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Abbreviations
3′UTR	� 3′ Untranslated region
aa	� Amino acids
CNS	� Central nervous system
FRAP	� Fluorescence recovery after photobleaching
FTDP17	� Fronto-temporal dementia and Parkinsonism 

linked to chromosome 17
JIP1	� c-Jun N-terminal kinase-interacting protein 1
MAP	� Microtubule-associated protein
PARPs	� Periaxoplasmic ribosomal plaques
PHF	� Paired helical filaments
PP1	� Protein phosphatase 1
RNP	� Ribonucleoprotein
TIRF	� Total internal reflection fluorescence

Properties of Tau

Tau is a structural microtubule-associated protein (MAP) 
which is located predominantly in the axons of neurons of 
the central nervous system (CNS) [14, 25, 56, 71, 75], with 
a proximal–distal gradient [15, 54, 71] (Fig. 1a). A decade 
after its discovery [117], Tau protein began to attract spe-
cial interest because of its association with neurodegenera-
tive diseases such as Alzheimer disease (reviews [31, 70]) 
or fronto-temporal dementia and Parkinsonism linked to 
chromosome 17 (FTDP17; review [32]). In the case of Alz-
heimer disease, Tau together with Amyloid-β are believed 
to be the two key factors contributing to neurodegenera-
tion [121] (reviews [46, 59, 78]). Here, Tau accumulates in 
neurons, mislocalizes, and forms pathological filamentous 

Abstract  In highly polarized and elongated cells such as 
neurons, Tau protein must enter and move down the axon to 
fulfill its biological task of stabilizing axonal microtubules. 
Therefore, cellular systems for distributing Tau molecules 
are needed. This review discusses different mechanisms 
that have been proposed to contribute to the dispersion of 
Tau molecules in neurons. They include (1) directed trans-
port along microtubules as cargo of tubulin complexes and/
or motor proteins, (2) diffusion, either through the cyto-
solic space or along microtubules, and (3) mRNA-based 
mechanisms such as transport of Tau mRNA into axons and 
local translation. Diffusion along the microtubule lattice or 
through the cytosol appear to be the major mechanisms for 
axonal distribution of Tau protein in the short-to-interme-
diate range over distances of up to a millimetre. The high 
diffusion coefficients ensure that Tau can distribute evenly 
throughout the axonal volume as well as along microtu-
bules. Motor protein-dependent transport of Tau domi-
nates over longer distances and time scales. At low near-
physiological levels, Tau is co-transported along with short 
microtubules from cell bodies into axons by cytoplasmic 
dynein and kinesin family members at rates of slow axonal 
transport.

T. Scholz (*) 
Institute for Molecular and Cell Physiology, Hannover Medical 
School, Carl‑Neuberg‑Strasse 1, 30625 Hannover, Germany
e-mail: scholz.tim@mh‑hannover.de

E. Mandelkow 
DZNE, German Center for Neurodegenerative Diseases, 
53175 Bonn, Germany

E. Mandelkow 
CAESAR Research Center, Ludwig‑Erhard‑Allee 2, 53175 Bonn, 
Germany



3140 T. Scholz, E. Mandelkow

1 3

aggregates called paired helical filaments (PHF) [114], 
which coalesce into neurofibrillary tangles [17, 31, 36, 57, 
62, 119]. Amyloid-β-triggered Tau missorting into den-
drites leads to spastin-mediated microtubule breakdown 
and spine loss [120], indicating the severe cellular conse-
quences of Tau misregulation.

In neurons, the physiological function of Tau protein as 
the main axonal MAP is to support assembly and stabili-
zation of axonal microtubules [21, 25, 35], which enables 
microtubules to fulfill their role as tracks for the motor-
dependent axonal transport of vesicles, neurofilaments, 

and organelles such as mitochondria [93]. Hence, Tau mol-
ecules are analogous to ties or clips of microtubule tracks. 
Tau affects microtubule dynamic instability [83] and post-
translational modifications of microtubules [85], can inter-
act with the neuronal plasma membrane [16], and anchors 
enzymes to microtubules [61, 64, 100]. Moreover, Tau can 
alter the mechanical properties of microtubules in vitro by 
enhancing their stiffness [20, 84, 91]. Tau protein was also 
suggested to function as a spacer between adjacent micro-
tubules [19], although this role may be fulfilled better by 
larger MAPs such as MAP2.

In the human CNS, six main developmentally regulated 
Tau isoforms are found, which are derived by alternative 
mRNA splicing [4, 5, 33, 34] from the Tau gene (MAPT) 
encoded on chromosome 17q21 [82]. These Tau isoforms 
differ in their domain composition and overall length rang-
ing from 352 to 441 aa [4]. A general overview of the long-
est Tau isoform in the CNS, termed htau40, Tau 4RL or 
Tau 2N4R, is illustrated in Fig. 1b. Tau molecules can be 
separated by chymotryptic cleavage into a mainly acidic 
amino-terminal “projection domain” (residues 1–197) and 
a “microtubule assembly domain” with the carboxy-termi-
nal tail domain (residues 198–441) [44]. These two major 
domains can be further subdivided into several domains 
[37]: the “projection domain” can contain no, one or two 
insertions (N) of 29 residues each, while the core of the 
basic and proline-rich “microtubule assembly domain” 
(residues 244–368) comprises three or four semi-conserved 
pseudo-repeats (R) of ~31 amino acids. Different isoforms 
contain either repeats R1–R4 or R1 plus R3–R4, with three-
repeat isoforms occurring preferentially in the fetal stage. 
These repeats promote microtubule assembly but bind on 
their own only with low affinity to microtubules. On either 
side of the microtubule assembly repeats, there are the so-
called repeat-flanking “jaws” of Tau–microtubule interac-
tion [87]: ~40 residues spanning proline-rich domains (P 
and R′, residues 151–198–240 and 369–400, respectively) 
which bind strongly to microtubules, thus strongly enhanc-
ing Tau binding and positioning on the microtubule lattice. 
Hence, efficient microtubule assembly can be achieved by 
the catalytic repeat domains [37, 87]. The amino-terminal 
“projection domain” protrudes away from the microtubule 
surface, and several distinct roles have been proposed for 
the projection domain including interaction with other 
cytoskeletal proteins [29, 44], membranes, and kinases [12, 
16, 61, 64, 77, 100].

Tau is a highly soluble, natively unfolded, and intrinsi-
cally disordered protein [80, 95], with only a low content of 
transient secondary structure. Because of their disordered 
character, Tau molecules are very voluminous in solution, 
yet can adopt an overall “paperclip”-like conformation 
where the amino- and carboxy-terminal regions can fold 
back onto the “assembly domain” [48].
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Fig. 1   a Illustration of differential Tau expression levels in soma 
and axons of mature neurons showing a predominant axonal loca-
tion of Tau protein. b Overview of the longest Tau isoform hTau40 
(also called 2N4R or 4RL) with amino-(N)- and carboxy-terminal (C) 
regions as indicated. The repeats N1, N2 of the projection domain 
are highlighted in yellow while the repeats R1–R4 of the microtubule 
assembly domain are depicted in red. Repeat R2 is shown in light red 
as its presence is Tau isoform-dependent. Proline-rich domains (P and 
R′) are shown in light green
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Tau protein promotes self-assembly of α/β-heterodimeric 
tubulin to microtubules and stabilizes microtubules by 
binding to their surface. Because of its disordered and very 
variable structure, the exact binding site of Tau on micro-
tubules as well as its microtubule-bound conformation 
proved difficult to resolve. Different structural and bio-
chemical approaches suggested that Tau might have more 
than one conformation or binding site on microtubules [1, 
3, 18, 35, 45, 52, 68, 69, 92, 94]. Binding of Tau to micro-
tubules was shown to be (at least partly) of electrostatic 
nature and involves the negatively charged E-hook of tubu-
lin [38, 42, 65, 72, 88, 97]. In neurons, about 1 μM Tau 
compared to 20–40 μM tubulin was found [21], whereas 
higher Tau:tubulin ratios (~0.5) can be achieved for Tau 
binding to microtubules in vitro [37, 68].

During neuronal maturation, there is a shift in Tau iso-
forms from short Tau isoforms in the fetal brain (0N3R) 
to longer ones (up to 2N4R), accompanied by a decrease 
of phosphorylation [25, 58]. At the same time, Tau pro-
tein becomes redistributed from a ubiquitous distribution 
in fetal neurons to a pronounced polar distribution in the 
axonal compartment of mature neurons. How Tau is sorted 
into axons and/or depleted from the somatodendritic com-
partment is still not well understood, although several path-
ways have been discovered which may operate in parallel 
[8, 43, 51, 63, 110]. Nevertheless, in highly polarized and 
elongated cells such as neurons, Tau generated in the cell 
body needs to move into and down the axon to fulfill its 
task of stabilizing axonal microtubules. Therefore, mecha-
nisms of transportation for Tau molecules in neurons are 
needed.

In this short review article, we focus on cellular mecha-
nisms for Tau redistribution and on the impact of Tau on the 
function of molecular motors involved in axonal transport.

Motor protein‑driven transport of Tau

The most intuitive mechanism for Tau transportation in 
neurons is directed active transport by motor proteins such 
as kinesin family members and cytoplasmic dynein. This 
could be achieved in different ways: (1) with Tau as a cargo 
of motor proteins or (2) with Tau dragged along with other 
mobile motor-driven structures such as small microtubules.

Tau has indeed been found to be subject to active 
transport. In neurons, the protein is normally transported 
along axons with overall rates of 0.2–0.4 mm/day (about 
0.002  μm/s on average) [74, 110, 122], consistent with 
rates of slow axonal transport (slow component a) but 
significantly faster than transport rates of tubulin of 0.1–
0.2  mm/day (about 0.001  μm/s) [74]. This is ~500-fold 
slower than typical rates of microtubule motors (~1 μm/s) 
which appears to disqualify them as transporters. However, 

the discrepancy could be removed by considering that 
slow motion can be generated by fast motors if they act 
in a discontinuous stop-and-go fashion [55, 111]. Alterna-
tively, the slow axonal transport rate can be explained by 
diffusion of Tau through the cytosol which can be surpris-
ingly fast and efficient over short distances (Fig. 2) [55]. 
Some hints at direct motor protein participation in Tau 
dispersion have been reported in recent years. As an indi-
cation of kinesin-mediated Tau transportation, it has been 
described that Tau can interact directly with kinesin-1 mol-
ecules via kinesin light chains 1 and 2 [111] (Fig. 3), and 
a disturbed kinesin light chain–Tau interaction results in 
Tau accumulation and Tau-dependent neurodegeneration 
[26, 27]. Additionally, PTL-1, the C. elegans homolog of 
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Fig. 2   a Diffusion of Tau in the cytosol. Photobleaching and diffu-
sive Tau recovery of CFP-Tau8R from both sides into a 3-μm area of 
an axon (modified from [55]). b Bidirectional axonal transport of Tau 
in small filamentous structures (indicated by red arrows) in retinal 
ganglion cell axons. In the left panel, anterograde movement of CFP-
Tau containing structures (with an average speed of ~0.6 μm/s and 
instantaneous velocities of ~0.2–1.3  μm/s) is visible after subtrac-
tion of background fluorescence signal caused by diffusive recovery. 
The right panel depicts retrograde movement of CFP-Tau contain-
ing structures with an average speed of ~0.4 μm/s and instantaneous 
velocities of ~0.2–0.9 μm/s (modified from [55])
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Tau, has been shown to physically interact with UNC-104, 
a class-3 kinesin motor, with which it co-migrates in vivo. 
Hence, it was hypothesized that Tau/PTL-1 is transported 
alternatingly by kinesin-3 and kinesin-1 motors in cells 
[108]. Furthermore, it has been suggested that the rate of 
Tau transportation by motor proteins could be modulated 
by Tau phosphorylation. In cell experiments, inhibition 
of the axonal kinase GSK3β reduced Tau phosphoryla-
tion and led to decreased overall rates of axonal transport 
of Tau [23]. Based on previous observations of kinesin-1 
light chain–Tau interactions [111], it was hypothesized 
that Tau binding to kinesin-1 via kinesin light chains 
could be tuned in a Tau phosphorylation-dependent man-
ner [23]. Results from respective binding studies using 

phosphomimicking Tau constructs, however, could not be 
confirmed in later studies [89]. At elevated concentrations, 
Tau forms globular accumulations which occur first at the 
distal ends of axons and can move along microtubules bi-
directionally and in a stop-and-go manner, with velocities 
typical for motor-driven transport [110, 111], although 
there is a debate whether this is due to a physiological 
transport mechanism or a sign of degenerating axons [55]. 
Such local Tau protein accumulations have been described 
recently to result from local mechanical microtubule 
disruption during traumatic brain injury [105], arguing 
against the idea that movement of such Tau accumulations 
might be part of the regular axonal transport of Tau protein 
in neurons. 

Fig. 3   Proposed mechanisms of Tau dispersion in cells. Free dif-
fusing Tau molecules in the cytosol (1) in rapid equilibrium with 
Tau bound to microtubules (2). On microtubules, Tau is free to dif-
fuse along the microtubule lattice (3). Motor-dependent Tau trans-
port by kinesin molecules (4) or piggybacking on short microtubule 
fragments translocated by kinesin family members or cytoplasmic 
dynein (5). Transport of HuD-bound Tau mRNA by kinesin-2 fol-
lowed by local translation in the axon (6). Light gray arrows indicate 
the directions of motor protein movement while solid black arrows 

denote the directions of Tau protein or mRNA motion by diffusion or 
as cargo of kinesin motor proteins. Note that in (5), analogous to an 
in vitro microtubule gliding assay, motor proteins (different kinesins 
or dynein) being hooked up to structures such as immobile micro-
tubules or the actin network push small microtubule fragments and 
bound Tau into the opposite direction of their own walking direction. 
This Tau movement along with microtubule fragments is indicated by 
dashed black arrows
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Another possible mechanism for the motor-driven 
axonal transport of Tau is the co-transport along with 
microtubules. Axonal microtubules are mostly long and 
stationary [90], yet movement of short microtubules within 
axons has been observed by tubulin fluorescence and pho-
tobleaching experiments [2, 41, 116]. Such short micro-
tubules have therefore been postulated to be the transport 
units of tubulin in neurons. Motion of small microtubules 
occurs in both axonal directions. About half of the antero-
grade movement of small microtubule fragments is depend-
ent on the actin network while retrograde movement is 
independent of actin [40, 79, 93]. The anterograde traffic of 
short microtubule fragments is maintained by cytoplasmic 
dynein hooked up to the stationary actin cytoskeleton or to 
spectrin-β3 [9, 41, 53, 86, 116] and by minus-end-directed 
kinesin family members hooked up to stationary microtu-
bules [28, 30, 99]. Analogous to in vitro microtubule glid-
ing assays on surfaces of immobilized motor proteins, in 
cells, tethered motor proteins push these microtubule frag-
ments to the opposite side instead of walking to their pre-
ferred microtubule end. Thus, retrograde microtubule trans-
port can be achieved by plus-end-directed kinesin family 
members like kinesin-1 and kinesin-5 [39, 66]. Such “pig-
gybacking” of Tau on small microtubule fragments (Fig. 3), 
which are transported along the axon by motor proteins 
with rapid motion bursts and saltatory characteristics and 
whose structure is not known in detail, appears to be the 
main transport mechanism for Tau under near-physiologi-
cal conditions.

Local Tau protein synthesis in the axon 
from transported Tau mRNA

One other possible mechanism for Tau dispersion in neu-
rons is the transport not of the protein but of the respec-
tive Tau mRNA followed by local translation in the axon. 
Recently, it has been suggested by a few reports from one 
group that proteins such as Tau can be synthesized locally 
from mRNA specifically targeted to the axonal compart-
ment (review [101]). This can be achieved by the forma-
tion of RNA- and ribosome-containing ribonucleoprotein 
(RNP) complexes which are transported to periaxoplas-
mic ribosomal plaques (PARPs), possible centers of local 
Tau translation. Specific targeting to the axon requires an 
axonal localization signal within the 3′ untranslated region 
(3′UTR) of Tau mRNA [7]. This axonal “zipcode” can be 
recognized by HuD [6], a mRNA-binding protein that can 
regulate mRNA stability. A fraction of Tau RNP complexes 
additionally contain KIF3A, a subunit of kinesin-2, and 
associate with microtubules [8]. This suggests that active 
anterograde transport of Tau RNP complexes utilizes kine-
sin-2 motor proteins (Fig. 3), while kinesin-1 motors seem 

not to be involved [8]. Like axonal transport of Tau protein 
synthesized in the cell body, trafficking of Tau mRNA and 
local axonal Tau translation relies on uncompromised intra-
cellular active transport by motor proteins.

Impact of Tau on microtubule‑dependent motor 
molecules

Elevated expression of Tau in neurons slows down intra-
cellular transport and dramatically alters the distribution 
of transported organelles. Net inhibition of anterograde 
transport may cause a predominance of retrograde transport 
and can lead to the accumulation of cell organelles such as 
mitochondria in the cell body, resulting in the starvation 
and decay of cell processes [102, 109].

How could Tau interfere with axonal transport? Several 
mechanisms of the pathological function of Tau protein 
during neurodegeneration have been suggested: (1) destabi-
lization of microtubules by loss-of-function of hyper-phos-
phorylated Tau (which is therefore detached from microtu-
bules), (2) toxic gain-of-function by Tau filament formation 
with inhibition of fast anterograde kinesin-driven axonal 
transport through activation of axonal phosphotransferases, 
(3) mechanic clogging of the axon through excess microtu-
bules over-stabilized by elevated Tau [107], and (4) direct 
interference of kinesin- and dynein-dependent axonal trans-
port by microtubule-bound Tau.

Regulation of motor protein function and therefore intra-
cellular transport could be achieved by different strategies, 
such as switching the motor on or off, changing the direc-
tion of movement, changing the velocity of the motor pro-
tein, increase or decrease of the distance over which the 
motor protein can process, premature release of the trans-
ported cargo, and regulation of motor protein attachment 
to its cytoskeletal track. The molecular motors involved 
in the axonal transport of Tau protein themselves rely on 
their cyclic interaction with their cytoskeletal tracks. In 
neurons, the microtubule tracks are decorated with MAPs 
like Tau. Although the exact Tau binding site on the micro-
tubule lattice is not known, it appears to partially overlap 
with binding sites for other proteins, e.g., molecular motors 
such as kinesin and dynein [38, 72, 88]. Thus, Tau could 
influence processes like axonal transport at the level of 
motor protein function. Interference with axonal transport 
and microtubule-dependent motor molecule functions has 
been observed both in vitro and in cell experiments [38, 
96, 106, 109]. For example, overexpression of Tau in neu-
rons changes the distribution of organelles transported via 
microtubule-dependent motor proteins and slows down 
intracellular transport by preferential impairment of plus-
end-directed transport mediated by kinesin motor pro-
teins, an effect that could also be observed in vitro [24, 



3144 T. Scholz, E. Mandelkow

1 3

113]. In the case of kinesin-1, elevated concentrations of 
Tau lead to a reduction of kinesin (re-)attachment rate to 
microtubules [96], and decrease the run length of kinesin 
molecules [24, 73, 109] or the number of engaged kinesin 
molecules per cargo [112], although with overall undimin-
ished kinesin velocities. Likewise, kinesin-3 seems to be 
negatively affected by the presence of Tau protein. In an 
opposite approach to Tau overexpression, from Tau/PTL-1 
knock-out experiments, it was concluded that, although the 
travelling velocity of kinesin-3 remains unchanged in the 
presence of Tau/PTL-1, motor run length is decreased and 
detachment is enhanced [108]. While kinesin motors tend 
to detach from microtubules more readily in the presence 
of Tau on microtubules, dynein can even reverse its direc-
tion temporarily to circumvent the Tau obstacle [24].

Inhibitory effects on microtubule-based motor proteins 
have been suggested both for the projection domain and for 
the assembly domain of Tau. In agreement with that, inhi-
bition of kinesin and dynein functions by Tau was found to 
be Tau isoform-dependent, yet the results are contradictory. 
On one hand, the projection domain of Tau has been sug-
gested to inhibit binding of kinesin or cytoplasmic dynein 
to microtubules by steric or electrostatic hindrance [38]. 
On the other hand, the projection domain has also been 
attributed to assist binding of motor proteins such as the 
dynein/dynactin complex to microtubules [67]. Moreover, 
Tau fragments comprising just the microtubule assem-
bly domain were sufficient to inhibit kinesin and dynein 
in single molecule studies, and the absence of the projec-
tion domain even increased inhibition [24], whereas other 
studies indicate that motor inhibition can be achieved by 
a small amino-terminal sequence of Tau without the need 
for the microtubule assembly domain [50, 60]. Others 
found no effect whatsoever of non-aggregated Tau on fast 
axonal vesicle transport [76] and concluded that aggrega-
tion of Tau is needed to disturb kinesin-driven transport. 
This inhibitory effect of aggregated Tau was suggested to 
be driven by the activation of a signaling cascade compris-
ing protein phosphatase 1 (PP1) which dephosphorylates 
the axonal kinase GSK3β. Activated GSK3β then phos-
phorylates kinesin-1 light chains thus leading to dissocia-
tion of kinesin from its cargo and inhibition of anterograde 
fast axonal transport [50, 60]. Activation of PP1, however, 
could be prevented by phosphorylation of a small amino-
terminal sequence of Tau by Fyn [49]. Additionally, cargo-
selective impairment of kinesin-driven anterograde fast 
axonal transport by hyper-phosphorylated Tau has also 
been reported to be the result of a pathological phospho-
Tau/c-Jun N-terminal kinase-interacting protein 1 (JIP1) 
interaction, which interferes with the physiological JIP1/
kinesin light chain interaction [47].

Overall, the majority of studies suggest a concentra-
tion-dependent inhibition of kinesin and dynein function 

by Tau constructs. Direct inhibition is achieved mainly 
through interference with the attachment of the motors to 
their microtubule tracks [24, 73, 96, 112, 113], with usu-
ally decreasing motor run lengths but no major changes in 
motion velocity. The inhibitory impact on molecular motors 
does not correlate with Tau binding affinity to microtu-
bules or microtubule assembly properties [96]. Accord-
ingly, a shorter Tau isoform lacking the amino-terminal 
inserts and repeat R2 of the microtubule assembly domain 
(isoform 0N3R), and therefore reduced microtubule affin-
ity, was found to be a more potent inhibitor of kinesin and 
dynein, again with a stronger impact on kinesin [24, 73, 96, 
112, 113]. Yet again, one other study found a larger effect 
on mitochondrial transport by a four-microtubule assem-
bly repeat Tau construct compared to one with only three 
repeats [103].

Tau dispersion by diffusion in the cytosol

As described above, pathologically elevated levels of Tau 
protein can inhibit microtubule-dependent motor proteins 
such as kinesin family members and cytoplasmic dynein, 
thus impeding proper vesicle and organelle distribution as 
well as Tau’s own motor-dependent transport along axons. 
However, even under these inhibitory conditions, Tau itself 
can move significantly into axons over ranges of milli-
metres and is able to enter cell processes and to distribute 
along axons [102]. This prompted the question of how Tau 
could manage to travel into and down the axon despite its 
general negative effect on microtubule-based traffic.

A partial solution to this contradiction is that Tau can 
diffuse rather rapidly in cells, in spite of its preferred asso-
ciation with microtubules. The faster axonal transport rates 
of Tau compared to tubulin already indicate that Tau mol-
ecules interact dynamically with their microtubule tracks 
[74]. Live cell fluorescence microscopy, fluorescence 
recovery after photobleaching (FRAP), and fluorescence 
speckle microscopy experiments on neurons revealed that 
Tau is highly dynamic and diffuses rapidly in the cytosol, 
with diffusion coefficients of ~3  μm2/s [55] and micro-
tubule dwell times of ~3–4  s which become even shorter 
upon phosphorylation [55, 91]. At physiological Tau lev-
els, re-entry of fluorescent Tau into the photobleached 
zone occurred within minutes from both ends of a several-
micrometer-long bleached axon stretch, emphasizing rapid 
diffusion (Fig. 2). Experiments using photoconvertible Tau 
constructs revealed some directional bias with somewhat 
enhanced Tau spreading to the distal direction, which was 
explained by Tau diffusion superimposed on slow antero-
grade Tau transport [63]. Consistent with Tau diffusion in 
the cytosol, entry of Tau into the axon is concentration-
dependent, and diffusion of Tau can promote the entry of 
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Tau into axons over distances of millimetres and periods of 
days [55].

If cytosolic diffusion substantially contributes to Tau 
movement over short-to-intermediate ranges in neurons, 
how can the equilibrium between microtubule-bound 
and freely diffusing Tau be controlled? One tool to regu-
late the occupancy of Tau along axonal microtubules is 
phosphorylation/de-phosphorylation [10, 13, 55]. In Alzhei-
mer disease and other tauopathies, neurofibrillary changes 
of abnormally hyper-phosphorylated Tau are key lesions 
[98] pointing towards the physiological and pathological rel-
evance of Tau phosphorylation. There are 80 putative serine 
or threonine phosphorylation sites within the longest CNS 
Tau isoform, htau40. Phosphorylation of Tau, especially of 
KXGS motifs in the repeats of the microtubule assembly 
domain, tends to detach Tau from the microtubule resulting 
in destabilization of microtubules [13, 104]. Accordingly, 
FRAP was faster in axons transfected with pseudo-phos-
phorylated 4KXGE-mutant Tau protein than in axons with 
wild-type and non-phosphorylatable 4KXGA Tau protein. 
Pseudo-phosphorylated Tau that was mainly detached from 
microtubules diffused rapidly with diffusion coefficients of 
~11 μm2/s and also showed a weaker axonal localization. 
It was concluded that this is a result from phosphorylation-
induced detachment of Tau followed by almost free Tau 
diffusion within the cytosol of axons [55]. Tau constructs 
with enhanced microtubule affinity resulted in a reduced 
apparent diffusion coefficient, lower detachment rates, and 
stronger axonal localization [55]. Hence, the apparent dif-
fusion coefficient of a given Tau construct is influenced by 
the ratio of free to microtubule-bound Tau and therefore 
dependent on its affinity to microtubules. Microtubule affin-
ity can be modulated by Tau phosphorylation with higher 
degrees of phosphorylation leading to faster apparent diffu-
sion and cellular dispersion. This concept also agrees well 
with recent observations which have been interpreted dis-
sentingly: in cell experiments, increased levels of Tau phos-
phorylation led to increased overall rates of axonal transport 
of Tau, and decreased phosphorylation levels to decreased 
rates. From that, it was concluded that Tau phosphorylation 
modulates axonal transport rates of Tau by regulating Tau 
binding to kinesin-1 light chains [23, 89]. However, experi-
ments to prove phosphorylation-modulated kinesin-1 light 
chain binding of Tau using (de-)phosphomimicking Tau 
constructs were not consistent [23, 89], leaving this issue 
unclear. Alternatively, such observations of increased over-
all rates of axonal transport of phosphorylated or phospho-
mimicking Tau constructs can be explained by phosphoryl-
ation-induced decreased affinity to microtubules leading to 
more pronounced Tau diffusion through the cytosolic space.

Phosphorylation-induced low microtubule affinity of 
Tau, allowing the protein to diffuse freely in the cytosol, 
also has consequences for the cellular sorting of Tau in 

neurons. Recently, a microtubule-dependent retrograde bar-
rier in the axon initial segment was discovered as a rectify-
ing mechanism involved in cellular Tau sorting [63]. This 
diffusion barrier allows Tau to enter the axon but prevents 
retrograde flow back towards soma and dendrites. The ret-
rograde diffusion barrier enables neurons to trap Tau in the 
axon but breaks down when Tau is detached from microtu-
bules due to phosphorylation in its repeat domain, resulting 
in an increased appearance of Tau in the cell body and den-
drites as observed in neurodegenerative diseases [63]. This 
demonstrates that Tau movement by diffusion through the 
cytosol is relevant not only during physiological distribu-
tion of Tau in neurons but also during development of path-
ological missorting of Tau protein.

Tau dispersion by diffusion along microtubules

Until recently, models for the dispersion of Tau protein only 
considered co-transport of bound Tau with short microtu-
bule fragments, kinesin-driven Tau transport, and rapid Tau 
diffusion in the cytoplasm. Consequently, microtubule-
bound Tau was believed to be stationary on a given micro-
tubule or transported microtubule fragment. However, sin-
gle molecule TIRF microscopy experiments have recently 
revealed that Tau molecules can also diffuse along micro-
tubules guided by the microtubule lattice [42] (Figs.  3, 
4). This provides experimental evidence for an additional 
mechanism of Tau transport in neurons, which has been 
hypothesized before [118], partly based on observations 
that microtubules can diffuse along their axis on methyl-
cellulose-coated glass surfaces [81]. Individual Tau mol-
ecules diffuse in vitro for several seconds on microtubules, 

time (60 seconds)

10
 µ

m

Fig. 4   Diffusion of Tau molecules along microtubules. Left TIRF 
microscopy snapshot of Tau molecules (green) diffusing along an 
immobilized microtubule (27.5 μm, red) in vitro. Right The respec-
tive kymograph (plot of Tau fluorescence along the microtubule axis 
versus time) clearly shows diffusive movement of individual Tau 
molecules along the microtubule of instantaneous velocities of up to 
2.7 μm/s (between white arrowheads)
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consistent with microtubule dwell times found previously 
in cell experiments [55, 91]. During these transient interac-
tions, Tau molecules can slide along microtubules with dif-
fusion coefficients of up to ~0.5 μm2/s, thus making con-
tact with ~3 μm of microtubule length in a single encounter 
[42]. Diffusive interactions have been suggested previously 
for DNA binding proteins searching for their specific target 
sequence along their DNA substrate [11, 115].

Tau diffusion along microtubules does not cease or 
decelerate even at elevated Tau concentrations, but is sen-
sitive to changes of ionic strength and pH as it requires 
the negatively charged carboxy-terminus of tubulin as a 
binding partner [42]. Microtubule lattice diffusion is also 
not restricted to one protofilament, as diffusing Tau mole-
cules are able to change easily from one to another proto-
filament even of intersecting microtubules [42]. General 
advantages of Tau diffusion in the cytosol or guided by 
the microtubule lattice would be that (1) both ends of the 
microtubule can be targeted without a need for external 
chemical energy and (2) Brownian motion is faster than 
active transport over short distances of up to 1 μm. More-
over, (3) such a mechanism could avoid local accumula-
tions of Tau on microtubules due to frequent transitions 
between protofilaments, thus leading to a more homoge-
neous distribution of Tau. Diffusing Tau molecules could 
also give way to passing kinesin or dynein motors (as 
postulated in [22]) as individual Tau molecules are still 
mobile on microtubules even at Tau levels where kinesin 
inhibition is observed [42].

Conclusion

Different mechanisms contribute to the dispersion of Tau 
molecules in highly polarized and elongated cells such 
as neurons (Fig.  3): (1) freely diffusing Tau molecules in 
the cytosol are in rapid equilibrium (2) with Tau bound to 
microtubules; (3) when interacting with microtubules, Tau 
molecules are able to diffuse along the microtubule lat-
tice, rather than being restricted to one binding site; (4) 
motor-dependent Tau transport as cargo by kinesin mole-
cules or (5) piggybacking on short microtubule fragments 
translocated by kinesin molecules or cytoplasmic dynein; 
(6) additionally, Tau mRNA can be transported by kinesin 
motors and locally synthesized in the axon.

Rapid diffusion in the cytosol and diffusion along the 
microtubule lattice appear to be the major mechanisms 
for axonal distribution of Tau protein in the short-to-
intermediate range over distances of up to a millimetre. 
The sufficiently high diffusion coefficients ensure that 
Tau can distribute evenly throughout the axonal volume 
as well as along microtubules. Microtubule-depend-
ent transport of Tau driven by motor proteins such as 

cytoplasmic dynein and kinesin family members domi-
nates over longer distances and times. At low near-phys-
iological levels, Tau is co-transported with microtubule 
fragments from cell bodies into axons, moving at instan-
taneous velocities of ~1  μm/s. At high concentrations, 
Tau forms local accumulations moving bi-directionally 
along microtubules with speeds of ~0.3  μm/s. Since 
these globular clusters at first appear at distal endings 
of axons, they might indicate an early stage of neurite 
degeneration or represent clusters of Tau locally synthe-
sized from Tau mRNA which was actively targeted to the 
axonal compartment.
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