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conceivable that p75NTR can modulate cell-fate decisions 
through its highly ramified signaling pathways. Thus, elu-
cidating the potential implications of p75NTR activity as 
well as the underlying molecular mechanisms of p75NTR 
will shed new light on the biology of both normal and can-
cer stem cells.
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Introduction

Since the discovery of pluripotent embryonic stem cells 
(ESCs), first isolated in 1981 [1], the ability of these cells to 
differentiate into three germ layers (ectoderm, mesoderm, 
and endoderm) and then into fully specialized cells [2] has 
opened many enticing perspectives in tissue regeneration 
and cell therapy. The comprehension of stem cell biology 
has become even more important with the discovery of can-
cer stem cells (CSCs) and their fundamental role in tumor 
development [3]. ESCs, adult stem cells, and CSCs share 
common features. They are all long-lived cells with the 
ability to renew through mitotic cell divisions and to differ-
entiate into more specialized cell types. However, the stem 
cells are quite different in terms of potency, ranging from 
pluripotency in ESCs to multipotency, bipotency, and uni-
potency, with increasing degrees of commitment of transit 
amplifying/progenitor cells. Nevertheless, with the excep-
tion of hematopoietic stem cells, specific markers have not 
yet been identified. Studies of specific cell-surface markers 
are essential for distinguishing ESCs, adult stem cells, and 
CSCs from their destined-to-differentiate transit amplifying 
daughters to better understand mechanisms governing stem 
cell renewal and differentiation.

Abstract  p75NTR, the common receptor for both neuro-
trophins and proneurotrophins, has been widely studied 
because of its role in many tissues, including the nerv-
ous system. More recently, a close relationship between 
p75NTR expression and pluripotency has been described. 
p75NTR was shown to be expressed in various types of 
stem cells and has been used to prospectively isolate stem 
cells with different degrees of potency. Here, we give an 
overview of the current knowledge on p75NTR in stem 
cells, ranging from embryonic to adult stem cells, and can-
cer stem cells. In an attempt to address its potential role in 
the control of stem cell biology, the molecular mechanisms 
underlying p75NTR signaling in different models are also 
highlighted. p75NTR-mediated functions include survival, 
apoptosis, migration, and differentiation, and depend on 
cell type, (pro)neurotrophin binding, interacting trans-
membrane co-receptors expression, intracellular adaptor 
molecule availability, and post-translational modifications, 
such as regulated proteolytic processing. It is therefore 
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Among increasing prospective stem cell markers, the 
p75 neurotrophin receptor (p75NTR, also known as NGFR 
or CD271) enriches the stem/progenitor subset in several 
models, presenting varying degrees of potency. p75NTR 
has been widely described for its signaling role as the 
common receptor for neurotrophins and proneurotrophins 
and, as such, p75NTR can exert a plethora of functions 
according to cell context [4, 5]. The aim of this review 
is to overview what is known about p75NTR in stem cell 
biology. Based upon the well-known and diverse signal-
ing functions of p75NTR, we also attempt to address its 
potential role in the control of stem cell proliferation and 
differentiation.

Diverse functions of p75NTR, the common receptor 
for neurotrophins and proneurotrophins

Since p75NTR was identified as a bona fide neural crest 
stem cell (NCSC) marker [6], it has been widely used to 
isolate putative stem cells from neural crest-derived tis-
sues and its involvement in mesenchymal stem cell (MSC) 
differentiation along the osteogenic, adipogenic, chondro-
genic, and myogenic lineages has been exploited. Nonethe-
less, p75NTR expression and function in vivo, as well as its 
underlying mechanisms in stem cell biology, have not yet 
been sufficiently addressed. In this chapter, we will briefly 
overview what is known about p75NTR-mediated signaling, 
which may give us a clue about the role of p75NTR in stem 
cells.

p75NTR is the common receptor for all neurotrophins, 
which includes nerve growth factor (NGF), brain-derived 
neutrophic factor (BDNF), neurotrophin 3 (NT-3), and neu-
rotrophin 4/5 (NT-4/5). Neurotrophins are generated from 
the enzymatic processing of their precursors (proneurotro-
phins). More recently, p75NTR has been reported to mediate 
the biological effects of proneurotrophins in several types 
of cells [7–9]. Nevertheless, proneurotrophins’ in vivo 
activities still have to be demonstrated.

p75NTR is a 427-amino-acid transmembrane recep-
tor containing an extracellular stalk domain, a single 
transmembrane domain, and a cytoplasmic domain. The 
presence of four cysteine-rich domains in the extracel-
lular part of p75NTR affiliates it with the TNF receptor 
superfamily and is responsible for receptor conforma-
tion and ligand binding [10]. An N-glycosylation site and 
several O-glycosylation sites in the extracellular domain 
are implicated in the membrane targeting of the protein 
as well as in ligand binding [11]. The transmembrane 
domain consists of a unique helix, where the highly con-
served cysteine C257 plays an important role in recep-
tor dimerization, in conformational changes induced 
by ligand binding and in signal transduction [12]. The 

intracellular domain, which is highly conserved between 
species, does not have intrinsic catalytic activity, and it 
owes its signaling ability to its association with cyto-
plasmic partners through different regions. Three regions 
within the intracellular domain are important for p75NTR 
activity: (i) the chopper and (ii) death domain, the activa-
tion of which induces apoptosis [13], and (iii) the con-
served SPV (tripeptide serine-proline-valine), which is 
a consensus sequence for Post-synaptic Disc-large Zona 
protein binding domains. The associated partners allow 
for assembly of protein complexes by acting as signal-
ing platforms. The p75NTR intracellular domain is also 
subject to several post-translational modifications, such 
as palmitoylation [14] and phosphorylation, at several 
amino acid residues. For more specific details about 
p75NTR, extensive descriptions of its structure and pro-
cessing are reviewed in [15, 16].

p75NTR signal transduction pathways are extremely vari-
able because they are strongly dependent on cell type, cell 
differentiation status, neurotrophin binding, availability of 
intracellular adaptor molecule availability, and interacting 
transmembrane co-receptors and post-translational modi-
fication expression [17]. This leads to divergent cellular 
responses, including cell survival [18], apoptosis [13, 19], 
neurite outgrowth and retraction [20], myelination [21], 
cell cycle regulation [22], cell migration and invasion [23, 
24], and progenitor differentiation [25] (Fig. 1).

Influence of co‑receptors on p75NTR signaling

Formation of p75NTR dimers has a strong regulatory effect 
on the activation of receptor signaling [12, 26]. Neverthe-
less, different biological effects of p75NTR can be explained 
by the ability of p75NTR to cooperate with other receptors 
to form multimeric/heteromeric complexes. Indeed, apart 
from its interaction with specific tyrosine kinase recep-
tors of neurotrophins (TrkA for NGF, TrkB for BDNF and 
NT-4/5, TrkC for NT-3), p75NTR participates in several 
signaling platforms by interacting with an increasing list 
of co-receptors, including sortilin (SORT1), Nogo recep-
tor (NogoR), and LINGO-1 [27, 28] (Fig. 1). Interactions 
with co-receptors seem to be dependent on p75NTR cellu-
lar localization, the state of cellular differentiation, and its 
post-translational modifications [17].

p75NTR and Trk receptors can interact both in synergis-
tic or antagonistic manners, and their association or mutual 
control has been extensively investigated [29]. The forma-
tion of a p75NTR/Trk complex was shown to facilitate the 
affinity and selectivity of each neurotrophin for its Trk 
receptor (kd =  10−11  M), most likely by the induction of 
conformational changes in its intracellular and extracellu-
lar domains and exposing a high affinity site for associa-
tion with neurotrophins [30]. Recently, a direct interaction 
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between p75NTR and TrkA has been demonstrated, even 
in the absence of NGF [31], and the possibility cannot be 
excluded that other proteins may be associated with this 
complex.

The p75NTR/sortilin complex is known to induce cell 
death following proneurotrophin binding [32, 33]. Sign-
aling pathways connected to the ternary complex proNT/
p75NTR/sortilin are poorly described. The cytoplasmic tail 
of sortilin has the potential to recruit specific protein part-
ners to induce its own signaling and/or to facilitate p75NTR-
mediated signals.

Finally, the trimeric complex with NogoR and LINGO-1 
receptors is known to bind to Nogo-66, myelin-associated 
glycoprotein (MAG), or oligodendrocyte myelin glycopro-
tein to inhibit neurite growth by activating RhoA [34–36].

p75NTR signaling by the recruitment of intracellular 
partners

p75NTR, like other members of the TNFR superfamily, 
does not have intrinsic enzymatic activity, and it owes 
its signaling to the recruitment of intracellular binding 
proteins, leading to the activation of different signaling 
pathways. These signaling pathways have been predom-
inately established in neuronal models and in rat PC12 
(pheochromocytoma) cells where, depending on the cel-
lular context, they mediate survival, apoptosis, cell cycle 
arrest, myelination, or neurogenesis. There is a wide 
array of proteins that have been demonstrated to interact 
with the intracellular domain of p75NTR (Fig.  1). These 
include:

Fig. 1   Schematic overview of p75NTR interactions. p75NTR can bind 
all neurotrophins and proneurotrophins, can dimerize, and can interact 
directly with Trk receptors, sortilin, Nogo-receptor, and Lingo1. The 
recruitment of intracellular proteins by p75NTR activates downstream 
signaling cascades, leading to different biological responses. p75NTR 
cleavage may also induce signaling mediated by the C-terminal frag-
ment (CTF) or the intracellular fragment (ICD) of the receptor, gener-
ally leading to cell survival or apoptosis. ICD may be translocated to 
the nucleus to mediate its cellular responses (dotted arrows indicate 
that the exact molecular mechanisms leading to migration/invasion 
are unknown). In yellow are intracellular partners leading to pro-
apoptotic signaling: NRAGE neurotrophin receptor-interacting MAGE 

homolog, NADE p75NTR-associated cell death executor, NRIF neuro-
trophin receptor interacting factor, Rac1 Ras-related C3 botulinum 
toxin substrate 1, TRAF TNF receptor-associated factor. In pink are 
partners leading to pro-survival signaling: RIP2 receptor-interacting 
protein 2, FAP1 Fas-associated protein 1, FAIM Fas apoptosis inhibi-
tor molecule, TRADD TNF receptor-associated death domain protein. 
In blue are partners leading to cell cycle arrest: SC1 Schwann cell fac-
tor-1, Sall2 Sal-like 2; Necdin. In green are partners related to neuro-
genesis and myelination: Par3 protease activated receptor 3, MAGI-1 
membrane-associated guanylate kinase with inverted organization; 
Shc. In gray, PDE4 phosphodiesterase type 4, leading to cAMP deg-
radation and matrix remodeling in Schwann cells
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1.	 Neurotrophin receptor-interacting MAGE homolog 
(NRAGE) [37], NADE (p75NTR-associated cell death 
executor) [38], neurotrophin receptor interacting factor 
(NRIF) [39], Ras-related C3 botulinum toxin substrate 
1 (Rac1) and TNF receptor-associated factor 6 [40], 
leading to pro-apoptotic signaling mainly through acti-
vation of the JNK pathway;

2.	 TRAFs [41], receptor interacting protein 2 (RIP2) [42], 
Fas-associated protein 1 (FAP1) [43], Fas apoptosis 
inhibitor molecule (FAIM) [44] and TNF receptor-
associated death domain protein (TRADD) [45], lead-
ing to pro-survival signaling through the activation of 
the nuclear factor-κB (NF-κB) transcription factor;

3.	 Schwann cell factor-1 (SC1), Sal-like 2 (Sall2), and 
Necdin, leading to cell cycle arrest [22];

4.	 Protease-activated receptor 3 (Par3), which is impli-
cated in Schwann cell myelination [46];

5.	 Phosphodiesterase type 4 (PDE4), leading to cAMP 
degradation and matrix remodeling in Schwann cells 
[47];

6.	 Membrane-associated guanylate kinase with inverted 
organization (MAGI-1) [48] and Shc [49], both of 
which are involved in neurite extension.

p75NTR proteolytic processing

The regulated proteolysis of p75NTR has largely been 
described in neurons. p75NTR undergoes extracellular 
cleavage by the metalloproteases ADAM17/TACE, releas-
ing the ectodomain of the receptor to form a 28-kDa mem-
brane-bound C-terminal fragment (p75-CTF) (Fig. 1). The 
p75-CTF is subsequently cleaved within the transmem-
brane domain by γ-secretase and gives rise to the soluble 
p75 intracellular domain (p75-ICD). The p75-ICD has been 
reported to be involved in cell death [50] or the survival 
[51] of neurons and in glioma cell invasion [52]. Whether 
these cleavages are regulated by neurotrophin binding or 
by co-receptors as well as their connection to p75NTR sign-
aling are still a source of debate. It has been reported that 
in PC12 and HEK293 cell lines, TrkA activation increases 
p75NTR cleavage by ADAM17 [53, 54]. Several studies 
documented nuclear translocation of the p75NTR-ICD frag-
ment, suggesting a direct or indirect transcriptional activ-
ity of the receptor [55]. Although in the majority of cases 
p75NTR-CTF was described as a transient form without 
signaling functions, this fragment has been more recently 
shown to be involved in the survival of breast cancer cells 
[56] and in promoting cell death in neurons when over-
expressed in a form that cannot be cleaved to generate the 
ICD [50].

Despite the diversity of p75NTR signaling in adult cells, 
no specific signaling has been documented in a stem cell 
context. However, we can assume that in the case of stem 

cells, p75NTR is likely to function in a cell-context-depend-
ent manner. Moreover, p75NTR activation has been shown to 
crosstalk with canonic signaling pathways involved in stem 
cell phenotypes, such as Notch and Wnt pathways. Indeed, 
NGF/p75NTR activation was described to be able to modu-
late the expression of hes1/5, which are target genes of the 
Notch signaling pathway, through NF-κB activation [57]. 
During axon regeneration, NGF regulates the activities 
of GSK-3β and ILK, in addition to PI3K and Akt [58]. By 
inactivating GSK-3β, NGF participates in the activation of 
the Wnt pathway, allowing for the stabilization of APC and 
β-catenin [59]. Moreover, Trk receptors directly phosphoryl-
ate β-catenin at the Y142 upon neurotrophin binding, driv-
ing β-catenin translocation to the nucleus [60]. Through 
β-catenin translocation, Wnt factors and NTs may regulate 
stem cell fate decisions by activating T cell-factor/lymphoid-
enhancing-factor-driven gene transcription [61]. BDNF, for 
instance, seems to contribute to proliferation and neuronal 
and oligodendrocytic differentiation of NSCs in vitro by trig-
gering the Wnt/β-catenin signaling pathway [62].

Expression and potential roles of p75NTR in stem cells

Increasing amounts of data describe the expression of 
p75NTR in both stem cells and well-differentiated cells. In 
many cases, p75NTR has been used solely or in combination 
to identify stem/progenitor subsets with varying degrees of 
commitment, progressing from embryonic to adult tissues. 
In this chapter, we attempt to perform an up-to-date over-
view of both the expression and potential roles of p75NTR in 
stem cells according to their potency and germ layer origin 
(Table 1).

p75NTR in embryonic stem cells

Embryonic stem cells are pluripotent stem cells originat-
ing from the inner mass of the blastocyst that have the dual 
ability to self-renew and to differentiate into all cell types 
within the embryo and the adult (Fig.  2). Some evidence 
concerning the role of p75NTR in human ESCs remains 
controversial. Schuldiner et  al. [63] found that p75NTR is 
expressed in a human ESC line derived from human blasto-
cysts, and its mRNA is down-regulated upon differentiation 
in monolayer culture. In the same cells, Pyle found only a 
transient or low expression of this receptor and supported 
the idea that BDNF, NT-3, and NT-4/5 neurotrophins sus-
tain hESC survival through their binding to TrkB and TrkC 
receptors [64]. Nevertheless, whether the low amount of 
p75NTR detected in these cells might be implicated in the 
activation of TRK signaling pathways or in the neurotro-
phin response was not assessed, leaving the role of p75NTR 
unresolved.
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p75NTR was clearly found in the mouse embryo at the 
early blastocyst stage (3.5 days post-coitum, dpc) in Oct4-
positive cells as well as in mouse ES cell lines [65]. Its 
expression persists in the inner cell mass of the blasto-
cyst (4.5 dpc), while p75NTR transcripts are not present in 
trophoblast cells [66]. In particular, p75NTR is associated 

with mouse ESC proliferation upon NGF treatment through 
its interaction with the TrkA receptor [65]. Interestingly, 
primordial germ cells (unipotent stem cells) isolated from 
11.5  dpc mouse gonads are found to be p75NTR-nega-
tive but become p75NTR-positive when dedifferentiated 
into pluripotent embryonic germ stem cells in vitro [65], 

Table 1   p75NTR expression and functions in stem cells

p75NTR   expression has been found in numerous types of stem cells. In some cases, neurotrophins have been reported to be functionally impli-
cated as indicated in the table. However, the precise functions of p75NTR in stem cells clearly remain to be studied

Cell type Model Plasticity Origin Ligand Co-receptor Functional outcome Refer-
ence

Embryonic SC Mouse Totipotent Blastocyst NGF TrkA Proliferation [65]

Human Totipotent Blastocyst TrkC Survival [63, 64]

Neural crest Human Pluripotent Neural crest [67]

Esophageal  
keratinocytes SC

Human Multipotent Ectoderm [136]

Laryngeal  
squamous SC

Human Multipotent Ectoderm [81]

Epidermal  
keratinocytes

Human Multipotent Ectoderm [82]

Hair follicle  
keratinocyte SC

Mouse Multipotent Ectoderm Apoptosis [85]

Corneal stromal and 
epithelial SC

Mouse Multipotent Neural crest [83]

Oral mucosa SC Human Multipotent Ectoderm [84]

Dorsal root  
ganglion SC

Rat Multipotent Neural crest NogoR [76]

Gut SC Human Multipotent Neural crest [77]

Sciatic nerve SC Rat Multipotent Neural crest [72]

Enteric neural SC Human, rodents Multipotent Neural crest NT-3 TrkC Survival/ 
multipotency

[78, 79]

Dental pulp SC Human Multipotent Ectoderm NGF multipotency/ 
differentiation

[90]

CNS neural SC Human, RAT Multipotent Ectoderm NGF, NT-3, BDNF, 
proNGF

TrkC Proliferation/ 
multipotency/ 
differentiation

[97–99]

Mesenchymal SC Human, mouse Pluripotent/ 
multipotent

Mesoderm NogoR, sortilin [65]

Bone-marrow SC Human Multipotent Meso ectoderm NGF [107]

Adipose SC Human, mouse Multipotent Mesoderm [109]

Testis SC Human, mouse, rat Multipotent Mesoderm NGF, NT-3 TrkB Differentiation [154]

Skeletal muscle SC Human Multipotent Mesoderm BDNF Differentiation [115]

Trachea epithelium SC Mouse Multipotent Endoderm NT-3 [117]

Hepatic stellate SC Human, rat Multipotent Endoderm Differentiation [122]

Melanoma CSC Human Multipotent Ectoderm NGF Selfrenewal/ 
multipotency

[128]

Oral squamous CSC Human Multipotent Ectoderm [133]

Esophageal  
squamous CSC

Human Multipotent Ectoderm [136]

Breast CSC Human Multipotent Ectoderm [146]

Hypopharyngeal CSC Human Multipotent Ectoderm [148]

Neuroblastoma CSC Human Multipotent Ectoderm [149]
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suggesting that p75NTR is expressed by more primitive stem 
cells located high in the stem cell hierarchy.

Nevertheless, the close relationship between p75NTR 
expression and pluripotency thus far described indicates 
that neurotrophin signaling may be a key regulator of pro-
liferation and survival in ESCs. Further studies are clearly 
needed to understand the precise dynamics of neurotrophin/
p75NTR actions and the underlying mechanisms.

p75NTR is a robust marker of neural crest SCs

It has been clearly established that p75NTR is a robust 
marker of NCSCs, as p75NTR has been successfully used 
to isolate NCSCs from fetal and adult tissues [67]. The 
neural crest is a transient population of multipotent stem 
cells arising at the lateral edge of the dorsal neural tube in 
vertebrates [68] (Fig.  2). These cells migrate extensively 
into the embryo before aggregating to form a vast array of 
cell types, including the neurons and glia of the peripheral 
nervous system, endocrine cells in the adrenal and thyroid 
glands, melanocytes, craniofacial cartilage and skeletal 
cells, among others [69–71].

Jiang et al. were able to generate functional NCSCs in vitro 
by FACS-sorting p75NTR-positive cells from human ESCs 
whose differentiation was induced by stromal fibroblasts. 
These p75NTR-positive cells readily form neurospheres in sus-
pension culture, self-renew to form secondary spheres, and 
give rise to multiple neural crest lineages, including periph-
eral nerves, glial cells, and myofibroblastic cells. Importantly, 
these cells migrate and differentiate into neural crest deriva-
tives when transplanted into developing chick embryos in 
vivo, demonstrating functional NCSC properties [6].

The persistence of p75NTR staining in stem cells origi-
nating from NCSCs in vivo was evaluated in E14.5 rat 

sciatic nerve tissue. Starting from post-migratory neural 
crest cells of the fetal peripheral nerve (which is thought to 
contain only glial precursors), a p75NTR+/P0- (a peripheral 
myelin protein) fraction was identified as highly enriched 
in cells functionally indistinguishable from NCSCs in vitro. 
This subpopulation self-renewed in clonal assays and gen-
erated neurons, Schwann cells, and smooth muscle-like 
myofibroblasts [68, 72].

NCSC migration and fate are driven by environmental 
signals. For instance, the maintenance of an undifferenti-
ated state as well as the persistent expression of p75NTR in 
NCSC are both supported by the combinatorial Wnt/bone 
morphogenic protein pathways [73, 74]. Neurotrophins 
act in combination with different factors to mediate differ-
ent fates. Indeed, NGF, BDNF, or NT-3 act in concert with 
stem cell factor (SCF) to mediate cell death and melano-
cytic lineage through the p75NTR receptor, while the com-
bination of FGF-2 and NT3 promotes expression of sympa-
thetic neuroblast markers, and SCF and BDNF are involved 
in directing neural crest cells into a sensory neuron lineage 
[75]. These data emphasize the importance of the concerted 
action of neurotrophins and p75NTR in NCSC proliferation, 
survival, and differentiation. Based on the differentiation 
process, it cannot be excluded that neurotrophins may par-
ticipate in NCSC migration and homing of p75NTR-positive 
cells as well as in their specific differentiation once stem 
cells have reached their destination.

p75NTR in adult stem cells

Adult stem cells are organ- or tissue-specific stem cells. 
These stem cells may be multipotent, bipotent, or unipo-
tent, and maintain continuous cellular turnover to provide 
regenerative capacity in continually renewing tissues and 

Fig. 2   p75NTR-positive stem 
cells are present in many cel-
lular models with different 
degrees of commitment. The 
fusion of gametes and formation 
of a diploid zygote determines 
the establishment of a multicel-
lular embryo. Cells from the 
inner cell mass of the blastocyst 
(ESCs) present p75NTR tran-
scripts. p75NTR-positive cells are 
present in multipotent migrating 
NCSCs (represented here during 
the neurulation stage) as well as 
in many fetal and post-natal tis-
sues. It is worth noting that cell 
types other than neural crest-
derived tissues present a subset 
of p75NTR-positive stem cells, 
demonstrating a more primitive 
origin of these cells
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reparative capacity in post-mitotic tissues. In the adult, 
the presence of p75NTR characterizes various stem/pro-
genitor cell types, such as bone marrow stem cells; muscle 
stem cells (satellite cells); liver stem cells (stellate cells); 
keratinocytes of the basal layer of the epidermis, of the 
corneal limbal epithelium and of squamous epithelia; and 
stem cells of the oral and esophageal mucosa. In general, 
p75NTR is considered to be the most specific marker of 
MSCs, which are endowed with adipogenic, osteogenic, 
and chondrogenic potential [65], and of stem cells of all 
neural crest-derived tissues [71] (Fig. 2).

Ectodermal origin

Several tissues originating from migratory NCSCs 
through a series of progressive restrictions in develop-
mental fate have been shown to maintain a number of 
multipotent/bipotent undifferentiated cells bearing p75NTR 
expression. For instance, stem cells from dorsal root gan-
glion [76], adult gut [77], and sciatic nerve [72] have a 
subpopulation of p75NTR-positive cells, displaying multi-
potency and sphere forming potential. Enteric neural stem 
cells isolated from the myoenteric plexus of both rodents 
and humans were shown to contain a rather homogene-
ous population of neural crest-derived cells that exhibit 
high proliferation, low apoptosis, and high expression of 
p75NTR, as well as expression of neuronal precursor mark-
ers including Nestin, Ret, and Sox10 [78]. Differentiation 
of these cells in the enteric nervous system is driven by a 
combination of NT-3 and other neutrophic factors, through 
the up-regulation of TrkC and the concomitant down-regu-
lation of p75NTR [79]. We can therefore infer that in these 
cells p75NTR may maintain the undifferentiated phenotype 
and survival of stem cells.

A p75NTR-positive cell fraction has been found to be a 
useful stem/progenitor cell marker in many regenerative 
epithelia, such as esophageal keratinocytes [80], laryn-
geal squamous epithelial cells [81], and oral [25], epider-
mal [82], and corneal keratinocytes [83]. p75NTR expres-
sion is mainly restricted to the basal cell layer where 
keratinocyte stem cells are thought to reside [25]. In epi-
thelial cells, p75NTR distinguished a relatively immature 
keratinocyte subset, slow-cycling in vivo and presenting 
a strong regenerative potential in vitro [80]. In particular, 
in human oral mucosal epithelium, p75NTR-positive cells 
were shown to be Ki67-negative in vivo and to present 
a higher clonal growth potential in vitro, demonstrat-
ing the importance of this receptor for the maintenance 
of a stem cell pool through the induction of a quiescent 
state [25]. Importantly, the influence of neurotrophins on 
the activation of these quiescent p75NTR-positive cells 
has not been tested. In human adult oral mucosa lamina 
propria, p75NTR-positive stem cells are self-renewing 

cells that co-express Oct4 and partially express Sox2 and 
Nanog transcription factors [84]. p75NTR is also found to 
be involved in controlling the fate of murine keratinocyte 
SCs through cell–cell interactions, where p75NTR-related 
signaling contributes to the control of hair follicle regres-
sion, most likely by driving apoptosis [85, 86]. A recent 
study has identified pluripotent p75NTR+/P0+ stem cells in 
the skin bulge that were shown to differentiate into all cell 
types in the adult [87]. Finally, NGF is able to drive heal-
ing in a model of corneal denervation by stimulating stem 
cell proliferation through the induction of p75NTR, TrkA, 
and p63 (an epithelial stem cell marker) expression [88]. 
These results highlight the fact that NGF and p75NTR rep-
resent pleiotropic factors affecting stem cell self-renewal 
in regenerating epithelia.

p75NTR has been proposed to be a marker of neural 
crest-derived dental pulp stem cells. Deciduous dental pulp 
stem cells (DDPSC) have been characterized as a multipo-
tent stem cell population with the ability to differentiate 
into mesodermal and neural cell lineages [89]. p75NTR-
positive DDPSCs have a high self-renewal capacity and the 
ability to migrate from the deciduous dental pulp tissues 
[90]. The adipogenic, osteogenic, chondrogenic, and neuro-
genic differentiation potential of p75NTR-positive stem cells 
has been evaluated by their ability to form lipid droplets, 
mineralized nodules, and cartilage extracellular matrix [91, 
92]. A study performed in 1996 by Luukko et al. found a 
direct correlation between the development of tooth inner-
vation and the expression of neurotrophin receptors, postu-
lating that p75NTR alone may mediate neurotrophin effects 
during the determination and differentiation of odontoblast 
and ameloblast cell lineages. p75NTR transcripts were first 
observed in the tooth germ during its transition from the 
bud to the cap stage in El6. One possible ligand for p75NTR 
could be NGF, which has been found in developing and 
adult rat teeth [93]. Another study detected NGF, proNGF, 
and p75NTR in rat incisors [94]. This indicates that p75NTR 
and its ligands are important for tooth development and are 
maintained in adult dental pulp stem cells.

p75NTR is also widely expressed in several cell types of 
the central nervous system (mainly derived from the neu-
ral tube), where neurotrophins and growth factors play an 
important role in the regulation of several biological pro-
cesses at various stages of development [95] and after neu-
ral injury (glial cell damage, axonal degeneration, and trau-
matic injury) [96]. p75NTR is a specific marker defining a 
population of highly proliferative subventricular-zone stem 
or precursor cells responsible for neuron production [97]. 
In neuronal stem cells, p75NTR was shown to be essential 
for the induction of oligodendrocyte differentiation. BDNF 
mediates its effects on neurite differentiation by activat-
ing TrkB and p75NTR, while NGF and NT3 were found to 
induce differentiation through an Erk1/2 signaling pathway 
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[97, 98]. In the same cells, proNGF/p75NTR signals reduced 
oligodendrocyte differentiation by the induction of cell 
cycle arrest [8], while truncated TrkC/p75NTR signaling is 
involved in neural differentiation [99]. p75NTR is rapidly 
downregulated in neurons during progenitors differentia-
tion [100] while ectopical overexpression of p75NTR has 
been reported to induce cell death of GABA-ergic neurons 
in the dorsal telencephalon of chick embryos [101].

During neurodevelopment, p75NTR-interacting proteins 
NADE, NRIF and SC-1 are co-localized with p75NTR. The 
spatial and temporal ratio of NADE and NRIF seems to 
make individual neuroblasts or glioblasts more or less sus-
ceptible to p75NTR-mediated apoptosis; SC-1 expression 
increases over time and seems to mediate p75NTR-induced 
growth arrest during glial development [102]. Interestingly, 
after traumatic brain injury, NGF stimulates the expression 
of biomarkers associated with neural stem cell character-
istics, such as Nestin [103], and induces stem cell migra-
tion and differentiation to developing and/or degenerating 
CNS regions. Altogether, these results present p75NTR as 
the core of complex signaling pathways driven by neurotro-
phins and Trk receptors. The neural stem cell system could 
therefore represent an ideal model to examine in depth how 
p75NTR can switch from one biological response to another.

Mesodermal origin

Mesenchymal stem cells (MSCs) are multipotent stromal 
cells present in adult marrow that have the potential to dif-
ferentiate into lineages of mesenchymal tissues, including 
bone, cartilage, fat, tendon, muscle, and marrow stroma 
[104]. The staining of mesenchymal cells by anti-p75NTR 
antibodies was first reported by Thomson et  al. [105]. In 
these cells, p75NTR acts as a key regulator of the mainte-
nance of the undifferentiated status with a pivotal role in 
the regulation of MSC differentiation into osteogenic, 
adipogenic, chondrogenic, and myogenic lineages. To 
assess the effect of p75NTR on universal mesenchymal dif-
ferentiation, Mikami et  al. [90] constitutively expressed 
the human p75NTR protein in murine multipotent MSCs 
(C3H10T1/2 cells). p75NTR was shown to directly inhibit 
the differentiation of MSCs into multiple cell types, most 
likely through inhibition of transcription factors, including 
Runx2 and OSX, which are essential for osteoblast differ-
entiation and for expression of the chondrogenesis marker 
Sox9 and the myogenic marker Myf5. In hMSC, activation 
of the NogoR-p75NTR complex leads to p75NTR-mediated 
cell differentiation in a Trk- and neurotrophin-independent 
manner [90]. Moreover, increased expression of sortilin 
has been detected during early osteogenic differentiation 
where sortilin overexpression enhances mineralization by 
hMSC-derived cells after osteogenic differentiation, but it 
is not implicated in adipocyte commitment [106]. Thus, the 

differentiation promoting or inhibiting effects of p75NTR 
can be influenced by the absence or the presence of co-
receptors. p75NTR is highly expressed in freshly isolated 
bone marrow mesenchymal cells when maintained in non-
stimulated in vitro cultures and is rapidly down-regulated 
upon differentiation [107]. NGF was shown to drive bone 
marrow stem cell differentiation through the regulation of 
the Akt and MAPK signaling pathways [108]. Moreover, 
p75NTR distinguished a subset of multipotent adipose tis-
sue-derived stem cells, which can be driven to differentiate 
into mature adipocytes, osteoblasts, chondrocytes, smooth 
muscle cells, and neuronal cells [109]. Further study 
showed that adipose tissue-derived stem cells, isolated with 
an anti p75NTR antibody, exhibited a high osteogenic differ-
entiation potential [110].

Neurotrophins and their receptors are expressed in a 
differentiation-regulated and tissue compartment-regu-
lated fashion during testicular and epididymal develop-
ment in mice, rats, and humans [111, 112]. p75NTR is 
expressed at a very early stage of gonadal formation in the 
mouse (12.5  dpc), while no Trk receptor or neurotrophin 
immunoreactivity was detected [111]. Later in develop-
ment, p75NTR/NT-3/truncated-TrkB co-expression leads 
to epididymal smooth muscle cell differentiation in the 
mouse, but TrkA expression is connected to mesonephric 
tubule formation. In particular, an NGF gradient directly 
regulates proliferation and differentiation of Leydig stem 
cells and the peritubular myoid cell lineage [113], demon-
strating that neurotrophins and their receptors play a pivotal 
role in the regulation of cell differentiation in the develop-
ing testis and epididymis.

p75NTR is displayed on human and rodent adult muscle 
stem cells in vivo (satellite cells) and is a key regulator of 
myogenesis, through BDNF binding [114, 115]. It should 
be emphasized that in all cases, p75NTR expression begins 
well before such embryonal structures become innervated, 
and the receptor is down-regulated when embryo myoblasts 
differentiate into myotubes [116].

Endodermal origin

The role of p75NTR and neurotrophin signaling in tissues 
of endodermal origin has been less thoroughly examined. 
The pseudostratified epithelium of the mouse trachea and 
human airways was shown to contain a population of basal 
cells functioning as stem cells and involved in tissue repair. 
A transcriptional profile performed by Rock et  al. [117] 
noted that basal cells are enriched in Ngfr as well as in Ntf3 
(encoding for the NT-3 neurotrophin) transcripts, suggesting 
the possibility of an autocrine loop within this population.

Precursors of hepatic stellate cells, whose endodermal 
origin is still elusive [118, 119], express neurotrophins 
and their receptors, including p75NTR [120]. p75NTR has 
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been found to regulate transdifferentiation of hepatic stel-
late cells into myofibroblasts [120, 121], apparently with-
out neurotrophin ligands or co-receptor interaction and 
through the activation of Rho signaling [122]. In particular, 
the intracellular domain of p75NTR is critical to quiescent 
hepatic stellate cells activation and hepatocyte prolifera-
tion, whereas p75NTR−/− hepatic stellate cells exhibit sig-
nificantly reduced differentiation [122].

p75NTR in cancer stem cells

Tumors usually are heterogeneous and comprise cells with 
different capacities to proliferate and differentiate. This cel-
lular heterogeneity depends on the presence of so-called 
CSCs, which are defined as cells that can induce de novo 
tumor formation, self-renewal in vivo, and re-establish the 
cellular composition of the parental tumor.

Most of these cells have been isolated from whole tumor 
cell populations based on the expression of markers that 
characterize the stem cell compartment in the normal tissue 
of origin. In the context of cancer, several studies describe 
a tight connection between CSCs and p75NTR expression, 
especially in melanoma, squamous cell carcinoma, and 
breast cancer.

Melanoma

Over the last decade, many authors have raised questions 
about the existence of a tumorigenic CSC population in 
melanoma. In 2005, Fang et al. [123] reported on a subpop-
ulation of melanoma cells with characteristics of primitive 
progenitors for melanocytes that could give rise to a broad 
range of cell types. Since then, these cells have been stud-
ied extensively, even though the existence of human mela-
noma stem cells is still debated [124]. Indeed, the tumori-
genicity of melanoma cells has been posited to be variable 
depending on the degree of immunodeficiency in recipient 
mice as well as on the extracellular environment into which 
melanoma cells are transplanted, leading to an overestima-
tion of the tumorigenic potential of melanoma cells. Never-
theless, transplanted cells that are able to recapitulate mela-
noma heterogeneity are unlikely to be originating from 
non-tumorigenic or differentiated cells.

Melanocytes have a neural crest origin, and all the neu-
rotrophins and their receptors are expressed when reverting 
to embryonic phenotype melanoma cells, although their 
expression is weak in normal melanocytes. p75NTR/NGF 
signaling is known to be implicated in melanoma cell pro-
liferation and migration [125] and has been associated with 
increased resistance of brain metastases [126, 127]. Start-
ing from the fact that malignant melanoma, like normal 
melanocytes, derives from the neural crest lineage, Boiko 
et  al. in 2010 found that melanoma p75NTR-positive cells 

were able to initiate and maintain tumor growth in vivo in 
fully immunocompromised mouse models [T-, B-, and NK-
deficient Rag2−/−γc−/− mice (RG) mice]. These cells were 
more metastatic and able to re-establish the original p75NTR 
expression heterogeneity of the primary tumor, confirm-
ing the multilineage potency of these cells. However, the 
discovery that a small p75NTR-negative fraction was also 
able to generate tumors in these mouse models may imply 
that the tumor-initiating ability is not exclusively a feature 
of p75NTR-positive cells [128] or that both p75NTR-positive 
and p75NTR-negative cells characterize melanoma stem 
cells at different stages. A phenotype switch appears to be 
a dominant phenomenon of melanoma stem cells and may 
be a major obstacle in their eradication [129–131]. Other 
groups confirmed that p75NTR-positive melanoma cells 
have the capacity for self-renewal and sustain long-term 
tumor growth in vivo and that the incidence of p75NTR-
positive cells in patient biopsies is associated with poor 
prognosis for melanoma [132], indicating that p75NTR may 
represent a marker of a stem/progenitor cell subset within 
melanoma cells.

Squamous cell carcinoma

In squamous cell carcinomas, p75NTR is known to play a 
pro-tumoral role. It is, for instance, associated with poor 
prognoses and a risk of local recurrence of oral cancers 
[133], where it is expressed in undifferentiated cell popula-
tions in oral leukoplakia and in oral squamous cell carci-
noma (OSCC). This finding indicates that p75NTR could be 
a useful prognostic marker of OSCC [134]. p75NTR is cor-
related with perineural invasion in skin cancers [135] and 
is found in 50 % of esophageal squamous cell carcinomas 
(ESCC), where it is diffusely distributed in poorly differ-
entiated tumors, suggesting that p75NTR is expressed in the 
actively proliferating, undifferentiated cell component of 
each tumor [136]. In ESCC specimens, p63, a keratinocyte 
stem cell marker, was confined mainly to p75NTR-positive 
cells, which furthermore expressed lower levels of differ-
entiation markers such as involucrin, cytokeratin 13, β1-
integrin and β4-integrin [137]. p75NTR-positive cells have 
the ability to self-renew and are resistant to chemotherapy, 
suggesting that it may be necessary for survival and main-
tenance of ESCC.

Breast cancer

The involvement of neurotrophins in breast cancer is well 
documented. Indeed, breast cancer epithelial cells produce 
and secrete NGF, proNGF, BDNF, and NT4/5, which act 
on the same cells through an autocrine loop [138–140]. 
Normal and cancerous breast cells express both p75NTR and 
TrkA, but only cancer cells respond to NGF treatment with 
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enhanced proliferation, survival, and invasion [140–142]. 
p75NTR in breast cancer has been described as a marker of 
myoepithelial cells [143], and it has been used to identify 
a subset of cells with basal-like activity. Recent studies 
have shown that its overexpression increases the survival 
of breast cancer cells [144], or upon BDNF and NT-4/5 
stimulation, recruiting the adapter TRADD to stimulate the 
NF-κB pathway and, consequently, cell survival [145]. A 
study by Kim et al. [146] showed that cultures derived from 
p75NTR-positive clones of MCF-7, BT474, and BT549 cell 
lines as well as of primary tumor-derived cells, were able to 
recapitulate a pattern of heterogeneity similar to that of the 
global population, generating both basal-like and luminal-
like compartments. In addition, p75NTR-positive cells pre-
sented enhanced expression of miRNA 205, 221 and 222, 
which positively correlated with the maintenance of mam-
mary epithelial progenitor cells in mice [146, 147].

Other cancers

Recently, p75NTR has been shown to define a stem cell-like 
population in hypopharyngeal cancer, exhibiting tumor ini-
tiation, self-renewal, and chemoresistance [148]. P75NTR 
is also expressed by neuroblastoma stem cells (SH-SY5Y 
neuroblastoma clone), as cells expressing p75NTR in associ-
ation with c-kit and CD133 were found to display a highly 
clonogenic potency and a substantial plasticity [149].

Concluding remarks

Despite the great interest engendered by stem cells, the 
manipulation of these cells has remained challenging 
because of the lack of specific markers to unequivocally 
define stem cells with different potencies and to distinguish 
them from transit amplifying cells in each cellular model. 
With the exception of the hematopoietic system, molecu-
lar mechanisms underlying stem cell differentiation are still 
poorly understood. Additionally, the potential functions 
of numerous prospective stem cell markers remain to be 
determined.

A close relationship between the expression of p75NTR 
and pluripotency has been noted by increasing amounts of 
data. p75NTR is noteworthy for its wide expression by sev-
eral cellular models bearing different degrees of plasticity. 
Although it has been shown that p75NTR is expressed by 
ESCs, by migrating NCSCs, by adult stem cells originat-
ing from different germ layers and by an increasing num-
ber of CSCs (Table 1; Fig. 2), its real function in most of 
these cells remains enigmatic. The signaling pathways that 
are connected to p75NTR and the absence of catalytic activ-
ity in this receptor make it difficult to precisely define how 
this receptor acts. As stated above, p75NTR signaling can be 

modulated by its level of expression, dimerization, ligand-
binding, interaction with co-receptors, intracellular part-
ner recruitment and post-translational modifications. Thus, 
when considering the role of p75NTR in biological process, it 
is impossible to generalize a unique mode of action. Never-
theless, as was discussed above, p75NTR is implicated in the 
regulation of stem cell differentiation in several cell models, 
including mesenchymal, dental pulp, testis and bone mar-
row stem cells. This action could be achieved through the 
induction of a quiescent state, as documented in neuronal 
and hematopoietic stem cells or in breast cancer cells. We 
hypothesize that p75NTR could be a “fate decision” pro-
tein that enables stem cells to maintain their potency and 
to engage in differentiation according to the molecular and 
cellular context. Indeed, p75NTR is important for potency 
maintenance, and its expression is often down-regulated 
as a cell engages in a differentiation program. An exam-
ple of how p75NTR may serve as a bi-directional switch in 
response to different stimuli is given by neuronal stem cells, 
where differentiation is strictly dependent on p75NTR ligand 
expression. In these cells, oligodendrocyte differentiation is 
induced by NGF and NT-3 and inhibited by proNGF in a 
p75NTR-dependent manner [8, 98]. A mechanism facilitat-
ing p75NTR signal transduction could be its translocation 
in lipid rafts as a consequence of its phosphorylation at 
Ser304 by cAMP-PKA, as has been observed in cerebellar 
neurons [150]. Lipid rafts are cholesterol- and sphingolipid-
rich microdomains in cell membranes that are believed to 
function in cellular signaling by concentrating or separating 
specific molecules in a unique lipid environment. Lipid rafts 
were shown to participate in the maintenance of ESC self-
renewal [151] as well as in hematopoietic stem cell activa-
tion from quiescence [152].

The interest in p75NTR in stem cell biology also comes 
from the observation that developmental cells (especially 
neural stem cells) produce neutrophic factors that act on 
themselves and on surrounding tissues via autocrine and 
paracrine mechanisms [153].

Therefore, despite the physiological complexity and 
technological challenges, elucidating the potential influ-
ence of p75NTR as well as the underlying molecular mecha-
nisms in a context-defined manner will shed new light on 
the biology of both normal and CSCs.
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