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of somitogenesis, somites develop in a cranial-to-caudal 
sequence from the segmental plate of the paraxial mesoderm 
and flank the neural tube [1, 2]. Subsequently, proliferative 
progenitor cells are recruited by delamination from the cen-
tral dermomyotome, which will form the basis for the growth 
of the myotome and derived populations such as the satellite 
cells (SCs) during fetal and postnatal development [3].

Differently from the paraxial mesoderm, the splanchnic 
mesoderm (visceral or cardiogenic mesoderm) gives rise 
to the heart. The initial heart tube is orientated along the 
craniocaudal axis. Then the cardiac looping starts, the heart 
tube grows rapidly, and primary and secondary heart fields 
are specified. Progenitors from the primary heart field give 
rise to both ventricles and atria, and to the atrium-ventricu-
lar canal, while secondary heart field progenitors contribute 
to the formation of the outflow tract and the other cardiac 
regions, except the left ventricle. After looping, the heart is 
finally articulated in the four contractile chambers and the 
myocardium is composed of bi- or tri-nucleated myocytes, 
electrophysiologically coupled to each other [4].

During development, progression through skeletal or 
cardiac lineage relies on different gene networks, often 
recapitulated during post-natal regeneration (Fig. 1).

Skeletal muscle progenitors in the myotome express the 
paired-domain and homeodomain-containing transcription 
factors Pax3 and Pax7 [5–7]. These activate the muscle 
regulatory factors (MRFs), namely Myf5, MyoD, Mrf4, and 
Myogenin, which subsequently drive the skeletal myogen-
esis [8, 9].

In contrast to the skeletal muscle, cardiac commit-
ment relies on less hierarchical gene networks. The earli-
est cardiac specification marker can be traced to mesoderm 
posterior protein 1 and 2 (Mesp1, Mesp2), markers of 
primitive heart tube formation and required for cardiac pro-
genitor migration. Mesp1 is able to promote transcription 
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of several other cardiomyogenic markers and, accordingly, 
in Mesp1-null mice cardiac formation is abolished since the 
early stage [10]. Recently, Mesp1 has been proposed as a 
context-dependent determination factor to specify different 
lineage outcomes, including cardiac cells [11]. In addition, 
MADS-box factor myocyte enhancer factor-2 (Mef2), in 
conjunction with other transcription factors, directly acti-
vates the expression of genes encoding myofibrillar pro-
teins [12]. Similarly, serum response factor (Srf), a related 
MADS-box factor, associates with an array of transcription 
factors including NK2 transcription factor related locus 5 
(Nkx2.5), GATA binding protein 4 (Gata4) and Myocar-
din to control the expression of the contractile apparatus 
genes, e.g., actin, myosin, and troponins [13]. Furthermore, 
Mef2C physically interacts with T-box 5 (Tbx5) to regulate 
early stages of heart development and expression of cardiac 
myosin, as reported in zebrafish [14]. Intriguingly, over-
expression of Gata4, Tbx5 and Mef2C converts murine 
fibroblasts into functional cardiomyocytes [15]. Finally, 
Hand1 and Hand2 can be considered to exert the analogous 
function of Pax3/Pax7, since they control the entry into the 
cardiac differentiation program. Loss of Hand1 results in 
increased cardiomyocyte differentiation, whereas Hand1 
gain-of-function supports cardiomyocyte proliferation [16].

Stem cell plasticity in the post‑natal skeletal muscle

The intrinsic regenerative potential of the post-natal skel-
etal muscle has been linked to resident precursors since the 
first observation of quiescent SCs residing under the basal 
lamina of adult fibers [17]. Later, many somatic stem cells 

have been isolated with diverse molecular signatures and 
plasticity grades [18]. Understanding the in vitro/in vivo 
properties of resident myogenic cell pools, whose subset is 
reviewed here (Table 1; Fig. 2), is fundamental for advanc-
ing our knowledge of post-natal plasticity of the skeletal 
muscle and for promoting novel therapeutic strategies for 
cell-mediated myogenic regeneration.

Satellite cells are resident stem cells, expressing the 
surface antigens Syndecan-4, M-Cadherin, CD34, Cxcr4, 
β1-Integrin and the myogenic factors Pax3 and Pax7 [19]. 
After injury, SCs enter the cell cycle, rapidly upregulate the 
expression of MRFs that induce the terminal differentiation 
to novel myofibers. A small percentage of activated SCs 
does not undergo myogenic differentiation but instead self-
renews, restoring the quiescent pool [20].

Albeit strongly primed to the skeletal myogenesis, it has 
been reported that SCs can transdifferentiate at little extent 
toward the adipogenic and the osteogenic lineages in vitro, 
although contaminations with non-myogenic cells can eas-
ily occur [21–23]. In this view, it has been recently reported 
that SCs can be stimulated to store lipids, but fail in under-
going terminal adipogenic differentiation in vitro [24]. Fur-
thermore, exposure to bone morphogenetic protein (BMP) 
ligands is not per se sufficient to obtain robust commitment 
to the osteogenic lineage [25].

SC intrinsic commitment relies on a balanced expression 
of MRFs. Murine strains carrying ablation of Myf5, MyoD or 
Mrf4 show only mild myogenic abnormalities, while triple 
knockout mice completely lack any skeletal muscle [26–29]. 
Analogously, adult triple knockout murine SCs are unable to 
differentiate in vitro and in vivo [30]. MyoD-null SCs express 
low levels of Myogenin and show a dramatic differentiation 

Fig. 1  Schematic comparison 
of factors regulating skeletal 
and cardiac differentiation, as 
mentioned in the text. Skeletal 
fibers and cardiomyocytes are 
distinguished by αSarcoglycan 
(Sgca) and nicotinic acetyl-
choline receptors (nAChRs) in 
the former, and by Connexin43 
(Cx43) and muscarinic acetyl-
choline receptors (mAChRs) in 
the latter
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deficit, demonstrating the importance of the sequential MRF 
hierarchy to achieve terminal specification [31].

Remarkably, SC self-renewal and commitment are also 
strongly influenced by post-translational regulations and 
epigenetic cues. Sirt1 is a NAD+-dependent protein deacet-
ylase [32], which induces premature differentiation of SCs 
when downregulated [33]. Similarly, primary SCs derived 
from Sirt1+/null differentiate precociously and are resistant 
to anti-differentiation stimuli, such as glucose restriction 
[34]. Conversely, SC proliferation increases when Sirt1 
overexpression inhibits MyoD activity [35]. Furthermore, 
tumor necrosis factor alpha (TNFα) signaling has been 
linked to the chromatin remodeling Polycomb Repressive 
Complex 2 (PRC2) and to p38α kinase, during SC differ-
entiation [36]. During post-injury inflammation, TNFα 
activates p38α, which favors PRC2 relocation from mus-
cle structural genes to Pax7 regulatory regions, repressing 
its expression and stimulating differentiation. Accordingly, 
genetic or pharmacological interference with TNFα, p38α, 
or PRC2 results in sustained Pax7 expression and SC self-
renewal, and this effect is reversible [36].

In addition, regulatory RNAs, such as microRNAs (miR-
NAs) and long non-coding RNAs (lncRNAs) modulate the 
balance between quiescence and commitment in SCs. Skel-
etal muscle-specific miR-206 is expressed under the control 
of MyoD and Mef2C, and, together with miR-133 and miR-
181, regulates SC fate [37]. miR-27b tunes Pax3 expression 
and promotes a rapid and robust entry into the myogenic 
program [38], whereas miR-489 is highly expressed during 

quiescence and is quickly downregulated during SC activa-
tion [39]. In addition, lncRNAs are also emerging as regu-
lators of the myogenic program [40]. In particular, low or 
high levels of lnc-MD1 correlate with, respectively, delayed 
or early onset of SC specification by modulating Mef2C 
levels, and lnc-MD1 is strongly reduced in SCs from Duch-
enne muscular dystrophy (DMD) patients [41].

Besides the potential of the SC pool, multiple studies 
suggest that also other resident cells of different origins and 
not localized in the SC niche are able to transit from the 
interstitial compartment and to contribute to skeletal mus-
cle plasticity [42]. SCs cannot migrate through the circula-
tion and easily undergo senescence after ex vivo expansion, 
thus novel progenitors, featuring myogenic, proliferative, 
and migratory properties, are particularly attractive for 
translating somatic cell plasticity into putative treatments.

A potential source of muscle progenitors consists of 
vessel-associated stem cells, i.e., mesoangioblasts (MABs), 
which reside around the microvasculature bedewing the 
skeletal muscle [43]. MABs express pericytic markers, 
e.g., stem cell antigen 1 (Sca1) (although restricted to 
murine cells), NG2, Alkaline Phosphatase (AP), CD140a, 
and CD140b, and can be easily isolated from adult mus-
cles of mice, dogs, and humans [44–47]. Interestingly, 
MABs are proliferative and multipotent, due to their capa-
bility to differentiate toward myogenic, osteogenic, chon-
drogenic, and adipogenic lineages [48]. MABs have been 
demonstrated to undergo skeletal myogenesis in vitro and 
in vivo. when intra-arterially injected in αSarcoglycan-null 

Table 1  Main characteristics of resident post-natal stem cells in skeletal muscle, with emphasis on species, antigen profile, lineage marker, and 
in vivo plasticity

each entry relates to one reference and the entry order is referred to the review

NA information not available in the cited reference, SCs satellite ells, MABs mesoangioblasts, PICs Pw1+ interstitial cells, FAPs fibroadipogenic 
progenitors

Cell type Species Surface antigens Lineage markers In vivo plasticity References

Positive Negative

SCs Mouse M-cadherin, c-Met, CD34 NA Pax7 Skeletal fibers [19]

SCs Mouse Desmin NA Myf5, MyoD, Pax7 Skeletal fibers [21]

SCs Mouse NA NA MRFs Skeletal fibers [22]

MABs Dog CD44, CD13 CD34, CD45, CD117, CD31 NA Skeletal fibers [41]

MABs Mouse, 
human

AP, NG2, CD13, CD44,  
CD49b, CD63, CD90,  
CD105, CD140b, CD146

CD31, CD34, CD45, CD56, 
CD62L, CD71, CD106, 
CD117, CD133

NA Skeletal fibers [45]

MABs Mouse, 
human

AP, NG2, Sca1, CD13, CD44, 
CD49f, CD90, CD140a, 
CD140b

CD31, CD45, CD56,  
CD133

NA NA [48]

PICs Mouse Sca1, CD34 Pax7 Pw1 Skeletal fibers [50]

FAPs Mouse CD34, Sca1 Lin, CD31, CD45,  
α7integrin

NA Supportive role  
for SCs

[51]

FAPs Mouse Sca1, CD140a α7integrin NA Supportive role  
for SCs

[52]
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(Sgca-null) mice or in Golden Retriever dogs exhibiting 
DMD, MABs are able to fuse and generate sarcoglycan+ 
or dystrophin+ fibers, improving electrophysiological prop-
erties of injected muscles [43, 44]. Moreover, when engi-
neered to express human minidystrophin and transplanted 
into scid/mdx immunodeficient dystrophic mice, DMD 
MABs give rise to fibers expressing a mature pattern of 
the transgene [45]. Based on these observations and on the 
suitability of MABs to systemic delivery, a phase-I/II clini-
cal trial is currently ongoing on DMD patients (eudraCT 
No. 2011-000176-33).

Interstitial stem cells are another population of 
Pax7−/Sca1+/CD34+ cells and are characterized by expres-
sion of the stress mediator Pw1, a zinc-finger-containing 
protein expressed by C2C12 myoblasts but absent in fibro-
blasts [49]. Pw1+ interstitial cells (PICs) are self-renewing 
and have been identified in mouse as myogenic progenitors 
able to differentiate both to skeletal and smooth muscle 
cells in vitro [50]. Further studies will be necessary to iden-
tify the human counterpart of these cells and to evaluate 
their translational potential.

Recently, other stromal cells have been suggested to play 
a supportive role in myogenic differentiation. Fibro/adipo-
cyte progenitors (FAPs) are as abundant as SCs and show a 

strong predisposition toward the generation of adipocytes 
and myofibroblasts. Two independent groups have isolated 
FAPs as CD34+/Sca1+/Lin−/CD31−/CD45−/α7integrin− 
or as Sca1+/CD140a+/α7integrin− populations respectively 
[51, 52]. In resting muscles, the interaction with intact 
myofibers prevents FAP differentiation into fibro-adipo-
cytes [53]. However, muscle injury stimulates these cells to 
produce paracrine factors such as IL-6 and IGF-1 that posi-
tively influence myogenic differentiation [51]. In a recent 
study, FAPs from young mdx mice have been shown to pro-
mote in vitro SC-mediated formation of myotubes. Moreo-
ver, histone de-acetylase (HDAC) inhibitor enhances FAP 
ability to promote differentiation of adjacent SCs, through 
upregulation of the soluble factor follistatin, while inhib-
iting FAP adipogenic potential [54]. Because the human 
counterpart of Sca1 antigen is currently unknown and FAPs 
are isolated as Sca1+ cells in mice, future efforts should be 
directed towards the identification of reliable markers that 
can allow the isolation of FAPs from human biopsies.

Thus, enhancing the basic knowledge and the transla-
tional application of novel myogenic candidates, and their 
relations with SCs, will likely corroborate current regenera-
tive strategies for the skeletal muscle, through either cell 
transplantation, either support of the endogenous potential.

Fig. 2  Schematic representa-
tion of resident (within upper 
colored lobes) and non-resident 
stem cells for post-natal plas-
ticity in skeletal and cardiac 
muscles, as reviewed in the text. 
Within the lower lobe, resident 
stem cells undergoing lineage 
switch are reported
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Stem cell plasticity in the post‑natal cardiac muscle

During the last 15 years, the intrinsic possibility of heart 
renewal has been suggested through numerous findings, 
including the discovery of cycling cardiomyocytes after 
myocardial infarction in human hearts [55] and the meas-
urement of 14C incorporation by cardiomyocytes in humans 
from 1955 onwards [56]. Although controversies persist on 
whether the primary contribution to heart renewal in home-
ostatic and pathological conditions relies on pre-existing 
cardiomyocytes (CMs) [57] or resident progenitors [58], it 
is certain that the booming field has fostered the isolation 
of many types of resident cardiac stem cells (CSCs) from 
the post-natal heart, with diverse characteristics and plastic 
potential in vitro and in vivo. Assessment of the regenera-
tive potential of resident CSCs, whose subset is reviewed 
here (Table 2; Fig. 2), will certainly help in shedding light 
on post-natal cardiac plasticity and on novel therapeutic 
strategies.

Somatic CSCs can be prospectively isolated according to 
specific combinations of surface antigens and culture con-
ditions. A possible surface marker of CSCs is cKit (CD117) 
[59], the tyrosine kinase receptor of the stem cell factor 
(SCF) ligand. cKit+/Lin− CSCs form rare clusters, prefer-
entially embedded in atria and apexes, express cardiomyo-
genic transcription factors, e.g., Nkx2.5, Gata4, and Mef2C, 
and contact the surrounding myocardium through N- and 
e-cadherins [60]. Once clonally expanded ex vivo and 
intramyocardially injected at the borders of the infarcted 
myocardium in rats, eGFP+ cKit+ CSCs extensively 
engraft in the ischemic region, differentiating into eGFP+ 
CMs, smooth muscle cells (SMCs) and endothelial cells 
(eCs) and improving ventricular functionality [61]. Similar 
observations of clonal plasticity in vitro and in vivo have 
also been reported with murine and human c-Kit (CD117)+ 
CSCs [62]. Moreover, a phase-1 clinical trial is currently 
assessing the safety and efficacy of intracoronary injec-
tion of autologous cKit+ CSCs in patients with ischemic 
cardiomyopathy, with preliminary beneficial effects on 
the left ventricle ejection fraction [63]. Interestingly, the 
regenerative potential of these CSCs apparently parallels 
the decreasing adaptation potential of the ageing heart. As 
compared to younger individuals, the pool of cKit+ CSCs 
of aged rats presents shortened telomeres, accumulation of 
the senescence marker p16INK4a and decreased expression 
levels of Igf1 and Hgf [64], ligands that promote CSC pro-
liferation [65] and homing [66], respectively. Accordingly, 
in human hearts affected by acute or chronic infarcts, when 
compared to healthy controls, CSCs present significantly 
higher levels of not only commitment toward CMs, SMCs, 
and eCs, but also senescence and apoptosis [67].

Another surface marker to isolate putative CSCs in 
rodents is the Sca1 [68], a member of Ly-6 antigen family. 

Once isolated from the adult murine myocardium, Sca1+ 
CSCs are CD31+/CD38+ and Lin−/cKit−/CD4−/CD8−/
CD34−/CD45−/Flk1−, and express Gata4 and Mef2C but 
not Nkx2.5. After intravenous delivery after ischemia/rep-
erfusion injury, Sca1+ CSCs home at the borders of the 
infarcted region and differentiate into mature grafts, prob-
ably through both de novo CM production and fusion 
with pre-existing CMs [69]. Moreover, clonal Sca1+ CSC 
pools can form monolayer sheets that, once transplanted in 
ischemic hearts, graft in the myocardium and stimulate eC 
mobilization, by secreting soluble vCAM1 [70]. Interest-
ingly, Sca1+ CSCs present features of in vitro plasticity, as 
they can differentiate either into beating CMs, when stimu-
lated with oxytocin, either into osteocytes and adipocytes, 
in the presence of appropriate inducing conditions [71]. In 
contrast, intramyocardial injection of Sca1+/CD31− cells 
alleviates functional decline and adverse remodeling of 
the ischemic left ventricle, primarily triggering angiogen-
esis and CM function through paracrine signals, rather than 
directly differentiating into CMs or eCs [72].

CSCs can be also isolated according to distinctive mor-
phological features, such as cardiospheres (CSs). CSs 
spontaneously arise after subculture of heart biopsies of 
rodents, pigs, and humans, and contain a heterogeneous 
mix of immature cells, partially positive for cKit, CD34, or 
Flk1 expression, and committed cells, presenting expres-
sion of cTnI, ANP, and MyHC. Murine CSs spontaneously 
beat in vitro, whereas porcine and human CSs display beat-
ing potential in co-culture with neonatal rat cardiomyocytes 
[73]. Moreover, CS-derived cells (CDCs) can be expanded 
from porcine and human CSs as cKit+/CD31+/CD34+/
CD90+/CD105+ heterogeneous pool and, when injected in 
infarcted ventricles, differentiate into CMs and eCs, lead-
ing to increased ejection fraction [74]. Notably, long-term 
beneficial effects on the infarcted myocardium can also be 
achieved with injection of allogeneic CDCs, transiently 
engrafting and stimulating resident CSCs and angiogen-
esis [75]. Notwithstanding CS innate heterogeneity, intra-
coronary injection of autologous CDCs has been proven 
safe and partially efficacious in a phase 1 clinical trial on 
patients with myocardial infarction [76].

CSC pools can also be defined by specific transcrip-
tion factors, such as Islet1 (Isl1) or Wilm’s tumor 1 (Wt1), 
although the CSC sources are then confined to transgenic 
animal or cellular systems. Isl1 is a homeodomain-con-
taining transcription factor, expressed during secondary 
heart field specification and identifying a plastic progeni-
tor pool, differentiating into CMs, SMCs, and eCs during 
murine [77] and human [78] development. After birth, Isl1 
is largely repressed and its expression is confined to a rare 
subset (≈500 cells per rat heart) of resident CSCs, scattered 
within ventricular myocardium or arranged in clusters in 
the atria. Isl1+ CSCs strongly upregulate Nkx2.5 and Gata4 
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expression after isolation and differentiate in vitro into elec-
trically competent CMs without cell fusion [79]. Wt1 is a 
transcription factor identifying a pool of epicardial progeni-
tors, which contribute to the murine fetal cardiomyogenesis 
[80] and, in the presence of thymosin β4, form vascular 
precursors [81]. Intriguingly, pre-treatment of murine adult 
hearts with thymosin β4 reactivates Wt1+ resident CSCs, 
expressing Sca1, Isl1, and Nkx2.5, differentiating into elec-
trically coupled CMs in the ischemic myocardium and ame-
liorating functional outcome after infarction [82].

An alternative source of cardiac regeneration poten-
tial relies on cardiac pericytes and, particularly, cardiac 
mesoangioblasts (cMABs). cMABs can be isolated from 
murine, canine, and human cardiac explants and display 
pericytic markers, e.g., NG2 and AP, in combination with 
cardiomyogenic transcription factors, e.g., Nkx2.5 and 
Gata4 [83]. Low-passage murine cMABs differentiate in 
vitro into beating cardiomyocytes, presenting sarcomeric 
structures and Cx43 junctions and, after intraventricular 
delivery in ischemic hearts, mainly home at the periphery 
of the necrotic area and differentiate into CMs, participat-
ing in the myocardial regeneration [84]. Remarkably, when 
isolated from samples of canine [85] and human [83] car-
diomyopathic hearts, cMABs present impairment of several 
markers of proliferation and plasticity. Furthermore, aorta-
derived MABs (ADMs) present plasticity toward mesoder-
mal and ectodermal derivatives. when injected intramyo-
cardially, ADMs engraft the myocardium of dystrophic 
mice, differentiating into CMs and eCs and preventing 
the onset of dilated cardiomyopathy [86], whereas, under 
appropriate inducing conditions, ADMs can also transdif-
ferentiate in vitro and in vivo toward myelinating glial cells 
[87]. Although prone to senescence and less efficient in 
vivo than other resident CSC types, cardiomyogenic MABs 
constitute an interesting reservoir of cell plasticity, given 
their relative abundance around the rich microvasculature 
network bedewing the cardiac muscle.

Non‑resident stem cells for skeletal and cardiac  
muscle regeneration

Besides the intrinsic stem cell pools, other non-resident 
adult stem cells have been reported to positively contribute 
to the regeneration of skeletal and cardiac muscle. Because 
already extensively treated in dedicated reviews [88, 89] 
and considering that this review preferentially deals with 
the resident populations, we will briefly report here sev-
eral interesting studies involving progenitors isolated from 
the bone marrow (BM) and the peripheral blood (Fig. 2). 
Because they are relatively easy to isolate and expand, BM- 
or blood-derived progenitors are still potentially attractive 
for regenerative studies of the post-natal muscles.

Only 0.0001–0.001 % of nucleated cells in adult BM are 
considered to be mesenchymal stem cells (MSCs) [90, 91]. 
Identified by the expression of CD73 and CD105, MSCs 
do not express other hematopoietic or endothelial mark-
ers such as CD14, CD31, CD34, CD45. Moreover, MSCs 
are CD29+/CD44+/CD71+/CD90+/CD106+/CD166+ [92, 
93]. BM-derived MSCs grow as adherent cells in vitro and 
differentiate under defined conditions into various tissues, 
including bone, cartilage, muscle, marrow stroma, tendon, 
ligament, adipous, and other connective tissues [94]. Since 
20 years, the myogenic potential of MSCs and other BM-
derived progenitors has been investigated. Progenitors from 
the BM are recruited and participate in muscle regenera-
tion, and donor nuclei are traceable after many years at a 
very low frequency [95]. Multipotency and ease of isola-
tion render adult MSCs an attractive candidate for stem cell 
therapy and several circulating BM-derived stem cells can 
participate in skeletal muscle regeneration, although further 
studies will be useful to pinpoint the cues eliciting recruit-
ment and transdifferentiation [96–98]. In contrast, other 
reports suggest that MSC myogenic capability is per se 
scarce, and that beneficial effects are limited to local cell 
recruitment and paracrine effects [99–101]. Nevertheless, 
tuning key molecular pathways could in principle enhance 
MSC intrinsic commitment toward skeletal muscle, as 
reported with Notch signaling overactivation [102].

Regarding the regeneration of the cardiac muscle, BM-
derived cKit+/Lin− stem cells show dramatic engraftment 
in the infarcted myocardium and robust differentiation into 
CMs, SMCs, and eCs, when intramyocardially admin-
istered after coronary ligation [103]. However, systemic 
intravenous injection of Sca1+/cKit+ cells, isolated as BM 
side population (BM-SP) according to Hoechst 33342 dye 
efflux, resulted in low rates of engraftment and negligible 
levels of regeneration in the chronically damaged striated 
muscle of dystrophic δSarcoglycan-null (Sgcd-null) mice 
[104].

endothelial progenitor cells (ePCs) from the peripheral 
circulation constitute another attractive source of non-res-
ident cells to favor muscle repair, because they are easily 
isolatable and highly angiogenic. CD34+ circulating ePCs 
promote extensive neovascularization of ischemic hind-
limb muscles [105] and myocardium [106], after intramus-
cular and intravenous injection, respectively. Interestingly, 
when co-cultured with neonatal rat cardiomyocytes, human 
ePCs transdifferentiate in vitro toward cardiomyocyte-like 
cells, exhibiting calcium transients and functional gap junc-
tions, without cell fusion [107].

Thus, a more refined knowledge of intrinsic mechanisms 
and extrinsic manipulation of non-resident somatic cells 
is still required to better coax them in acquiring myogenic 
commitment or, intriguingly, in supporting resident myo-
genic progenitors.
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Is the switch between the two myogenic lineages 
possible?

Both skeletal and cardiac muscles originate from embry-
onic mesoderm and, during adulthood, present intrinsic 
regenerative capacity. However, while the regenerative 
machinery of the skeletal muscle is efficient, extensive 
damage in the heart results in scar tissue formation, com-
promising cardiac function. Despite profound differences 
in regenerative potential and specific stem cell properties, 
the two types of striated muscle share many molecular, 
structural, and functional features. In this perspective, the 
question whether a crossover between the two lineages is 
possible in vivo gathers challenging answers, particularly 
in terms of post-natal cell plasticity.

Hereafter some cell lines able to present these charac-
teristics are reported (Table 3; Fig. 2). A paradigmatic case 
of lineage crossover is constituted by the cranial paraxial 
mesoderm (CPM) in chick embryos. The neural tube inhib-
its cardiomyogenesis in CPM by releasing wnt agonists, 
whereas ectopic secretion of wnt antagonists or Bmp4 
conversely promote migration of CPM progenitors toward 
the developing heart [108]. Accordingly, CPM progenitors 
can also be traced in their migration and participation to 
the cardiac outflow tract [109]. In addition, in vitro CPM 
explants express MyoD, Myf5, and Myogenin, markers of 
skeletal myogenesis, and, in the presence of Bmp4, also 
activate the expression of Nkx2.5, Gata4, Gata5, Gata6, 
and Isl1, markers of early cardiomyogenesis [109].

Intriguingly, cell pools switching from skeletal to car-
diac lineage have also been isolated from adult murine 
skeletal muscles. On one hand, skeletal-based precursors 
of cardiomyocytes (SPOCs) are isolated as round, floating 
CD34−/CD45−/cKit− cells and express markers of cardiac, 
but not skeletal, myogenesis, when cultured in the presence 

of eGF and FGF. SPOCs differentiate in vitro into beating 
cardiomyocytes, derived from the Sca1− subfraction, and, 
after intravenous delivery, engraft in the ischemic ventricle 
and partially differentiate into CMs at the peripheral region 
of the infarct [110]. On the other hand, skeletal-derived 
CD34+ (Sk-34) myoendothelial cells can be sorted from 
the interstitial tissue as CD34+/CD45−, are Sca1+/cKit−/
CD31− and express, once in culture, skeletal myogenic 
markers [111]. After intramuscular injection into severely 
damaged skeletal muscles, freshly isolated Sk-34 cells 
extensively engraft and generate myogenic, endothelial, 
and Schwann cells, thus exhibiting broad in vivo plasticity 
toward mesodermal and ectodermal lineages [112]. Strik-
ingly, Sk-34 cells undergo also cardiomyogenic transdif-
ferentiation in co-culture with fetal cardiomyocytes in 
vitro and, once intramyocardially injected, participate in 
the regeneration of infarcted rat hearts, with significant 
improvement of left ventricle functionality [113].

Furthermore, post-natal stem cells crossing from car-
diac to skeletal lineage have also been reported, shedding 
new light on the cardiomyopathic progression in a murine 
model of muscular dystrophy [114]. when isolated from 
βSarcoglycan-null (Sgcb-null) dystrophic mice, in fact, 
cMABs co-express cardiac and skeletal myogenic tran-
scriptions factors. Moreover, cMABs spontaneously differ-
entiate into skeletal myotubes in vitro and arrhythmogenic 
skeletal muscle patches in vivo, after intramyocardial injec-
tion into infarcted hearts. The robust lineage shift relies 
on downregulation, due to calcium leakage by the plasma 
membrane and knockout of the first Sgcb intron, respec-
tively, of miRNAs miR-669a/q, normally repressing MyoD 
translation. Reintroduction of miR-669a, in fact, partially 
rescues the cardiomyogenic commitment of Sgcb-null both 
in vitro and in vivo [115] and results in alleviation of the 
cardiomyopathy in the long term.

Table 3  Cell progenitors exhibiting potential lineage switch between skeletal and cardiac muscle

each entry relates to one reference and the entry order is referred to the review

NA information not available in the cited reference, SPOCs skeletal-based precursors of cardiomyocytes, Sk-34 cells skeletal-derived CD34+ 
myoendothelial cells, Sgcb-null cMABs cardiac mesoangioblasts isolated from βSarcoglycan-null (Sgcb-null) mice, CMs cardiomyocytes,  
ECs endothelial cells

Cell type Species Surface antigens Lineage markers In vivo plasticity References

Positive Negative

SPOCs Mouse Sca1 cKit, CD34, CD45 Nkx2.5, Gata4 CMs [110]

Sk-34 cells Mouse CD34 CD45 NA Skeletal fibers,  
eCs, Schwann cells

[112]

Sk-34 cells Mouse CD34 CD45 Pax7, MyoD, Myf5, Isl1, 
Gata4, Mef2C, Hand2

CMs, eCs [113]

Sgcb-null 
cMABs

Mouse AP, NG2, Sca1, cKit, 
CD31, CD34, CD44, 
CD140b

CD13, CD45, CD56 Pax3, MyoD, Myf5,  
Myogenin, Isl1, Nkx2.5, 
Gata4, Mef2A

Skeletal fibers [115]
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However, translation of basic research on lineage plas-
ticity into human patients is still facing prominent hurdles. 
After the first promising reports of feasibility and efficacy 
of SC therapy for cardiac repair in freeze-injured hearts of 
rats [116] and rabbits [117], subsequent clinical trials have 
yielded contrasting results. In patients undergoing coronary 
artery bypass graft, injection of autologous SCs (approxi-
mately 65 % CD56+) in and around the post-infarction scar 
tissue increases regional contractility and viability of the 
scarred myocardium in both the first clinical case [118] and 
the first 1-year follow-up [119]. Nevertheless, when tested 
in a multi-centered randomized trial, autologous SC ther-
apy fails to induce significant beneficial effects on regional 
or global ventricular function and increases the number of 
early post-operative arrhythmogenic events, as compared to 
placebo [120].

However, recent observations in infarcted rats suggest 
that application of SC sheets on the epicardium of damaged 
ventricles alleviates hypertrophy and ameliorates ventricu-
lar function, avoiding the events of arrhythmia and tachy-
cardia observed after injection of SC suspension [121]. 
Moreover, when engineered to secrete an artificial angio-
genic peptide, SC sheets further improve also novel vessel 
formation around the infarct area [122].

Therefore, new evidences suggest the need for further 
research in this provocative field, learning from and poten-
tially bypassing hurdles and failures of past attempts.

Conclusions

In conclusion, many theoretical as well as applicative ques-
tions about the cell plasticity in post-natal skeletal and car-
diac muscles still remain open.

with regards to the adult mammalian skeletal muscle, 
many types or subtypes of resident stem cells have been 
isolated and characterized. However, further translational 
studies are required to address the boundaries of the intrin-
sic plastic potential of each cell type. Moreover, it will 
be particularly intriguing to deepen our knowledge about 
the epigenetic signatures potentially regulating intrinsic 
fate choices and to define the patterns of cellular crosstalk 
among the different pools. This will be useful to enhance 
applicability of regenerative medicine to the skeletal mus-
cle, through not only cell-based strategies but also stimula-
tion of the endogenous potential.

Similarly, numerous CSC pools with different charac-
teristics have been isolated from the adult cardiac muscle 
of mammals according to often-incomparable procedures 
of isolation and handling. Additionally, refined details 
about epigenetic control on CSC potency and commit-
ment are still lacking. Moreover, it is still an open ques-
tion whether the different CSC types derive from actual 

distinguishable pools in vivo or represent different states 
of endogenous CSC activation or ex vivo culture. Results 
from the first clinical trials and more refined translational 
studies will probably help in shedding light on this contro-
versial issue.

Finally, with regards to the lineage switch between skel-
etal and cardiac myogenesis, the path is still long before 
achieving translational relevance, particularly within adult 
stem cell pools. Nonetheless, advancing our knowledge of 
myogenic lineage plasticity still constitutes an intriguing 
perspective not only for regenerative medicine but also for 
drug screening and disease modeling systems. In this view, 
fundamental insights will be gained by combining epige-
netic, transcriptional, and signaling studies at the cellular or 
tissue level. Converting these complex data networks into 
refined in vitro/in vivo approaches will then constitute the 
necessary challenge to enhance the myogenic potential of 
adult stem cells and other post-natal reservoirs of potency, 
such as induced pluripotent stem cells.
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