also

carry the fungal spore for miles, resulting in infections far

away from contaminated sites [148].

Most infections by H. capsulatum are asymptomatic in

healthy individuals [148]. In children who were exposed

for the first time and in individuals who experienced heavy

exposure to the organism, pulmonary histoplasmosis may

develop [64]. Common symptoms include fever, malaise,

cough, and chest pain. Pulmonary infections can be com-

plicated with infection of the mediastinal lymph nodes,

resulting in Granulomatous mediastinitis.

In immunocompromised patients, such as those infected

with HIV, disseminated histoplasmosis may occur [64,

149, 150]. Initial clinical presentation often includes fever,

anorexia, and weight loss. Subsequent severe disease

manifestation includes sepsis, as well as failure of respi-

ratory, renal, and multi-organ systems.

Mechanisms of pathogenesis

Pathogenicity is the ability of a microbe to cause damage to

the host [151]. The ability of an opportunistic pathogen to

cause disease requires the expression of virulence factors.

Here, we outline some of the traits that enable pathogenesis

of the major opportunistic yeast pathogens of humans, C.

albicans, C. neoformans, and H. capsulatum.

High temperature growth

Fungi must be capable of surviving in human host condi-

tions. One trait absolutely required for pathogenicity in

humans is the ability to grow at human body temperature,

37 �C [14]. The most prevalent fungal pathogen, C. albi-

cans, is a natural commensal of mammals and is thus

intrinsically competent for growth at 37 �C. Despite this

thermal adaptation, the heat shock response has been re-

tained in C. albicans and influences virulence [152],

presumably reflecting the importance of febrile tem-

peratures during systemic infection [153]. In C. albicans,

the heat shock response is governed by the transcription

factor Hsf1, and the molecular chaperones Hsp70 and

Hsp90 [14]. Mutant C. albicans strains containing inactive

Hsf1 are thermosensitive and display reduced virulence in

a murine model of systemic candidiasis [154]. Further-

more, the membrane dynamics of C. albicans are crucial

for sensing changes in temperature, with depletion of

OLE1, encoding a fatty acid desaturase, impairing activa-

tion of Hsf1 [155]. Temperature is a central cue that

enables the morphogenetic transition of C. albicans from

yeast to filamentous growth through complex cellular cir-

cuitry [156].

Although the saprobe C. neoformans is usually found in

environmental locales, the ability to grow at human

physiological temperatures allows it to cause disease.

Several signaling pathways have been identified as essen-

tial for C. neoformans growth at elevated temperature,

including Ras1 and Cdc42 signaling [157], the unfolded

protein response [158], the histone acetyltransferase Gcn5

[159], the cell wall integrity pathway [160], and calcineurin

signaling [19]. In addition, increased expression of C.

neoformans Hsp90 and other heat-shock proteins is ob-

served upon infection of a murine lung [161], suggesting a

role for Hsp90 in adapting to host conditions. Mutants that

are unable to grow at 37 �C are unable to cause disease in

murine models of cryptococcosis.

Like C. neoformans, the dimorphic fungus H. capsula-

tum can be found in the soil. However, H. capsulatum

forms mycelia in the environment and changes to the yeast

form upon inhalation by a mammalian host. The increase in

temperature to 37 �C is key for this transition, and mem-

brane dynamics may be involved in sensing this cue [162].

For example, addition of saturated fatty acids with a con-

current increase in temperature amplifies the H. capsulatum

heat shock response [163].

Adaptation to pH

Opportunistic fungal pathogens must not only adapt to

variations in temperature, but also pH. In the host, the pH

can range from acidic (in the vaginal and gastrointestinal

tracts and the immune cell phagolysosome) to basic (such

as in the blood or saliva) [164]. Therefore, pH is a powerful

signal for entry into the host bloodstream or other mi-

croenvironments. Additionally, environmental pH can lead

to alterations in nutrient bioavailability.

In C. albicans, alkaline conditions result in cleavage and

activation of the transcription factor Rim101, which leads
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to the upregulation of genes required for growth in alkaline

conditions, including genes involved in iron acquisition

and morphogenesis [165]. Additionally, Rim101 regulates

expression of genes with roles in adhesion and modulating

the fungal cell wall [166]. PHR1 and PHR2 are pH-re-

sponsive genes regulated by Rim101, with PHR2 being

required for virulence at acidic infection sites (such as the

vaginal tract), whereas PHR1 is required at alkaline sites of

infection (such as the bloodstream) [167]. Mutants lacking

Rim101 have reduced virulence in a mouse model of sys-

temic candidiasis [168].

Cryptococcus neoformans also uses the Rim101 tran-

scription factor to adapt to varying environmental cues.

Similar to C. albicans, CnRim101 is required for growth in

neutral/alkaline conditions, and also regulates expression

of genes required for iron and metal homeostasis [169].

However, in C. neoformans, Rim101 is also activated by

the cyclic AMP (cAMP)/protein kinase A (PKA) pathway

[169]. Rim101 is required to modulate many important C.

neoformans virulence traits, such as attachment of the

polysaccharide capsule [169], the morphological change to

titan cells [170], and modulation of the host immune sys-

tem [171, 172]. Upon phagocytosis by macrophages, C.

neoformans enters into an acidic phagolysosome; as a

facultative intracellular pathogen, C. neoformans is well

adapted for growth in acidic conditions [173].

Nutrient limitation

Key to survival is growth. Organisms are often nutrient

starved within the host and must adapt to changes in

available host nutrients. One mechanism by which C. al-

bicans can respond to limited glucose is by secreting

ammonia and autoalkalizing its surroundings to induce

filamentation [174]. For C. neoformans, phagocytosis by

macrophages induces a starvation stress response that in-

cludes upregulation of amino acid and sugar transporters,

gluconeogenesis and fatty acid metabolism [175].

As iron levels are tightly controlled within the host,

microbes must have mechanisms to acquire this essential

cofactor [176]. Although C. albicans and C. neoformans do

not appear to produce their own siderophores, which are

high-affinity iron-binding proteins, they are capable of

transporting xenosiderophores produced by other organ-

isms [177, 178]. Additionally, both C. neoformans and C.

albicans are able to use iron from hemoglobin and ferritin

as iron sources [179, 180]. Cryptococcus neoformans uti-

lizes a ferric reductase system involving the iron permease

Cft1 and ferroxidase Cfo1 to acquire iron from host

transferrin [181, 182]. Mutants lacking these enzymes

show a reduced virulence in a mouse model of crypto-

coccosis. Iron levels are sensed by a master transcription

factor, Cir1, which directs the expression of genes for iron

acquisition. Cir1 is also involved in regulating growth at

physiological temperature, capsule formation, and melanin

production [183], highlighting the central role of iron

regulation in C. neoformans virulence.

Candida albicans is able to acquire iron from he-

moglobin by first binding hemoglobin to a receptor on the

cell wall and subsequently endocytosing this complex

[184]. The heme oxygenase Hmx1 then releases ferrous

iron [185], carbon monoxide, and biliverdin [186]. As

carbon monoxide has immunosupressive properties [187],

its production by Hmx1 may decrease the ability of the host

immune system to clear a C. albicans infection. The hmx1

mutant is unable to cause disease as this mutant is unable to

grow in iron-limited conditions and has a defect in carbon

monoxide production [186, 188]. Additionally, the tran-

scriptional activator Sef1 induces iron-uptake genes and

enables virulence, whereas the transcriptional repressor

Sfu1 diminishes expression of iron-uptake genes and en-

ables gastrointestinal commensalism [116]. These genetic

programs may be fundamental to enabling C. albicans to

survive iron depletion in the bloodstream while minimizing

iron toxicity in the gut.

Histoplasma capsulatum is able to both produce side-

rophores and utilize reductive iron assimilation to obtain

the iron necessary for growth [189]. Histoplasma capsu-

latum produces hydroxyamate-type siderophores, and these

siderophores are required for proliferation within macro-

phages and infection in mice [189, 190]. Production of

siderophores is negatively regulated by the GATA-type

transcription factor SRE1 [191]. Histoplasma capsulatum

can also take up ferrioxamine B, a xenosiderophore, via

ferric reductases [192].

Changes in cellular shape and size

Host physiological temperature induces a filament-to-yeast

transition in dimorphic fungi, such as H. capsulatum

(Fig. 1). This switch from mycelia to yeast growth at host

temperatures is a requirement for H. capsulatum virulence,

and the histidine kinase Drk1 is a key regulator of this

transition [193]. DRK1-silenced strains show a drastic re-

duction in virulence in a mouse model of histoplasmosis

[193]. In addition, Drk1 regulates expression of two im-

portant H. capsulatum virulence genes, CBP1 and AGS1

[193]. The DNA-binding protein Ryp1 is also essential for

yeast growth, and is related to the C. albicans master

transcriptional regulator of phenotypic switching, Wor1.

Ryp1 is a master regulator of morphogenesis, as it is re-

quired for the expression of yeast-phase-specific virulence

genes and repression of mycelial-specific genes [194].

Recently, a temperature-responsive regulatory circuit

composed of four Ryp proteins was identified that controls

both the transition from filamentous to yeast forms and the
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expression of virulence genes such as YPS3 and CBP1

[195].

Strikingly, host physiological temperature induces the

opposite morphological transition in the commensal fun-

gus, C. albicans, from yeast to filament compared to the

filament-to-yeast transition initiated in dimorphic fungi

(Fig. 1). Candida albicans is able to undergo various

morphological transitions that facilitate its ability to colo-

nize and infect different niches within the human host. The

most striking of these morphological transitions is that

from yeast to filamentous forms. Typically, chains or

branches of elongated connected cells are referred to as

pseudohyphae [196], whereas cells containing defined

septa between cells and no constrictions in their cell walls

are known as hyphae [197]. Various different environ-

mental cues induce the morphological transition from yeast

to filaments. Many of these cues require a concurrent in-

crease in temperature to 37 �C, and many of the cues

mimic host physiological conditions. For example, serum

is a potent inducer of filamentation at 37 �C, with key

effectors being bacterial peptidoglycans and glucose [198–

200]. At host physiological temperature, deprivation of

nutrients such as carbon or nitrogen can induce a

filamentous program, as can alkaline conditions (pH[6.5)

or elevated CO2 [201]. The requirement of 37 �C for

filamentation to occur in many cues is due at least in part to

the Hsp90-mediated repression of filamentation, which is

relieved at elevated temperature due to global problems in

protein folding that can overwhelm the functional capacity

of Hsp90 [202]. Many cues induce filamentation in C. al-

bicans via the cAMP–PKA signaling pathway, which

activates transcription factors such as Efg1 [203] and Flo8

[204]. Filamentation is also governed by repressors such as

Nrg1, whose downregulation and degradation is required

for both hyphal initiation and maintenance [205].

The ability of C. albicans to transition between yeast

and filamentous states is key for its dissemination and

virulence in different niches within the host. Invasion of

epithelial cells by C. albicans can occur by either endo-

cytosis or by active penetration by hyphal cells [206]. Cells

locked in the yeast form are reduced in virulence [207,

208], and defective in adhering to and invading oral ep-

ithelial cells [209]. Similarly, cells unable to revert to the

yeast form also have attenuated virulence and show a de-

crease in kidney fungal burden in a murine model of

systemic candidiasis [210]. It is thought that yeast cells are

Fig. 1 Yeast virulence traits. Top, C. albicans can exist as yeast,

filaments, or as a biofilm. Wild-type yeast cells were grown in rich

medium at 30 �C for 24 h. Filaments were grown in RPMI at 37 �C
for 24 h. The biofilm is fluconazole treated and was formed in a rat

central venous catheter. Scale bar is 20 lm. Middle, C. neoformans

cells stained with India ink to highlight the capsule. Arrow indicates

the size of a titan cell as compared to a normal cell. Scale bar 10 lm.

Bottom, H. capsulatum can exist as either yeast or as mycelia. Scale

bar is 5 lm
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required for dissemination throughout the body, while

filamentous cells are essential for penetrating tissues,

establishing infection and causing mortality [211]. A recent

study has shown that a clinical isolate locked in the yeast

form is more fit in a murine model of commensal infection

[212]. Furthermore, another recent study demonstrated that

cells locked in the yeast form are better able to colonize the

gastrointestinal tract in a mouse model, while constitu-

tively filamentous cells showed a decrease in colonization

[213]. Taken together, this demonstrates that the poly-

morphic nature of C. albicans is a key virulence trait that

allows it to adapt to the diverse conditions encountered

within the host.

While both yeast and filamentous morphologies con-

tribute to the pathogenesis of C. albicans, filamentous cells

do possess specific virulence characteristics that increase

their pathogenicity. For example, the sustained polarized

growth exhibited by a filamentous cell provides a physical

force that allows the fungal cell to penetrate host tissues,

allowing for further invasion of tissues and organs [214].

Hyphal cells also express Als3, a hypha-specific protein

found on the fungal cell surface [215]. Als3 is an adhesin

that mediates binding to host cells, and induces endocytosis

by binding to the host cell receptors E-cadherin and

N-cadherin [215]. Hwp1 is another hyphal-specific fungal

cell surface protein required to mediate attachment to ep-

ithelial cells [216]. In addition, the expression of genes

encoding secreted aspartyl proteinases (SAPs) is coordi-

nated with morphological state with SAP4 and SAP6 being

expressed by hyphal cells [217, 218]. Additionally, con-

nections exist between C. albicans filamentation and drug

resistance. Certain proteins such as Hsp90 [219], O-man-

nosyltransferases [220], and the transcription factor Ndt80

[221] have roles in both morphogenesis and drug

resistance.

In addition to the striking morphological differences

between yeast and filamentous forms, C. albicans can

also undergo distinct phenotypic switches. One prominent

example is the switch between white and opaque cells.

The more common white cells have a round or oval

shape, while opaque cells are oblong and dimpled. This

transition is governed by the regulator Wor1, with ex-

pression of WOR1 leading to opaque cell formation

[222]. Opaque cells are mating competent, with progeny

showing recombination between chromosomes and alter-

ations in ploidy [223, 224]. White and opaque cells show

distinct preferences for different host environments and

niches. Since opaque cells are not stable at 37 �C, they

preferentially colonize surface environments such as the

skin [225]. Furthermore, while white cells require the

elevated temperature of 37 �C for filamentation, opaque

cells filament preferentially at 25 �C [226]. Finally,

white-opaque switching may aid in the evasion of host

defenses, where white phase cells are preferentially rec-

ognized by neutrophils in certain environmental

conditions [227, 228]. A novel phenotypic switch was

recently discovered upon passage of wild-type white cells

through the mouse gastrointestinal tract [117]. Induction

of WOR1 in this environment resulted in morphologically

and functionally distinct GUT (gastrointestinally induced

transition) cells, which are optimized for the digestive

tract. A third phenotypic variant, the ‘gray’ phenotype

has recently been identified [229]. This variant shows

elevated levels of SAP expression and the propensity to

colonize cutaneous tissue, similar to opaque cells. The

master regulators Wor1 and Efg1 may act coordinately to

regulate switching between white, gray and opaque cel-

lular states [229].

Distinct morphological transitions are also important

for virulence in C. neoformans (Fig. 1). While a typical

C. neoformans cell is approximately 5–10 lM, specific

conditions can induce the formation of titan cells, which

can be as large as 100 lM [230]. Distinct features of titan

cells include a thicker cell wall and denser capsule [231],

as well as a tetraploid or octaploid DNA content [230].

Although the exact mechanism for titan cell formation is

unclear, in part due to the difficulty in culturing titan cells

in vitro [232], several signaling pathways have been im-

plicated. The G protein-coupled receptors Ste3a (a

pheromone receptor) and Gpr5 are required for titan cell

production in vivo [170, 230] as is signaling through the

cAMP/PKA pathway [170, 231]. The Rim101 transcrip-

tion factor downstream of PKA signaling is also required

for titan cell production in vivo [170]. Titan cells play a

central role in C. neoformans pathogenicity, in that they

interact with the host immune system. The large size of

titan cells may prevent their phagocytosis [231, 233]; titan

cells may also protect typical-sized cells from being

phagocytosed [233], and promote dissemination from the

lungs [234].

Biofilms

Biofilms are complex three-dimensional surface-associat-

ed communities of yeast and hyphal cells within an

extracellular matrix (ECM), and can be found on medical

devices such as catheters and artificial joints [235], or on

mucosal surfaces [236], contributing to virulence (Fig. 1).

The first step in biofilm formation is adherence to either

an abiotic or biotic surface. In C. albicans, cell wall ad-

hesins such as Eap1 and Als1, and other cell wall proteins

have roles in attachment of the biofilm to the surface,

which then stimulates changes in gene expression [237].

Adherence is followed by proliferation of yeast cells. This

basal layer of yeast cells may contribute to anchoring the

biofilm to the surface [238]. Next, yeast cells undergo the
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morphogenetic transition to filamentous growth. The for-

mation of hyphae is important, as strains defective in

filamentation have a vastly reduced ability to form bio-

films, as with mutants lacking a major transcriptional

regulator of morphogenesis, Efg1 [238]. Accumulation of

the ECM is part of the biofilm maturation process. The

ECM is composed of mainly protein and carbohydrates,

including mannans and glucans; however, lipids and nu-

cleic acids are also found in the ECM [239]. Finally,

yeast cells are dispersed from the biofilm. These cells

have elevated pathogenicity, and an increased ability to

adhere [237].

Biofilms are notoriously difficult to treat with anti-

fungals, and have especially high levels of resistance to

azoles and polyenes [237]. Resistance to azoles is de-

pendent on the molecular chaperone Hsp90 [45], glucan

modification enzymes that are required for delivery and

organization of the ECM [240], and b-1,3 glucan in the

ECM that may sequester azoles [241]. Increased expres-

sion of efflux pumps early in biofilm development, and

the presence of persister cells also contribute to antifungal

resistance [242].

Secreted factors

Secretion of proteinases such as SAPs is crucial for both

pathogenesis and nutrient acquisition. As mentioned

above, C. albicans SAP4 and SAP6 expression is coor-

dinated with hyphal formation [217, 218], while

expression of SAP1 is regulated by the white-to-opaque

phenotypic switch [243]. During infection, the SAP pro-

teins have roles in adherence to host cells [244] and

degradation of host proteins such as mucin [245], perhaps

allowing penetration and colonization of tissues. SAP

proteins may also degrade host antimicrobial factors such

as lactoferrin, complement and the proteinase inhibitor

cystatin A [244]. Secreted phospholipases cleave ester

linkages in glycophospholipids, and can have roles in host

cell penetration and invasion [246]. Mutants lacking the

phospholipase Plb1 have reduced virulence in a murine

model of Candida infection [247].

Histoplasma also secretes several factors important for

pathogenesis. The calcium-binding protein Cbp1 is se-

creted from yeast-phase H. capsulatum, and is required for

growth in calcium-depleted conditions and for virulence in

a murine model of pulmonary histoplasmosis [248].

Resolution of the structure by NRM revealed that Cbp1

may be a lipid-binding protein, and possibly interacts with

glycolipids in the host [249]. Yps3 is both a secreted factor

as well as a cell wall protein in H. capsulatum, and while

its exact function is yet to be elucidated, silencing of YPS3

results in reduced organ colonization in a murine model of

infection [250].

Evasion of the host immune system

Capsule and cell wall

The capsule of C. neoformans is an important virulence

determinant, playing key roles in surviving environ-

mental conditions and modulating the host immune

response (Fig. 1). The capsule is primarily composed of

the polysaccharides glucuronoxylomannan (GXM) and

glucuronoxylomannogalactan (GXMGal) [251]. Mono-

mers of simple sugars are modified and polymerize

within the cell before being secreted and attached to the

cell wall surface. An important modification of capsule

monomers is xylosylation, such that deletion of the

xylosyltransferase gene CXT1 results in an altered cap-

sule structure and reduced virulence [252].

O-acetylation contributes to the antigenicity of the

capsule by affecting binding of antibodies and activation

of the complement cascade [253]. Hyaluronic acid,

synthesized by Cps1, is also added to the capsule and

may play a role in facilitating passage of C. neoformans

across the blood–brain barrier [254]. Finally, antigenic

variation of capsule monomers can lead to differential

binding of antibodies [255].

Just as conditions that mimic physiologically relevant

host conditions induce filamentation in C. albicans,

similar cues also induce capsule formation in C.

neoformans. Upon infection of a host, the capsule in-

creases in size with the thickness being determined by

the location of infection. Infection of the lungs results in

a thicker capsule than does infection of the brain [256],

demonstrating that regulation of capsule synthesis is

dependent on the environmental niche. Nutrient-poor

conditions such as low glucose and low nitrogen can

contribute to capsule induction by signaling through the

cAMP–PKA pathway [257–259]. Similarly, as iron

levels are tightly controlled within the host, conditions

of low iron are a potent inducer of capsule formation

[260]. The iron-sensing transcription factor Cir1 is one

of the main regulators of capsule induction in response

to iron poor conditions [183]. Induction of capsule for-

mation in low iron conditions is also signaled through

the cAMP–PKA pathway [251]. Additionally, the cAMP

pathway is used to signal capsule formation in the

presence of high CO2 levels [251, 261]. Physiological

pH is another cue that is sensed by C. neoformans to

regulate capsule formation, and the conserved Rim101

pH-sensing pathway integrates signals from the cAMP–

PKA pathway to regulate attachment of the capsule to

the fungal cell wall [169]. However, it appears that al-

kaline pH alone is insufficient to induce an enlarged

capsule, and instead this condition must be combined

with others, such as nutrient deprivation or the presence
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of serum [262]. Finally, stress response pathways can

have a repressive effect on capsule induction, such as

the Hog1 and protein kinase C (PKC) pathways that

respond to osmotic stress [251].

The capsule is essential for C. neoformans interactions

with the host immune system. The polysaccharides GXM

and GXMGal have immunosuppressive properties such as

modulation of macrophage, neutrophil and dendritic cell

activities, and also inhibition of pro-inflammatory cytokine

production [263]. GXMGal reduces B cell activity and

inhibits activation of T cells. The capsule also has an-

tiphagocytic properties, inhibiting phagocytosis in vitro

due to the large size of the capsule, and possibly by hiding

pathogen-associated molecular patterns (PAMPs) on the

cell surface [264].

To avoid interaction with host phagocytes that would

initiate the production of reactive oxygen species and the

secretion of pro-inflammatory cytokines, H. capsulatum

antigenic cell surface b glucans are hidden under a layer of

a-(1,3)-glucan. Silencing of AGS1, encoding the a-glucan

synthase, severely attenuates virulence of H. capsulatum in

mouse lungs [265]. Loss of a-(1,3)-glucan allows for

recognition of the b glucans by the host receptor dectin-1

[266]. Additionally, heat shock protein 60 (HSP60) on the

cell surface binds to the CR3 receptor on macrophages,

followed by phagocytosis [267]. However, interactions

with CR3 do not typically result in a strong immune re-

sponse unless other costimulatory signals are present [268,

269], allowing H. capsulatum to grow and survive within

macrophages.

Escape from macrophages

Fungi have evolved multiple mechanisms to avoid being

killed upon phagocytosis by immune cells such as mac-

rophages. One mechanism is to escape the phagocyte,

either by inducing macrophage lysis or by non-lytic

exocytosis. Non-lytic expulsion of fungal cells was first

described in C. neoformans, where live yeasts were able

to escape macrophages without killing the host cell [270–

272]. This prevents release of pro-inflammatory cytokines

and potentially aids in transversal of cryptococcal cells

across the blood–brain barrier [105]. This phenomenon of

non-lytic expulsion has also been observed in C. albicans,

although at lower frequency than for C. neoformans

[273]. Candida albicans can also escape from macro-

phages via filamentation. These filaments can induce

pyroptosis, a programmed pro-inflammatory macrophage

death [274, 275]. This process is hypothesized to be de-

pendent on the transition to hyphae, which stimulate host

pyroptotic caspases and result in macrophage death [274,

275].

Nitric oxide detoxification

Nitric oxide (NO) is a nitrogen radical and antimicrobial

effector produced by the host immune system in response

to fungal infections. Candida albicans responds to this

stress by increasing the expression of an NO dioxygenase

flavohemoglobin, YHB1 [276, 277], which metabolizes

NO. Candida albicans cells lacking YHB1 have increased

sensitivity to NO and reduced virulence in a murine model

of systemic candidiasis [276, 277].

Cryptococcus neoformans also employs an enzymatic

defense against NO produced by the host. The flavohe-

moglobin denitrosylase Fhb1 consumes NO, and cells in

which FHB1 is disrupted have reduced survival in mac-

rophages and decreased virulence in a murine inhalation

model [278]. A global analysis of the C. neoformans re-

sponse to nitrosative stress revealed that the glutathione

reductase Glr1 is upregulated in response to NO [279].

Deletion of GLR1 renders C. neoformans sensitive to ni-

trosative stress, and avirulent in a mouse inhalation model

[279].

Although the presence of a flavohemoglobin in H.

capsulatum is not apparent, a shotgun genomic microarray

did identify NOR1, a P450 nitric oxide reductase homo-

logue, whose expression is increased by nitrosative stress

[280]. Overexpression of this gene decreased the sensitivity

of H. capsulatum to reactive nitrogen species [280].

Melanin

In C. neoformans, melanins are pigmented molecules with

antioxidant properties, synthesized by the laccase enzymes

Lac1 and Lac2 [264]. Melanization occurs during infection

[281], and overexpression of melanin results in decreased

recognition by the host and modulation of host cell immune

responses [282]. Melanized cells are also less susceptible to

microbicidal peptides and recognition by macrophages, as

well as being less susceptible to antifugal drugs in vitro

[283]. Together, this demonstrates an important role for

melanin in the virulence of C. neoformans.

Urea metabolism

In addition to being used as a nitrogen source by many

fungi, C. albicans and C. neoformans also use urea meta-

bolism to modulate the host immune system and alter

dissemination [284]. Urease is considered a cryptococcal

virulence factor as urease expression is linked with in-

creased invasion across the blood–brain barrier [285],

increased fungal burden, and altered host immune re-

sponses [286–288]. Urease-positive C. neoformans induce

a strong non-protective Th2 response as demonstrated by
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an increased accumulation of eosinophils in the lung, in-

creased serum IgE and higher levels of Th2 cytokines

[288], demonstrating a role for urease in influencing the

host immune response.

While C. albicans does not contain a urease enzyme, it

does contain a urea amidolyase, encoded by DUR1,2 [289].

Deletion of DUR1,2 results in cells that are less virulent

than wild-type cells in a murine model of disseminated

candidiasis and results in decreased kidney fungal burden

[290]. Additionally, deletion of DUR1,2 causes a decreased

inflammatory response in the kidneys, reduced neutrophil

infiltration and altered host cytokine and chemokine pro-

duction, suggesting a role for urea metabolism in

modulating host immune responses [290]. A dur1,2 mutant

also shows impaired escape from host macrophages as it is

unable to form filaments in the presence of urea or argi-

nine, a urea-precursor [291]. This may be coupled to the

defect of the dur1,2 strain in auto-alkalinization of the

environment [174].

Host immune responses

The interactions between opportunistic fungal infections

and the host immune system are complex and only be-

ginning to be understood. Outcomes of infections are

dependent on interactions between the host immune re-

sponse and the intrinsic virulence of the pathogen.

Opportunistic fungi such as C. albicans constantly in-

teract with the host immune system, and perturbations to

this balance can result in a switch from commensalism

to pathogenesis, as discussed above. Alterations to the

innate or adaptive host immune responses, either due to

immunosuppression or genetic predisposition, can result

in severe and often deadly fungal infections. The inter-

play between fungi and the host immune system has

been the subject of several recent reviews [8, 292–294].

Here we summarize this interaction, and describe host

factors that can increase susceptibility to fungal

infections.

Host response to fungal pathogens

Innate

Physical barriers such as the skin and mucosal epithelial

cells at sites continuously in contact with fungal pathogens

are the first line of defense against fungal pathogens. The

next barrier is the innate immune response, which is crucial

for preventing invasive and systemic infections. The innate

immune response is required for recognition of fungal

PAMPs. The fungal cell wall is composed of many

PAMPs, including both a- and b-glucans, chitin, chitosan,

and mannans [295]. These PAMPs can be recognized by

host pattern recognition receptors (PRRs) on phagocytic

cells such as macrophages, dendritic cells and neutrophils

[292, 293]. Specific PAMPs on different fungal species can

be recognized by specific PRRs, including complement

components, toll-like receptors (TLRs), C-type lectin re-

ceptors (CLRs), and mannose receptors (MR), among

others [296–299]. These interactions will shape the re-

sulting immune response, including phagocytosis of the

pathogen, production of inflammatory cytokines, and acti-

vation of T cells.

Upon phagocytosis, fungal cells can be killed by ef-

fector molecules such as proteases, defensins, and cationic

peptides as well as by the production of reactive oxygen

and nitrogen species [294]. Neutrophils are highly effective

at containing fungal infections, including inhibition of the

C. albicans morphological transition [300]. Neutropenic

patients, including those with acute leukemia, are at high

risk of developing invasive Candida and Aspergillus in-

fections, and are often given prophylactic antifungal

therapies as a preventative measure [301]. However, in-

creased neutrophils in mouse kidneys are associated with

pathogenesis of C. albicans at late time points [302].

Adaptive

The adaptive immune system involves stimulation of T

cells by antigen-presenting cells [292, 303]. These antigen-

presenting cells can generate specific cytokine profiles that

can bias the immune system towards Th1-, Th2-, Treg-, or

Th17-responses [303]. The balance between these re-

sponses is crucial for the ability to clear the pathogen

without causing autoimmune damage.

The adaptive immune response plays a pivotal role in

preventing fungal infections, as highlighted by the inci-

dence of fungal disease in AIDS patients [10, 304]. HIV

infection depletes the pool of CD4? T cells, consequently

causing a loss of antifungal immunity. This results in im-

paired production of interferon-c (IFN-c) and tumor

necrosis factor-a (TNF-a) [304]. Additionally, the

population of memory B cells is depleted [305], and

macrophage and dendritic cell function is impaired upon

HIV infection [306], contributing to increased suscepti-

bility to fungal infections.

Th1 responses include the production of IFN-c, which is

key for controlling many disseminated fungal infections

[303]. Cryptococcus neoformans strains that induce Th1-

biased responses are generally cleared from the lung and do

not cause disease [307, 308]. The decrease in Th1-type

cell-mediated immune responses in AIDS patients may

explain their increased susceptibility to cryptococcal in-

fections compared to patients with other types of immune

deficiencies [309].
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Th17 responses appear to be critical for host defense

against fungal infections, especially Candida [310]. In HIV

patients, susceptibility to mucosal candidiasis can be at-

tributed to a loss of mucosal Th17 cells, which is

accompanied by a decrease in the integrity of epithelial

cells and alterations to the intestinal environment [311].

Decreases in the Th17 response also leads to increased

severity of Pneumocystis infections in mice [312].

Regulatory T (Treg) cells continually survey the host for

signs of mucosal infections and aid in preventing reinfec-

tion. However, Treg cells are able to suppress inflammation

during systemic candidiasis by producing interleukin 4 (IL-

4), IL-10, and transforming growth factor-b (TGF-b),

which inhibit inflammatory Th1 and Th17 responses

making them detrimental for clearing the infection [313].

Depletion of Treg cells results in decreased C. albicans

growth in a murine model of candidiasis [313], and a de-

crease in Treg cells is also associated with an increase in

the Th17 responses that are beneficial in clearing Histo-

plasma infections [314].

In contrast, Th2 responses to fungal infections are often

deleterious [292]. During C. neoformans infections, the

fungi are able to induce a strong Th2-biased immune re-

sponse, with increased levels of IL-4 and IL-5, thus

favoring persistence of the infection [309]. Mice with in-

creased IL-4 levels also demonstrated increased

Histoplasma infections [315]. In addition to favoring per-

sistence of the infection, Th2 responses are also linked with

allergic bronchopulmonary aspergillosis and increased

susceptibility to invasive aspergillosis [316]. In contrast,

Th2 responses may be protective against Pneumocystis

pneumonia, with affected HIV individuals showing low

levels of Th2 cytokines [317].

Immune reconstitution inflammatory syndrome

The recovered immune system in AIDS patients treated

with antiretrovirals can overreact to PAMPs exposed dur-

ing fungal infections, even if the infections have been

cleared by antifungal therapies. This overactive inflam-

mation is known as immune reconstitution inflammatory

syndrome (IRIS), and it can cause significant mortality due

to damage by the host immune system. IRIS is a major

consideration in the treatment of AIDS patients with

cryptococcosis. Recent studies have noted that between 8

and 50 % of AIDS patients develop cryptococcal IRIS,

even when no live cryptococcal cells are recovered from

the patient [35, 318]. IRIS can also occur in transplant

patients after reduction in the immunosuppresive therapies

used to prevent organ rejection [319]. The inflammatory

immune response in these IRIS patients consists of in-

creased IL-6 and C-reactive protein (CRP) levels.

Additionally, many patients who go on to develop IRIS

have decreased TNF-a and other Th1 cytokines prior to

antiretroviral therapy [320]. The current standard of care

for IRIS patients includes administration of steroids to

decrease systemic inflammatory responses and prevent

further damage to host tissues [36, 90].

Genetic susceptibility to fungal infections

Chronic mucocutaneous candidiasis

Recurrent Candida infections of cutaneous or mucosal

surfaces in the absence of immunosuppressive conditions

(such as HIV), is described as chronic mucocutaneous

candidiasis (CMC). IL-17 signaling and activation of T

cells are essential for defending against mucocutaneous C.

albicans infections and genetic mutations that perturb this

signaling pathway can lead to CMC [321].

Numerous single nucleotide polymorphisms have been

associated with increased susceptibility to CMC (see [8,

292, 321]). For example, loss of function of the CLR

dectin-1 can lead to increased onychomycosis and muco-

cutaneous candidiasis [322, 323]. This is the result of

defective recognition of b glucan in the C. albicans cell

wall and impaired cytokine production (including IL-1b
[323] and IL-17 [322]). Neutrophil function remains

unaffected, and thus systemic candidiasis is not associated

with dectin-1 mutations [323]. The caspase recruitment

domain-containing protein 9 (CARD9) is a signaling pro-

tein downstream of many CLRs, including dectin-1 [321]

and activates the nuclear factor-jB (NF-jB) pathway

[324]. Autosomal recessive mutations in CARD9 can result

in decreased development of Th17 cells and is associated

with CMC [324]. Autosomal dominant gain-of-function

mutations such as those in STAT1 (signal transducer and

activator of transcription 1) can also lead to inhibition of

Th17 development, and increased susceptibility to CMC

[325, 326]. Additionally, autosomal recessive mutations in

the IL-17 receptor IL-17RA, and deficiencies in the cy-

tokine IL-17F can result in CMC [327]. Mice with deficient

IL-17A production show an impaired ability to clear a

cutaneous C. albicans infection [328], suggesting that both

IL-17A and IL-17F are required for the defense against

chronic mucocutaneous candidiasis.

Additional syndromes can lead to CMC. One of these is

hyper-IgE syndrome (HIES), in which patients experience

recurrent pulmonary infections, eczema, staphylococcal

infections, and CMC, among other symptoms. Mutations in

STAT3 have been identified as a cause of HIES [329], in

which an inability of CD4? T lymphocytes to differentiate

into Th17 cells results in impaired IL-17 production [330].

Mutations in DOCK8 (dedicator of cytokinesis 8) have been

identified in the autosomal recessive form of this syndrome,

in which there is defective T cell activation and Th17 cell
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differentiation [331]. Finally, the rare autoimmune

polyendocrinopathy–candidiasis–ectodermal dystrophy

(APECED) syndrome is characterized by development of

CMC in almost all patients, and is caused by mutations in

the autoimmune regulator AIRE [321, 332]. The strong

prevalence of CMC in these patients may be due to the

production of neutralizing autoantibodies against Th17-

produced cytokines, specifically IL-17A, IL-17F and IL-22

[333].

Invasive fungal infections

While mucocutaneous Candida infections are primarily

caused by defects in the adaptive immune system, defi-

ciencies in the innate immune response, such as those

caused by primary immunodefiencies can lead to invasive

yeast infections. A few such cases are outlined below.

Chronic granulomatous disease (CGD) is the result of

mutations in genes encoding components of the NADPH

oxidase complex, impairing the ability of phagocytes to

produce reactive oxygen species [334]. While the primary

fungal infection associated with CGD is invasive

aspergillosis, [335] infections by Candida and Tri-

chosporon species have also been noted [321].

Myeloperoxidase (MPO) deficiency is a disorder in which

the production of antimicrobial hypochlorous acid by

phagocytic cells is impaired, and mice deficient for either

NADPH or MPO show increased mortality in response to a

high dose of C. albicans [336]. While the majority of MPO

patients do not suffer from fungal infections, those who do

acquire infections usually also have diabetes [337]. Patients

presenting with monocytopenia are more susceptible to

histoplasmosis and cryptococcal infections [338], and

cryptococcosis has also been observed in patients with

hyper-IgE or hyper-IgM syndromes and idiopathic CD4

lymphocytopenia [321]. Finally, patients with severe

combined immunodeficiency commonly acquire Pneumo-

cystis pneumonia, as do those with hyper-IgM syndrome

[321].

Management of fungal infections

Diagnosis

The first step in achieving the proper management of in-

fectious disease is the effective diagnosis and species

identification of the pathogen. Unfortunately, shortcomings

in current diagnostic techniques remain one of the greatest

challenges in the field. In most cases, diagnosis still relies

on traditional culture methods and histopathology [10, 87,

339, 340]. Culturing the organism and subsequent identi-

fication is a slow process that takes several days, leading to

considerable delays in treatment. Such delays have direct

and significant impact on disease outcome and patient

mortality, especially for severe invasive diseases [136,

340]. A number of novel molecular diagnostic approaches

have been developed to improve the current system, in-

cluding PCR-based assays and antigen detection systems

[339, 341]. However, these are not regular practice in the

clinic, and still need to be standardized and tested in large

patient cohorts before they can be incorporated into clinical

guidelines [87, 90, 110, 339].

Antifungal drugs

Due to the close evolutionary relatedness between humans

and fungi, the number of targets that can be selectively

exploited for drug development is limited [10, 342]. There

are also very few drugs currently being developed, pri-

marily because antifungals are not predicted to generate a

large enough financial return for pharmaceutical companies

[10]. Polyenes, azoles, and echinocandins represent the

three most common classes of antifungals currently used in

the clinic, each with their own advantages and limitations.

Overall, host toxicity, cross reactivity with other drugs, and

development of drug resistance pose great challenges to

current antifungals.

Polyenes

Polyenes are broad-spectrum natural product antifungals

discovered in the early 1950s from the bacterial genus

Streptomyces [342, 343]. Polyenes bind to ergosterol in the

fungal membrane, generating aqueous pores that result in

leakage of fungal cell content and eventually cell death

[344, 345]. Amphotericin B, one of the most successful

polyene derivatives, was a gold standard in treating serious

fungal infections. However, amphotericin B is known to

cause severe systemic toxicity and nephrotoxicity [342,

346]. Various drug delivery systems have been developed

to improve its safety profile, including the popular lipid

formulation [347, 348]. While its clinical use decreased

with the development of azoles in the late 1980s, it is still

widely deployed to treat life-threatening disseminated and

invasive mycoses [90, 110]. Fortunately, despite its long

history of clinical use, resistance to polyenes remains a rare

occurrence [349, 350].

Azoles

Azoles are synthetic compounds that were first introduced

as antifungals in the late 1980s and early 1990s [344].

Their low toxicity led to extensive use in the clinic. Azoles

disrupt the biosynthesis of ergosterol by inhibiting the

cytochrome P-450-dependent enzyme lanosterol
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demethylase (also referred to as 14a-sterol demethylase)

[351]. Azoles are chemically classified as either imidazoles

if they have two nitrogen atoms in the azole ring, or tria-

zoles if they have three [343, 351]. Imidazoles are typically

limited to topical treatment of superficial infections, while

triazoles are used more broadly in both superficial and

systemic infections due to their superior pharmacokinetic

and safety profile. The most commonly used azoles in the

clinic include fluconazole, itraconazole, voriconazole, and

posaconazole.

Azoles remain the drug of choice as initial therapy for

most fungal infections and are often recommended as

prophylaxis for high-risk patients [90, 110, 352]. Wide-

spread use of azoles has led to increasing reports of azole

resistance in the clinic, which is associated with greater

treatment difficulties and patient mortality [353]. There has

also been an increased incidence of infections caused by

intrinsically azole-resistant fungal species, including C.

glabrata and C. krusei, creating major challenges for future

treatments [87].

Echinocandins

Echinocandins first entered the market in 2001, represent-

ing the newest class of antifungals to reach the clinic [354].

Echinocandins are large semi-synthetic lipopeptides that

inhibit the cell wall enzyme complex b-1,3-D-glucan syn-

thase [355], thereby decreasing the concentration of b-

(1,3)-glucan in the fungal cell wall and causing the sub-

sequent loss of cell wall integrity. Echinocandins are

generally well tolerated with little to no side effects [356].

Echinocandins are active against Candida and Asper-

gillus species, including azole-resistant Candida isolates,

but show no in vivo activity against Cryptococcus [90, 110,

342]. Currently available echinocandins include caspo-

fungin, anidulafungin, and micafungin [354]. All three are

not orally bioavailable and need to be administered intra-

venously. Echinocandin resistance has been reported in the

clinic, and the incidence appears to be on the rise [357].

Vaccines

An ideal solution to fungal management is the prevention

of disease through vaccination. However, there is currently

no clinically available vaccine for any fungal pathogen.

Over the years, a number of vaccines have been in devel-

opment against different fungi, with promising results in

animal models [10, 358]. However, only a few have been

translated to human clinical trials, with the major barrier

being the lack of funding [359]. Efficacy trials are also

difficult to conduct as high-risk patients often routinely

receive antifungal prophylaxis [10]. Nonetheless, two

subunit vaccines against Candida have recently

demonstrated success in Phase I clinical trials, one of

which is currently being tested in a Phase II trial in the

United States [360]. This vaccine represents a promising

advance and may stimulate further development of much

needed immunotherapeutics and vaccines [358, 361, 362].

Concluding remarks

A significant advance in our understanding of invasive

fungal infections has been made in recent years, motivated

at least in part by the increasing incidence of these infec-

tions. Given the growing number of transplant patients,

those in receipt of immunosuppressive therapy and the

global HIV pandemic, this comes as no surprise. Host

niches are complex, dynamic and distinct to each indi-

vidual, as are the pathogens’ response strategies for

coexisting with or evading the host immune response.

Taking steps towards understanding the underlying im-

munopathogenesis of fungal infections permits early and

accurate diagnosis and treatment. We must continue to

seek out novel diagnostics that will allow for rapid treat-

ment of fungal infections with the appropriate antifungal.

With the rise in antifungal drug resistance now a real

threat, researchers must strive to discover novel antifungals

and antifungal drug combinations, as well as effective

immunotherapeutic strategies that combat resistance, im-

prove patient outcome, shorten hospital stays and ease the

economic burden.

Acknowledgments We thank the J. Andrew Alspaugh and Chad

Rappleye labs for images and Cowen lab members for helpful dis-

cussions. EJP is supported by a Canadian Institutes of Health

Research (CIHR) Frederick Banting and Charles Best CGS Doctoral

Award, XL by a University of Toronto Fellowship, MDL by a Sir

Henry Wellcome Postdoctoral Fellowship (Wellcome Trust 096072),

and LEC by a Ministry of Research and Innovation Early Researcher

Award, Canada Research Chair in Microbial Genomics and Infectious

Disease, Natural Sciences and Engineering Research Council Dis-

covery Grant #355965, and by Canadian Institutes of Health Research

Grants MOP-86452 and MOP-119520.

References

1. Wang DY, Kumar S, Hedges SB (1999) Divergence time esti-

mates for the early history of animal phyla and the origin of

plants, animals and fungi. Proc Biol Sci 266:163–171

2. Butterfield NJ (2005) Probable proterozoic fungi. Paleobiology

31:165–182

3. Hawksworth DL (2001) The magnitude of fungal diversity: the

1.5 million species estimate revisited. Mycol Res 105(12):1422–

1432

4. DiGuistini S, Wang Y, Liao NY, Taylor G, Tanguay P, Feau N,

Henrissat B, Chan SK, Hesse-Orce U, Alamouti SM, Tsui CK,

Docking RT, Levasseur A, Haridas S, Robertson G, Birol I, Holt

RA, Marra MA, Hamelin RC, Hirst M, Jones SJ, Bohlmann J,

Breuil C (2011) Genome and transcriptome analyses of the

2276 E. J. Polvi et al.

123



mountain pine beetle-fungal symbiont Grosmannia clavigera, a

lodgepole pine pathogen. Proc Natl Acad Sci USA 108:2504–

2509

5. Fisher MC, Henk DA, Briggs CJ, Brownstein JS, Madoff LC,

McCraw SL, Gurr SJ (2012) Emerging fungal threats to animal,

plant and ecosystem health. Nature 484:186–194

6. Taylor LH, Latham SM, Woolhouse ME (2001) Risk factors for

human disease emergence. Philos Trans R Soc Lond B Biol Sci

356:983–989

7. Findley K, Oh J, Yang J, Conlan S, Deming C, Meyer JA,

Schoenfeld D, Nomicos E, Park M, Program NIHISCCS, Kong

HH, Segre JA (2013) Topographic diversity of fungal and

bacterial communities in human skin. Nature 498:367–370

8. Underhill DM, Iliev ID (2014) The mycobiota: interactions

between commensal fungi and the host immune system. Nat Rev

Immunol 14:405–416

9. Bickers DR, Lim HW, Margolis D, Weinstock MA, Goodman

C, Faulkner E, Gould C, Gemmen E, Dall T, American

Academy of Dermatology A, Society for Investigative D (2006)

The burden of skin diseases: 2004 a joint project of the Amer-

ican Academy of Dermatology Association and the Society for

Investigative Dermatology. J Am Acad Dermatol 55:490–500

10. Brown GD, Denning DW, Gow NA, Levitz SM, Netea MG,

White TC (2012) Hidden killers: human fungal infections. Sci

Transl Med 4:165rv13

11. Pfaller MA, Diekema DJ (2010) Epidemiology of invasive

mycoses in North America. Crit Rev Microbiol 36:1–53

12. Brown GD, Denning DW, Levitz SM (2012) Tackling human

fungal infections. Science 336:647

13. Bergman A, Casadevall A (2010) Mammalian endothermy op-

timally restricts fungi and metabolic costs. MBio 1(5):e00212-

10

14. Leach MD, Cowen LE (2013) Surviving the heat of the moment:

a fungal pathogens perspective. PLoS Pathog 9:e1003163

15. Garcia-Solache MA, Casadevall A (2010) Global warming will

bring new fungal diseases for mammals. MBio 1(1):e00061-10

16. McCusker JH, Clemons KV, Stevens DA, Davis RW (1994)

Saccharomyces cerevisiae virulence phenotype as determined

with CD-1 mice is associated with the ability to grow at 42 �C
and form pseudohyphae. Infect Immun 62:5447–5455

17. Bhabhra R, Miley MD, Mylonakis E, Boettner D, Fortwendel J,

Panepinto JC, Postow M, Rhodes JC, Askew DS (2004) Dis-

ruption of the Aspergillus fumigatus gene encoding nucleolar

protein CgrA impairs thermotolerant growth and reduces viru-

lence. Infect Immun 72:4731–4740

18. Lamoth F, Juvvadi PR, Fortwendel JR, Steinbach WJ (2012)

Heat shock protein 90 is required for conidiation and cell wall

integrity in Aspergillus fumigatus. Eukaryot Cell 11:1324–1332

19. Odom A, Muir S, Lim E, Toffaletti DL, Perfect J, Heitman J

(1997) Calcineurin is required for virulence of Cryptococcus

neoformans. EMBO J 16:2576–2589

20. Havlickova B, Czaika VA, Friedrich M (2008) Epidemiological

trends in skin mycoses worldwide. Mycoses 51:2–15

21. Sobel JD (2007) Vulvovaginal candidosis. Lancet 369:1961–

1971

22. Marques SA, Robles AM, Tortorano AM, Tuculet MA, Negroni

R, Mendes RP (2000) Mycoses associated with AIDS in the

Third World. Med Mycol 38:269–279

23. Park BJ, Wannemuehler KA, Marston BJ, Govender N, Pappas

PG, Chiller TM (2009) Estimation of the current global burden

of cryptococcal meningitis among persons living with HIV/

AIDS. AIDS 23(4):525–530

24. Goldman DL, Khine H, Abadi J, Lindenberg DJ, Pirofski LA,

Niang R, Casadevall A (2001) Serologic evidence for Crypto-

coccus neoformans infection in early childhood. Pediatrics

107(5):E66

25. Schneider E, Whitmore S, Glynn KM, Dominguez K, Mitsch A,

Centers for Disease Control and Prevention (CDC) (2008)

McKenna MT (2008) Revised surveillance case definitions for

HIV infection among adults, adolescents, and children aged

\18 months and for HIV infection and aids among children

aged 18 months to\13 years—United States. MMWR Recomm

Rep 57(10):1–12

26. Pyrgos V, Seitz AE, Steiner CA, Prevots DR, Williamson PR

(2013) Epidemiology of Cryptococcal meningitis in the US:

1997–2009. PLoS ONE 8(2):e56269

27. Bratton EW, El Husseini N, Chastain CA, Lee MS, Poole C,

Stürmer T, Juliano JJ, Weber DJ, Perfect JR (2012) Comparison

and temporal trends of three groups with cryptococcosis: HIV-

infected, solid organ transplant, and HIV-negative/non-trans-

plant. PLoS ONE 7(8):e43582

28. Singh N, Dromer F, Perfect JR, Lortholary O (2008) Immuno-

compromised hosts: cryptococcosis in solid organ transplant

recipients: current state of the science. Clin Infect Dis

47(10):1321–1327

29. Bartlett KH, Cheng P-Y, Duncan C, Galanis E, Hoang L, Kidd

S, Lee M-K, Lester S, MacDougall L, Mak S, Morshed M,

Taylor M, Kronstad JW (2012) A decade of experience: Cryp-

tococcus gattii in British Columbia. Mycopathologia 173(5–6):

311–319

30. Byrnes EJ, Li W, Lewit Y, Ma H, Voelz K, Ren P, Carter DA,

Chaturvedi V, Bildfell RJ, May RC, Heitman J (2010) Emer-

gence and pathogenicity of highly virulent Cryptococcus gattii

genotypes in the northwest United States. PLoS Pathog

6(4):e1000850

31. Galanis E, Macdougall L, Kidd S, Morshed M, British Colombia

Cryptococcus gattii Working Group (2010) Epidemiology of

Cryptococcus gattii, British Columbia, Canada, 1999–2007.

Emerging Infect Dis 16(2):251–257

32. Byrnes I, Edmond J, Bildfell RJ, Frank SA, Mitchell TG, Marr

KA, Heitman J (2009) Molecular evidence that the range of the

Vancouver Island outbreak of Cryptococcus gattii infection has

expanded into the pacific northwest in the United States. J Infect

Dis 199(7):1081–1086

33. Kunadharaju R, Choe U, Harris JR, Lockhart SR, Greene JN

(2013) Cryptococcus gattii, Florida, USA, 2011. Emerg Infect

19(3):519–521

34. Perfect JR, Bicanic T (2014) Cryptococcosis diagnosis and

treatment: what do we know now. Fungal Genet Biol. doi:10.

1016/j.fgb.2014.10.003

35. Boulware DR, Bonham SC, Meya DB, Wiesner DL, Park GS,

Kambugu A, Janoff EN, Bohjanen PR (2010) Paucity of initial

cerebrospinal fluid inflammation in cryptococcal meningitis is

associated with subsequent immune reconstitution inflammatory

syndrome. J Infect Dis 202(6):962–970

36. Shelburne SA 3rd, Darcourt J, White AC Jr, Greenberg SB,

Hamill RJ, Atmar RL, Visnegarwala F (2005) The role of im-

mune reconstitution inflammatory syndrome in AIDS-related

Cryptococcus neoformans disease in the era of highly active

antiretroviral therapy. Clin Infect Dis 40:1049–1052

37. Fetter A, Partisani M, Koenig H, Kremer M, Lang J-M (1993)

Asymptomatic oral Candida albicans carriage in HIV-infection:

frequency and predisposing factors. J Oral Pathol Med

22(2):57–59

38. Martins MD, Lozano-Chiu M, Rex JH (1998) Declining rates of

oropharyngeal candidiasis and carriage of Candida albicans

associated with trends toward reduced rates of carriage of flu-

conazole-resistant C. albicans in human immunodeficiency

virus-infected patients. Clin Infect Dis 27(5):1291–1294

39. Horn DL, Neofytos D, Anaissie EJ, Fishman JA, Steinbach WJ,

Olyaei AJ, Marr KA, Pfaller MA, Chang C-H, Webster KM

(2009) Epidemiology and outcomes of candidemia in 2019

Opportunistic yeast pathogens 2277

123

http://dx.doi.org/10.1016/j.fgb.2014.10.003
http://dx.doi.org/10.1016/j.fgb.2014.10.003


patients: data from the prospective antifungal therapy alliance

registry. Clin Infect Dis 48(12):1695–1703

40. Koh AY, Kohler JR, Coggshall KT, Van Rooijen N, Pier GB

(2008) Mucosal damage and neutropenia are required for Can-

dida albicans dissemination. PLoS Pathog 4(2):e35

41. Wisplinghoff H, Bischoff T, Tallent SM, Seifert H, Wenzel RP,

Edmond MB (2004) Nosocomial bloodstream infections in US

hospitals: analysis of 24,179 cases from a prospective nation-

wide surveillance study. Clin Infect Dis 39(3):309–317

42. Freifeld AG, Bow EJ, Sepkowitz KA, Boeckh MJ, Ito JI, Mullen

CA, Raad II, Rolston KV, Young JAH, Wingard JR (2011)

Clinical practice guideline for the use of antimicrobial agents in

neutropenic patients with cancer: 2010 update by the Infectious

Diseases Society of America. Clin Infect Dis 52(4):e56–e93

43. Nucci M, Anaissie E (2001) Revisiting the source of can-

didemia: skin or gut? Clin Infect Dis 33(12):1959–1967

44. Nett J, Andes DR (2006) Candida albicans biofilm develop-

ment, modeling a host–pathogen interaction. Curr Opin

Microbiol 9(4):340–345

45. Robbins N, Uppuluri P, Nett J, Rajendran R, Ramage G, Lopez-

Ribot JL, Andes D, Cowen LE (2011) Hsp90 governs dispersion

and drug resistance of fungal biofilms. PLoS Pathog 7:e1002257

46. Hill JA, Ammar R, Torti D, Nislow C, Cowen LE (2013) Ge-

netic and genomic architecture of the evolution of resistance to

antifungal drug combinations. PLoS Genet 9(4):e1003390

47. Mansfield BE, Oltean HN, Oliver BG, Hoot SJ, Leyde SE,

Hedstrom L, White TC (2010) Azole drugs are imported by

facilitated diffusion in Candida albicans and other pathogenic

fungi. PLoS Pathog 6(9):e1001126

48. Centres for Disease Control and Prevention (2013) Antibiotic

resistance threats in the United States, 2013. U.S. Deparment of

Health and Human Services. Centres for Disease Control and

Prevention, Atlanta

49. Djawe K, Huang L, Daly KR, Levin L, Koch J, Schwartzman A,

Fong S, Roth B, Subramanian A, Grieco K, Jarlsberg L, Walzer

PD (2010) Serum antibody levels to the Pneumocystis jirovecii

major surface glycoprotein in the diagnosis of P. jirovecii

pneumonia in HIV? patients. PLoS ONE 5(12):e14259

50. Morris A, Norris KA (2012) Colonization by Pneumocystis

jirovecii and its role in disease. Clin Microbiol Rev 25:297–317

51. Pifer LL, Hughes WT, Stagno S, Woods D (1978) Pneumocystis

carinii infection: evidence for high prevalence in normal and

immunosuppressed children. Pediatrics 61(1):35–41

52. Morris A, Lundgren JD, Masur H, Walzer PD, Hanson DL,

Frederick T, Huang L, Beard CB, Kaplan JE (2004) Current

epidemiology of Pneumocystis pneumonia. Emerging Infect Dis

10(10):1713–1720

53. Masur H, Michelis MA, Greene JB, Onorato I, Stouwe RA,

Holzman RS, Wormser G, Brettman L, Lange M, Murray HW,

Cunningham-Rundles S (1981) An outbreak of community-

acquired Pneumocystis carinii pneumonia: initial manifestation

of cellular immune dysfunction. N Engl J Med 305(24):1431–

1438

54. Fisk DT, Meshnick S, Kazanjian PH (2003) Pneumocystis car-

inii pneumonia in patients in the developing world who have

acquired immunodeficiency syndrome. Clin Infect Dis 36(1):

70–78

55. Huang L, Cattamanchi A, Davis JL, Boon Sd, Kovacs J,

Meshnick S, Miller RF, Walzer PD, Worodria W, Masur H,

International HIV-associated Opportunistic Pneumonias (IHOP)

Study; Lung HIV Study (2011) HIV-associated Pneumocystis

pneumonia. Prom Am Thorac Soc 8(3):294–300

56. Kelley CF, Checkley W, Mannino DM, Franco-Paredes C, Del

Rio C, Holguin F (2009) Trends in hospitalizations for AIDS-

associated Pneumocystis jirovecii Pneumonia in the United

States (1986 to 2005). Chest 136(1):190–197

57. Kyeyune R, den Boon S, Cattamanchi A, Davis JL, Worodria

W, Yoo SD, Huang L (2010) Causes of early mortality in HIV-

infected TB suspects in an East African referral hospital. J Ac-

quir Immune Defic Syndr 55(4):446–450

58. Sivam S, Sciurba FC, Lucht LA, Zhang Y, Duncan SR, Norris

KA, Morris A (2011) Distribution of Pneumocystis jirovecii in

lungs from colonized COPD patients. Diagn Microbiol Infect

Dis 71(1):24–28

59. Wald A, Leisenring W, van Burik JA, Bowden RA (1997)

Epidemiology of Aspergillus infections in a large cohort of

patients undergoing bone marrow transplantation. J Infect Dis

175:1459–1466

60. Marr KA, Carter RA, Crippa F, Wald A, Corey L (2002) Epi-

demiology and outcome of mould infections in hematopoietic

stem cell transplant recipients. Clin Infect Dis 34:909–917

61. Baddley JW, Andes DR, Marr KA, Kauffman CA, Kontoyiannis

DP, Ito JI, Schuster MG, Brizendine KD, Patterson TF, Lyon

GM, Boeckh M, Oster RA, Chiller T, Pappas PG (2013) Anti-

fungal therapy and length of hospitalization in transplant

patients with invasive aspergillosis. Med Mycol 51(2):128–135

62. Agarwal R, Chakrabarti A (2013) Allergic bronchopulmonary

aspergillosis in asthma: epidemiological, clinical and therapeutic

issues. Future Microbiol 8(11):1463–1474

63. Denning DW, Pleuvry A, Cole DC (2013) Global burden of

allergic bronchopulmonary aspergillosis with asthma and its

complication chronic pulmonary aspergillosis in adults. Med

Mycol 51(4):361–370

64. Kauffman CA (2007) Histoplasmosis: a clinical and laboratory

update. Clin Microbiol Rev 20(1):115–132

65. Colombo AL, Tobón A, Restrepo A, Queiroz-Telles F, Nucci M

(2011) Epidemiology of endemic systemic fungal infections in

Latin America. Med Mycol 49(8):785–798

66. Goodwin RAJ, Shapiro JL, Thurman GH, Thurman SS, des Prez

RM (1980) Disseminated Histoplasmosis: clinical and patho-

logic correlations. Medicine (Baltimore) 59(1):1–33

67. Freitas DFS, Valle ACFD, da Silva MBT, Campos DP, Lyra

MR, de Souza RV, Veloso VG, Zancopé-Oliveira RM, Bastos
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