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Introduction

The identity of a neuron is defined, among other factors, 
by the specific connections it establishes, its neurotransmit-
ter phenotype, and specific surface receptor expression. In 
the first half of the 1990s, there was a major breakthrough 
in the field of axon guidance with the discovery of most 
of the families of guidance receptors known to us today. 
A common theme was the conservation of these families 
of receptors and ligands across evolution, highlighting the 
importance of their role. In fact, some guidance decision in 
vertebrates and invertebrates such as crossing the midline 
are dependent on the very same cues. Not long after these 
discoveries, several components of the complex regula-
tory network of transcription factors required for neuronal 
specification were also identified. Several transcription fac-
tor families and specific transcriptional codes were also 
shown to be responsible for the trajectory of specific axonal 
projections. Here again, the function of some of the fami-
lies of transcription factors seemed to have preserved their 
function in evolution. It was then clear that there had to be 
a link between transcriptional codes and the expression of 
specific receptors and cell adhesion molecules. work in the 
last few years has started to reveal an increasing number 
of examples where transcriptional regulators control the 
expression of guidance molecules in specific subpopula-
tions of neurons.

The most thoroughly studied systems have been the 
midline and the neuromuscular system, because of their 
stereotypical projections and the  relatively ease of analysis 
of guidance phenotypes in these systems. Clearly, nervous 
systems of vertebrates and invertebrates are very different 
although some structures may share the same evolutionary 
origin. A common theme from recent studies is that, while 
both systems are present in vertebrates and invertebrates 
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and guidance molecules and transcriptional regulators are 
shared, transcriptional networks differ among different 
organisms. In this review, we summarize the different tran-
scriptional codes regulating guidance receptors that have 
been identified at the midline and the neuromuscular sys-
tem of vertebrates and insects.

The midline

In organisms with bilateral symmetry, the midline is the 
symmetry axis that divides the developing organisms into a 
right and a left side and coincides with the floor plate (FP) 
in vertebrates. At early developmental stages, axons are 
presented with the choice of whether to cross the midline 
(contralateral axons) or project towards their targets on the 
same side, hence no crossing (ipsilateral axons). Ipsilateral 
axons avoid the midline by interpreting repellent signals 
from the FP. Contralateral axons sense attractive cues from 
the midline and are lured towards it. As they cross the mid-
line, they form commissural bundles connecting both sides 
of the central nervous system (CNS). At the midline, com-
missural axons start to respond to repellents to crossing to 
the contralateral side and avoid recrossing. The differential 
response of commissural axons before, while, and after 
crossing the midline depends on the combination of recep-
tors they express on their growth cones [1, 2]. Transcrip-
tional regulation of the expression of such receptors is, to a 
large extent, a decisive factor in specifying the responsive-
ness of axons at the midline.

To cross or not to cross the midline in the vertebrate spinal 
cord

In the vertebrate spinal cord, commissural axons sense 
attractive guidance cues from the FP and move towards the 
midline. Attractants secreted from the FP are Netrin-1 [3], 
Sonic Hedgehog (Shh) [4], and veGF [5]. Before cross-
ing, commissural axons are not sensitive to repulsive cues 
secreted from the FP, but as they cross the midline they 
become sensitive to repellents from the Slit [6, 7] and Sem-
aphorin [8–10] families. Commissural axons also switch 
their response to Shh upon crossing the midline from 
attraction along the dorsoventral axis to repulsion along 
the anterioposterior axis [11, 12]. The floor plate is, there-
fore, the source of a variety of signaling molecules includ-
ing morphogens, attractants, and repellents whose activities 
are translated through membrane receptors present in the 
navigating axons. Attraction by Netrin and Shh is mediated 
through their respective receptors, DCC and Boc [13, 14]. 
Slits and Sema-3B repulsion is mediated by their respective 
receptors, Robos and PlexinA1 with its Neuropilin2 co-
receptor [6, 7, 10, 15]. Three Robo receptors are expressed 

in vertebrate spinal cord Robo1, Robo2, and Robo3/
Rig1 [16, 17]. Alternative splicing of Robo3/Rig1 pre-
mRNA results in the formation of two isoforms, Robo3.1 
and Robo3.2, with differential expression [9]. Robo3.1 is 
expressed in pre-crossing axons while Robo3.2 is expressed 
in post-crossing axons. Further investigations revealed that 
Robo3.1 inhibits Slit-Robo repulsion in precrossing com-
missural axons through an unknown mechanism [9, 18]. 
Repulsion away from the FP mediated by Plexin-A1 and 
its Neuropilin2 coreceptor is also prevented in precrossing 
commissural axons through proteolysis of Plexin-A1 [10].

Regulation of floor plate signals

The Netrin/UNC-6 family of secreted molecules constitutes 
a group of well-studied signaling molecules expressed in 
the ventral neural tube of vertebrates and invertebrates. In 
vertebrates, Netrin-1 attracts commissural axons navigat-
ing along the Dv axis towards the FP [3, 19–21]. early 
studies of netrin expression in zebrafish revealed that 
hedgehog signaling is required for netrin-1 expression 
in the neural tube [22]. ectopic expression of any of the 
hedgehogs present in the FP, sonic hedgehog, tiggy-winkle 
hedgehog, or echidna hedgehog, is sufficient to induce 
netrin-1, although in a patchy and non-uniform pattern, in 
the brain and spinal cord [22, 23]. Hedgehog signals are 
transduced in target cells through down-regulation of pro-
tein-kinase A (PKA) activity [24]. Similar to shh-injected 
embryos, over-expression of a dominant negative regula-
tory subunit of mouse PKA in zebrafish embryos is suffi-
cient to induce ectopic expression of Netrin-1 in the brain 
of injected embryos [23]. Interestingly, shh misexpression 
causes ectopic expression of the winged-helix transcrip-
tion factor Foxa2 [23], and foxa2 can induce expression 
of netrin-1, although other shh-independent pathways 
also induce netrin-1 expression via foxa2 in the FP [25]. 
Regulation of netrin-1 by foxa2 seems to be evolutionarily 
conserved, since a zebrafish netrin-1 enhancer responsive 
to foxa2 also drives expression of a reporter in the FP of 
mouse and chicken [25]. The other FP attractant, Shh, is 
secreted from the notochord and induces foxa2 in the FP, 
which in turn induces the expression of Shh in the FP [26]. 
This regulation is probably mediated through a direct inter-
action of Foxa2 with regulatory elements within the Shh 
locus [26]. Thus, foxa2 plays a central role in the regulation 
of secreted guidance cues from the FP, a role that it also 
plays at the mouse midbrain FP where it directly regulates 
Shh and Slit2 [27] (Table 1).

Regulation of guidance receptors in commissural neurons

In the developing mouse, dorsal spinal cord post-mitotic 
neurons emerge from the ventricular zone and migrate in 
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a very precise manner. early-born neurons (prior to e11.5) 
migrate either ventrally or ventrolaterally [28, 29]. early-
born dorsal interneurons are classified into six groups 
(dl1–6) and each group can be identified by their unique 
transcription factor expression profile [30–33]. Their fate 
is specified by cross-repressive activity between Lim-
homeodomain (LIM-HD) proteins [34, 35] and bHLH 
transcription factors. The HLH transcription factor Math1 
(mouse atonal homolog 1) is necessary and sufficient for 
the generation of dl1. whereas ectopic expression of Math1 
leads to an increase in the number of dl1 cells, these cells 
together with a subset of commissural neurons are lost in 
Math1 knock-out mice [36, 37]. The dl1 neurons comprise 
two major classes with distinct axonal trajectories: dl1i 
(ipsilateral) extend their axons in the ipsilateral funiculus, 
and dl1c (contralateral) project towards the FP, cross the 
midline, and extend rostrally in the contralateral funiculus 
[38]. each subgroup of dl1 neurons can be clearly identi-
fied after their migratory phase by their differential expres-
sion of transcription factors from the LIM family. Ipsilat-
eral dl1i exclusively express Lhx9 and commissural dl1c 
express both Lhx9 and Lhx2 although Lhx9 at low levels 
[38]. Math1 also regulates two bar-class homeobox genes 
Mbh1 (mammalian bar homeobox 1 gene) and Mbh2 
in dl1 interneurons [39, 40], and Mbh1 is known to be a 
direct target of Math1 [39]. Misexpression of either Mbh1 
or Mbh2 by electroporation of e11.5 mouse embryo spinal 
cord induces dl1 fate, expression of both Lhx2 and Lhx9, 

and makes some of the misexpressing neurons project their 
axons ventrally towards the floor plate, becoming commis-
sural [33, 38, 40]. Hence, a linear cascade of transcriptional 
regulators Math1- > Mbh1, Mbh2- > Lhx2, Lhx9 seems 
to be regulating the guidance behavior of commissural 
dl1 neurons. electroporation of Mbh1 or Mbh2 in mouse 
embryonic spinal cords also induces the expression of 
DCC, Nrp2, Tag1, and Rig1 [33, 40]. However, electropo-
ration of Lhx2 only induces expression of Rig1 and Lhx9 
fails to induce expression of any of those guidance recep-
tors [40]. Nevertheless, both Lhx2 and Lhx9 work together 
to mediate commissural guidance of dl1c axons, since mice 
lacking either Lhx2 or Lhx9 show no obvious commissural 
defects, while in double mutants, commissural axons fail to 
cross the midline and project ipsilaterally. Further analy-
ses revealed that axons of the double mutant animals lack 
Robo3/Rig1. Interestingly, wilson et al. [38] showed that 
the Robo3/Rig1 regulatory region has consensus Lhx2 and 
Lhx9 binding sites and is subject to transcriptional control, 
probably through direct binding of these two factors in 
dl1 commissural neurons. However, dl1c neurons in these 
Lhx2/Lhx9 double mutants still express DCC, suggesting a 
parallel pathway downstream of Mbh1 or Mbh2 to regulate 
other guidance receptors [38] (Fig. 1). Ipsilaterally project-
ing interneurons need to repress Robo3/Rig1 to prevent 
midline crossing. This process is controlled through the 
action of the PAS domain transcription factors Sim1, Sim2, 
and Arnt2 in different populations of neurons in the brain 

Table 1  Guidance molecules 
and their transcriptional 
regulators

Guidance molecule Place of action Transcription factor References

vertebrate Netrin-1 Floor plate Foxa2 [25]

Sonic Hedgehog Floor plate Foxa2 [26]

Slit2 Floor plate Foxa2 [27]

Robo3/Rig1 dl1 commisural neurons Lhx9 and Lhx2 [38]

ephB1 Ipsilateral retinal ganglion cells Zic2 [65, 66]

ephB1 LMC(m) Isl1 [76]

ephA4 LMC(l) Lim1 [124]

ephrin-B2 Dorsal limb Lmx1b [124]

ephrin-A5 Dorsal limb Lmx1b [76]

FGF receptor 1 MMC neurons Lhx3 [134]

Robo2 SACM Nkx2.9 [137]

Drosophila Slit Lateral neurons Midline [58]

Midline glia Lola [59]

Frazzled Commisural neurons engrailed [56]

CNS Midline [58]

Roundabout CNS Midline [58]

CNS Lola [59]

Fasciclin III ventral motoneurons Nkx6 (lim3/Isl) [81].

Unc-5 Dorsal motoneurons even-skipped [91]

Dorsal motoneurons Grain [93]

Toll Muscle M12 Tey [97]
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[41, 42] although it is not clear if the same transcriptional 
mechanism plays a role in spinal interneurons.

Guidance at the Drosophila midline

In the Drosophila ventral nerve cord (vNC), the segmen-
tally repeated arrangement of axonal projections is defined 
by two commissures present on each segment commis-
sures, an anterior (AC) and a posterior commissure (PC). 
Similar to vertebrates, in the fly vNC, neuronal projections 
organize into ipsilateral and contralateral projections and 
some of the guidance cues and receptors are evolutionarily 
conserved. frazzled (fra) [43], the Drosophila DCC homo-
logue, is expressed by commissural axons and interprets the 
Netrins (NetA and NetB) [44, 45], secreted by midline glial 
cells, as attractive cues. The phenotype of Frazzled mutants 
strongly mimics that of Netrin mutants and is manifested 
mainly as lack of or defective PCs [43]. The 3 Robo recep-
tors present in Drosophila [46–48] are able to bind midline 
secreted Slit [6]. Of the three receptors, Robo1 seems to 
be the major determinant that keeps axons away from the 
midline while Robo2 can also play a positive role in com-
missure formation that may be similar to Rig1 [49, 50]. In 
addition, there is a mechanism in Drosophila to neutralize 
Slit-Robo1 repulsion not found in vertebrates, commis-
sureless (Comm) [51], an endosomal receptor that targets 
Robo1 for degradation in precrossing commissural axons 
allowing them to cross [52, 53]. Comm expression seems to 
be transcriptionally regulated by fra in a Netrin-independ-
ent way [54].

In a study using chromatin immunoprecipitation (ChIP) 
aimed at recognizing direct targets of the homeodomain 
(HD) transcription factor engrailed (en), fra was identified 

as one of them [55]. In en mutants, PCs are thinner and 
fra mRNA expression is reduced [56]. Immunostaining of 
Frazzled in wild-type embryos reveals a uniform expres-
sion in both ACs and PCs, but it appears much lower in 
PCs of en mutant embryos. This confirms a correlation 
between lack of Frazzled expression in PCs and thinner-
PCs phenotype observed in engrailed mutants, and also 
indicates a role for this transcription factor in the forma-
tion of PCs through transcriptional regulation of Fraz-
zled [56]. Another segmentation gene, gooseberry-Neuro 
(gsbN), works together with en in the formation of PCs 
[57] and might be a candidate to regulate fra together with 
en. Thinning of commissures and interrupted longitudi-
nal axons is observed in midline (mid) mutants [58]. Mid 
is a T-box transcription factor, a Drosophila homolog of 
Tbx20, expressed in the CNS, and its mutant phenotype 
mimics a combination of fra and robo mutant phenotypes 
[58]. mid mutants show a significant reduction of fra, robo, 
and Slit mRNA and protein expression in the CNS of that 
is restored by pan-neural expression of a mid transgene. 
This regulation is likely to be direct since mutations of 
Mid binding sites in their regulatory regions abolish the 
expression of a reporter construct. Furthermore, ChIP with 
an anti-Mid antibody resulted in an enrichment of their 
regulatory regions which contain Mid consensus binding 
sites [58]. Regulation of Slit, however, is not in the mid-
line glial cells but in some lateral neurons [58] (Fig. 2). In 
addition to Mid, Lola, another transcription factor contain-
ing BTB/POZ-like Zinc finger domains, also regulates the 
expression of robo and Slit [59]. In lola mutants, axons 
exhibit multiple aberrant midline crossings; however, only 
follower axons seem to be affected. Slit protein expression 
in the midline glia neurons is reduced to nearly 50 % in 
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Fig. 1  Transcriptional regulation of guidance at the vertebrate spinal 
cord. Schematic representation of the spinal cord and commissural 
neurons (dl1) crossing to the contralateral side through the floor plate 
(FP). Transcription factors present in commissural neurons or in the 
floor plate (a) or guidance molecules (b) are represented. Guidance 

receptors present on neurons or ligands at the floor plate are color 
coded in green if they mediate attraction or in red if they mediate 
repulsion. The relationships between transcriptional regulators and 
receptors in commissural neurons or ligands in the floor plate are also 
presented (c)
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lola mutants, and misexpression of lola in the developing 
midline of Drosophila led to ectopic expression of Slit at 
both mRNA and protein levels. Similarly, immunostain-
ing of Robo also showed a decrease compared to wild-type 
animals. In addition, Robo is relocalized to commissural 
axon tracts in lola mutants from which it would normally 
be excluded [59] (Fig. 2).

Transcriptional regulation of midline crossing at the optic 
chiasm

Proper development of binocular vision is dependent on 
the correct routing of retinal ganglion cells (RGCs) axons 
at the optic chiasm to the appropriate hemisphere. Dur-
ing development, RGC axons make the critical decision of 
whether or not to cross at a midline point (optic chiasm) in 
the ventral diencephalon, which establishes the foundation 
of binocular vision and spatial positioning perception. The 
degree of binocularity in each species depends on the per-
centage of RGCs axons remaining ipsilateral. Positioning 
of the RGCs cell bodies in the retina is an important factor 
in making the decision at the midline as RGCs in the ven-
trotemporal retina project their axons ipsilaterally [60–62].

Several guidance cues play a role in optic chiasm forma-
tion, in particular ephrins from the B class [63]. The ephB1 
receptor expressed by RGC axons mediates repulsion away 
from the ephrinB2 present in the radial glia at the chiasm 
[64]. Mice lacking EphB1 show higher numbers of crossing 
axons [64], and forced expression of EphB1 in dorsal RGCs 
causes more axons to project ipsilaterally [65–67], indicat-
ing the importance of this receptor for proper routing of 
ipsilateral RGCs. Zic2, a zinc finger transcription homolog 
of the Drosophila gene odd-paired, is expressed in RGCs 

from the ventrotemporal retina that will remain ipsilateral 
[68]. Interestingly, this transcription factor expression in 
the retina correlates with the degree of binocularity in dif-
ferent species [68]. Compelling gain of function and loss 
of function experiments show that this factor is not only 
necessary but also sufficient to prevent RGCs  axons from 
crossing to the contralateral side at the chiasm through the 
regulation of ephB1 in RGCs [65, 66, 68].

The LIM family member Islet 2 (Isl2) is exclusively 
expressed in RGCs whose axons will project to the con-
tralateral side [69]. Isl2-deficient mice present a higher 
number of RGCs co-expressing Zic2 and ephB1 and an 
increase in the number of ipsilateral axons [69]. Therefore, 
Isl2 is likely to act upstream of Zic2 and inhibit its expres-
sion in projecting contralaterally. The membrane guidance 
molecules that Isl2 regulates in those RGCs are currently 
unknown, but Nr-CAM and Plexin-A1 are some of the can-
didates since they are required to promote axonal growth 
in response to glial-expressed Sema6D at the chiasm [70]. 
Other regulators and putative guidance receptors are defi-
nitely important for guidance at the chiasm [71]; however, 
our description here is limited to examples where a clear 
connection between them has been established (Fig. 3).

Transcriptional regulation of guidance in motor 
neurons

During development, motor axons are instructed to navi-
gate to their target muscles by simultaneously integrating 
multiple extracellular signals along the pathway; migrat-
ing axons continuously adapt their response by modulating 
the expression of guidance receptors and their intracellular 

en
mid
lola

mid

lola
robo
fra

Slit

Slit

AC

PC

AC

PC
lola Slit

Midline glia

mid

lola robo
fra
Slit

Neurons

A B C

A

P

Fig. 2  Transcriptional regulation of guidance at the Drosophila mid-
line. Schematic representation of the Drosophila midline and a com-
missural neuron crossing to the contralateral side through the midline 
Transcription factors present in commissural neurons or in the midline 
glia (a) or guidance molecules (b) are represented. Guidance recep-

tors present on neurons or ligands at the midline glia are color coded 
in green if they mediate attraction or in red if they mediate repulsion. 
The relationships between transcriptional regulators and receptors or 
ligands are also presented (c). AC anterior commissure, PC posterior 
commissure
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signaling cascades. The subset of transcription factors 
expressed in different motor neurons is crucial not only for 
neural identity but also for axonal innervation at the appro-
priate muscles [72–75]. Some remarkable similarities in 
motoneuron specification and guidance have been found 
between vertebrates and invertebrates, although particulari-
ties from each system seem to prevail.

Specification of MN identity and axonal projections  
in Drosophila

The segmented vNC of Drosophila is composed of two 
identical left and right sides known as hemisegments 
(half segment), each of which contains 36 motor neurons 
(MNs) innervating 30 different body wall muscles. Based 
on the route that they choose, the somatic MNs assemble 
into three main nerve branches: the intersegmental nerve 
(ISN), the segmental nerve (SN), and a minor branch, the 

transverse nerve (TN). This division into ISN and SN/TN 
motor neuron–muscle units in Drosophila is somewhat 
comparable to the musculature of vertebrate limbs where 
dorsal and ventral muscle groups are innervated by motor 
neurons projecting through divergent routes [76, 77].

Drosophila MNs that project axons though common 
trajectory pathways, share a similar set of transcriptional 
regulators, and unique combinatorial codes are responsible 
for expression of different set of cell surface receptors in 
each distinct MN subclass [78]. In Drosophila, Zfh1, a zinc 
finger homeobox protein, is expressed postmitotically by 
all MNs, and in zfh1 mutants, motor axon guidance in both 
ISN and SN is severely impaired [79]. On the other hand, 
ectopic expression of zfh1 in some subsets of commissural 
interneurons leads to lateral projection of their axons out 
of the CNS. The authors propose unc-5 as one of the genes 
that may be regulated by zfh-1 [79].

ventral motoneurons

A concerted action of dHB9 and Nkx6 is required for speci-
fication of ventral MNs (vMNs) [80–82], partly through 
the expression of the LIM family members lim3 and islet 
within those neurons [81]. Dorsal motor neuron (dMNs) 
identity is defined by yet another homeobox gene called 
even-skipped (eve) [83–85]. Interestingly, there are cross-
repressive interactions between dorsal and ventral fate 
determinants, so that parallel collaboration of Nkx6 and 
dHB9 restricts eve expression to dorsal MNs and pan-neu-
ral misexpression of eve represses dHB9 and Nkx6 [80–82]. 
Nkx6, dHb9, and eve contain structural domains that, in 
vertebrate homeodomain proteins, interact with the Grou-
cho co-repressor, suggesting that they function as transcrip-
tional repressors [82, 83, 86, 87]. Two LIM-HD proteins, 
Islet (Isl) and Lim3, are involved in specification as well 
as axon guidance of groups of vMNs [88]. Deciphering 
the target genes regulated by these transcriptions factors 
is a prerequisite to better understand how these combina-
torial codes specify neural identity and axonal projections, 
but good candidates are Beat-Ia, Fra [43, 89], and other 
receptors required for vMN guidance. Among adhesion 
molecules, the neural cell adhesion molecule Fasciclin III 
(FasIII) has been shown to be regulated by nkx6; how-
ever, it is still unknown whether this regulation is direct or 
through Lim3 and Isl [81].

Dorsal motoneurons

even-skipped (eve) and Grain (Grn), a HD and a GATA 
family transcription factor, respectively, are specifically 
expressed in the most dorsally projecting dMNs (ISND) 
[83, 84, 90]. In dMNs eve alone is necessary and sufficient 
for many aspects of dMN specification including guidance 
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Fig. 3  Transcriptional regulation of guidance at the optic chiasm. 
Some axons of retinal ganglion cells from the ventral retina will 
remain ipsilateral wile axons crossing to the contralateral side through 
the optic chiasm (OC) originate in a dorsal domain. The ratio of ipsi-
lateral versus contralateral axons varies depending of the extent of 
binocular vision of each organism. The transcription factors Zic2 and 
Islet2 are present in ipsilateral and commissural neurons, respectively 
(a). Guidance receptors or ligands are also represented (b). Guidance 
receptors present on neurons or ligands at the optic chiasm are color 
coded in green if they mediate attraction or in red if they mediate 
repulsion. The relationships between transcriptional regulators and 
receptors in retinal ganglion cells are also presented (c). Arrows repre-
sent a positive regulation and bars a negative regulation
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[83–85]. In eve mutants, dMNs fail to exit the CNS and 
reach their dorsal muscle targets, and eve misexpression 
induces vMNs to project dorsally, indicating that it is likely 
to regulate the guidance receptors present in dMNs. The 
mechanism employed by eve to control dMNs projections 
is not yet clear, since it has been shown that it behaves as a 
repressor in dMNs [83]. Nevertheless, it also works geneti-
cally upstream of zfh-1 and grn promoting their expres-
sion [90]. These later transcriptional regulators may in turn 
directly regulate different guidance receptors. In fact, Unc-
5, a repulsive receptor for Netrin, is also expressed in two 
dMNs and is required for proper guidance of their motor 
axons [91, 92]. Arzan Zarin et al. [93] found that eve and 
grn independently induce unc-5 transcription in dMNs. 
whether eve regulates unc-5 through a direct binding to its 
regulatory region or through zfh-1 is still unknown (Fig. 4).

Transcriptional regulation of guidance cues  
in Drosophila muscles

Accurate axon guidance of motor neurons is achieved by 
the selective responsiveness to environmental cues in par-
allel regulation of such cues in the environment in which 
axons. Target muscle selection is achieved through attrac-
tion to the target cells and repulsion from non-target cells 
[76, 94–96]. An invertebrate example of such regulation is 
the transcriptional repression of a repulsive cue in a group 
of Drosophila muscles [97]. Tey is a putative DNA binding 
transcription factor, the expression of which is confined to 

a single muscle, M12, among the 30 muscles in the body 
wall. Tey is involved in negative regulation of transcrip-
tion and inhibits the expression of its target genes (i.e. toll) 
[97]. Toll is a transmembrane receptor of the leucin-rich 
repeat family specifically expressed on muscles, and acts 
as a repulsive cue in the development of Drosophila neu-
romuscular junctions [98]. Toll is differentially expressed 
in M13 and some other surrounding muscles but not in the 
neighboring M12; by acting as a repellant, it locally pre-
vents the innervation of M12-specific motor neuron axons 
onto M13. The inhibitory function of Toll is negatively 
suppressed in M12 by the transcription factor Tey, which 
works as a transcriptional repressor. In tey mutant animals, 
toll is ectopically induced in M12 and synapse formation 
on M12 is impaired [97]. On the other hand, ectopic tey 
in M13 prevents toll expression in the muscle, and M13 
is innervated by ectopic motor axons. This is an excellent 
example of how a target cell can be specified via repression 
of an inhibitory signal in just one among a group of target 
cells expressing the signal (Fig. 4).

Identity of Drosophila body wall muscles is deter-
mined by several transcription factors that are differ-
entially expressed in subsets of muscle and/or their 
progenitor cells [99]. Furthermore, various target rec-
ognition molecules, including homophilic cell adhesion 
molecules, secreted factors, and heterophilic ligands or 
receptors are expressed in specific muscles [100] mak-
ing them very good targets for the transcription factor 
identified.
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motoneurons as well as muscle 12 are also presented (c). Arrows rep-
resent a positive regulation and bars a negative regulation
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establishment of generic motor neuron identity  
in vertebrates

In vertebrates, motor neurons and interneurons in the ven-
tral spinal cord are created in response to graded extrin-
sic signals of sonic hedgehog and retinoic acid, which act 
along the dorsoventral axis of the neural tube. The bHLH 
transcription factors Olig2, Ngn1, and Ngn2 and the home-
odomain factors Pax6, Nkx6.1, and Nkx6.2 are expressed 
in the progenitor domain that gives rise to motor neurons 
[101–103]. After mitosis, motor neurons express a set of 
homeodomain transcription factors (Hb9, Lhx3, Lhx4, Isl1, 
and Isl2) that are responsible for common features of all 
spinal motor neurons and are also involved in later aspects 
of motor neuron subtype specification [104–108]. In order 
to adjust with differences in peripheral targets throughout 
the body, MN number, identity, and axon trajectory vary 
drastically along the rostrocaudal axis of the spinal cord. 
Based on anatomic positioning, MN cell bodies are organ-
ized into different column classes.

Phrenic motor column

Phrenic motor columns (PMC) are located in rostrocervi-
cal segments of the spinal cord and innervate diaphragm 
[109]. They can be distinguished by selective expression of 
Hoxa5 and Hoxc5, and the exclusion of other Hox factors 
as well as their accessory factor FoxP1. Continuous Hox5 
(Hoxa5 and Hoxc5) function is needed for different aspects 
of PMC neurons, including motor neuron migration, clus-
tering, axon projection towards the diaphragm, and branch-
ing [109]. The netrin receptor Unc5c is a likely target of the 
Hoxa5 and/or Hoxc5 factors, as this receptor is required for 
normal projection of phrenic motor neurons, and phrenic 
axons fail to reach the diaphragm in mice homozygous for 
null mutation in Unc5c [110]. Furthermore, the cell adhe-
sion molecule ALCAM, known to regulate the guidance 
and fasciculation of motor and retinal axons [111] and the 
NgR ligand, NogoA, is also implicated in the visual cortex 
plasticity [112] are downregulated in Hoxa5, Hoxc5 double 
mutants and could also be directly regulated by them [109].

Lateral motor columns

Lateral motor columns (LMCs) are generated only at bra-
chial and lumbar limb levels of the spinal cord and inner-
vate limb muscles. Cross-repressive interactions between 
Hox6, Hox9, and Hox10 proteins are required for the 
refinement of Hox expression profiles along the rostrocau-
dal axis, whereas their activator functions determine their 
identities as well as their peripheral target connectivity 
[113–115]. within LMCs, MNs innervating a dedicated tar-
get muscles in the limb are clustered into around 50 distinct 

pools of MNs whose identities are also controlled by Hox 
proteins and cofactors [114]. Interestingly, in animals lack-
ing Hox cofactor, Foxp1, motor neurons lack the expres-
sion of molecular markers of LMC divisional and pool 
identities, including LMC transcription factors (e.g., Lhx1, 
Pea3, Nkx6.1) as well as axon guidance and synaptic speci-
ficity molecules (ephA4, Sema3e, Cad20) [116].

Combinatorial codes of LIM proteins specify MN 
diversity enabling different classes of MNs to choose 
their appropriate projection routes in vertebrates [108, 
117, 118]. LIM codes confer MNs with such ability 
apparently by controlling the genes involved in respon-
siveness to either attractive or repulsive signals from mid-
way environment or final target muscles. In the chick and 
rodent spinal cord, LMCs can be further split into medial, 
LMC(m), and lateral, LMC(l), divisions projecting to 
the ventral and the dorsal part of the limb, respectively 
[119–121]. LMC(m) neurons express Lim proteins Isl1 
and Isl2 whereas LMC(l) neurons express Isl2 and Lim1 
[122]. Columnar Hox (Hox6/10) partition the LMC into 
medial and lateral divisions inducing Isl1 in LMC(m) 
and Lim1 in LMC(l) [75, 123]. Most of the LIM-proteins 
downstream targets remain unknown; however, members 
of the eph-receptor family and their membrane-bound 
ligands, the ephrins, are known to be regulated by Lim 
proteins [76, 124]. Isl1 induces the expression of EphB1 
in LMC(m) and Lim1 promotes EphA4 expression in 
LMC(l) (Fig. 5).

Along with forward signaling, ephrin-dependent reverse 
signaling is important for LMC axon guidance. In con-
trast to ephA- and ephB-mediated forward signaling 
which leads to repulsive response in LMC axons, ephrin-
A and ephrin-B reverse signaling, which exists in lateral 
and medial LMC neurons, respectively, results in motor 
axon attraction [125]. For example, ephA4 and ephA7 are 
expressed by dorsal limb mesenchyme where they act as 
“ligands” for ephrin-As present in LMC(l) axons, leading 
to attraction and growth of LMC(l) to dorsal limb muscles 
via reverse signaling [125–127].

Limb-derived growth factors such as glial cell line-
derived neurotrophic factor (GDNF) are also pivotal in 
motor axon navigation. In addition to participating in 
ephrin-A reverse signaling, Ret mediates GPI-anchored 
GFRα1 signaling in response to GDNF. GDNF binds to 
a receptor complex composed of GPI-anchored GFRα1 
receptor (Gfrα1) and Ret [128]. GDNF is expressed at the 
dorsoventral trajectory choice point within the hind limb, 
whereas Ret and GFRα1 are expressed by limb-innervating 
motor neurons [129]. Previous studies have reported that 
motor axons expressing Ret and GFRα1 are attracted to 
gradients of GDNF [130], and that Gdnf, Gfrα1, and Ret 
mutants are defective in peroneal nerve projection [129, 
131]. There is also synergistic interaction between GDNF 
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and ephA signals where GDNF might potentiate ephrin-A 
reverse signaling [126, 127].

Genetic experiments in mouse and chick also demon-
strate the contribution of repulsive Sema3/Neuropilin sign-
aling in LMC axon navigation. Some medial LMC axons 
expressing Npn-2 receptor are repelled from Sema3F 
ligands in the dorsal limb leading to their ventral diver-
sion [132]. In addition, interactions between Sema3A and 
its receptor Npn-1 expressed in all brachial LMC neurons 
control the timing of motor axon limb innervation as well 
as the extent of fasciculation of both lateral and medial 
LMCs [132, 133]. Sema3/Neuropilin may act in paral-
lel or perhaps synergistically via direct interactions with 
ephrin/eph signaling components to increase the robust-
ness of dorsoventral navigation at the base of the limb, and 
they may very well also be regulated by the same LIM-HD 
codes. LIM-HD factors also play a role in the regionaliza-
tion of the limb mesenchyme. Lmx1b is expressed in the 
dorsal mesenchyme and its elimination leads to a ventrali-
zation of the limb [122]. Lmx1b induces ephrin-B2 and 
represses ephrin-A5 in the dorsal limb, leading to expres-
sion of ephrin-B2 in the dorsal limb and ephrin-A5 in the 
ventral limb. As a result, ephA4-expressing LMC(l) neu-
rons are guided to the dorsal limb due to repulsion from 
ephrin-A5, and ephB1-expressing LMC(m) neurons are 
repelled from ephrin-B2 projecting to the ventral limb [76, 
124] (Fig. 5).

Medial motor column

In contrast to segmentally restricted columns described 
above, motor neurons innervating axial muscles are located 
in the medial motor column (MMC), that span all segments 
of the spinal cord, and Lim proteins also play a pivotal role 
in their guidance [118]. The LIM factor Lhx3 selectively 
triggers expression of FGF receptor 1 (FGFR1) in MMC 
neurons making their motor axons attractive to fibroblast 
growth factors (FGFs). FGF is expressed in dermomy-
otome acting as a secreted long-range chemoattractant. 
The dermomyotome is a temporary structure that subse-
quently becomes axial musculature, the target for MMC 
neurons. Interestingly, forced expression of Lhx3 in LMC 
MNs reprograms their identity to MMC cells and induces 
FGFR1 expression [134]. This reprograming of LMC into 
MMC motor neurons is associated with increased projec-
tions to towards the FGF-expressing dermomyotome [134]. 
MMC motor neurons also express ephA3 and ephA4 
receptors and are repelled by ephrin-As expressed by sen-
sory neurons of the dorsal root ganglion (DRG), highlight-
ing the crucial role of heterotypic trans-axonal signaling 
and interaction between sensory and motor axons in proper 
assembly of sensory-motor circuits. Likewise, ephrin-As 
are expressed in ventral mesenchyme, preventing MMC 
axons from innervating limb muscles [135]. In double 
mutants for EphA3 and EphA4, MMC axons aberrantly 
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Fig. 5  Transcriptional regulation of motor guidance in vertebrates.
Schematic representation of the spinal cord and different types of 
motoneurons arranged in different motor columns: lateral motor col-
umn lateral and medial subset (LMC(l) or LMC(m), respectively and 
medial motor column (MMC). LMC(l) and LMC(m) neurons project 
their axons towards the dorsal and ventral side of the limb mesen-
chyme respectively. MMC neurons project their axons towards the 
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myotome are presented. The relationships between transcriptional 
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muscle 12 are also indicated (c). Arrows represent a positive regula-
tion and bars represent negative regulation
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project into the DRG, a phenotype also observed in FGFR1 
mutants [134, 135]. It is likely that EphA3 and EphA4 will 
be regulated in MMC neurons in the same way as FGFR1, 
but their regulation by Lhx3 has not yet been established 
(Fig. 5).

Spinal accessory motoneurons

Spinal accessory motoneurons (SACM) are a population of 
neurons located at the cervical level in the spinal cord. They 
project their axons towards a dorsal exit point and assemble 
into a spinal accessory nerve (SAN) that projects anteriorly 
and innervates neck and back muscles. The HD transcrip-
tion factor Nkx2.9 is required for SACM to exit the spinal 
cord [136]. In Nkx2.9 mutants, SAN are truncated and pro-
ject ectopically within the spinal cord. Among the guidance 
receptors expressed in SACM is the Robo2 receptor, which 
is downregulated in Nkx2.9 mutants [137]. Additionally, 
Robo2 mutants present SACM exit phenotypes that pheno-
copy those of Nkx2.9 mutants, strongly supporting the role 
of Nkx2.9 in the regulation of Robo2 [137]. The Slit ligand 
is expressed in the SCAM exit point and Slit mutants pre-
sent similar phenotypes, indicating that Slit/Robo signaling 
is essential in this process [137].

Conclusions

Axon guidance is a process that is to a large extent tran-
scriptionally regulated. Transcription factors control axonal 
projections by regulating the expression of cell surface 
molecules involved in axon guidance. Despite all the effort 
devoted to understanding the transcriptional programs that 
govern axon guidance, our knowledge is still relatively 
limited. In most cases, transcriptional codes have been 
assigned to specific projections and have been correlated 
with the expression of individual guidance molecules by 
genetic means. Nevertheless, there is no example available 
in which a particular transcription factor has been shown 
to regulate the expression of a guidance receptor in vivo 
through a direct binding to its regulatory region, although 
several studies provide suggestive evidence for such pro-
cesses [38, 138, 139].

The relatively limited availability of transcriptional reg-
ulators encoded in the genome raises the question of how 
they can account for the various axonal pathfinding deci-
sions in each neuron. Some evolutionarily conserved mech-
anisms are starting to emerge. There is a hierarchical organi-
zation of different transcriptional cascades directing axon 
guidance. For example, homeodomain transcription factors 
such as Nkx6 or even-skipped play an early role in guid-
ance during neuronal specification through repression [86]. 
These transcriptional programs tightly linked with neuronal 

specification are also responsible for the regulation of an 
array of guidance receptors and adhesion molecules in spe-
cific neurons. They may play a direct role preventing their 
expression or through the regulation of other transcriptional 
regulators. At a later stage, and in postmitotic neurons, 
distinct codes of transcription factors including LIM-HD 
proteins define the axon-outgrowth pathways for different 
neuronal subtypes. These codes confer neurons with such 
ability by controlling the genes involved in responsiveness 
to either attractive or repulsive signals through a direct regu-
lation. while epigenetic regulation has not been considered 
in this review, early events of epigenetic control will defi-
nitely determine different patterns of receptor expression 
regulating the accessibility to their regulatory sequences and 
increasing variability among different neuronal populations. 
Transcriptional regulators with broad expression, not exclu-
sive to the nervous system, may also mediate cell-specific 
regulation through the same mechanism. Thus, regulation of 
the expression of the particular footprint of guidance recep-
tors that determines the path-finding properties of a neuron 
likely starts before the neuron is specified and is not solely 
dependent on specific transcriptional codes.

It is obvious that axons on their path respond to mul-
tiple cues. Related neurons whose axons assemble into 
nerves will express a very similar footprint of receptors 
and adhesion molecules on their membranes and many of 
them will be common. Nevertheless, while specific tran-
scriptional codes have been identified for different nerve 
branches, in particular motoneurons, receptor codes have 
not been or they have not been linked to the particular 
transcriptional code. It is possible that, in a similar way as 
selector genes co-regulate batteries of genes involved in 
common neuronal processes [140, 141], individual tran-
scriptional codes co-regulate particular guidance receptor 
footprints. Novel approaches such as cell-specific chroma-
tin immunoprecipitation will aid the understanding of how 
different transcriptional codes regulate selectivity in axon 
guidance decisions to reveal the actual targets of specific 
transcriptional codes.
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