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avoiding impaired energy metabolism, oxidative stress, and 
inflammatory processes.
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Physical activity (PA) at a glance

Physical activity (PA) is widely defined as any move-
ment produced by skeletal muscles that results in energy 
expenditure, while physical exercise is a subset of PA that 
is structured, planned, and repetitive [1]. In humans, PA 
can be done in multiple ways that differ for type, inten-
sity, frequency, and duration. For instance, aerobic exercise 
involves dynamic activity of large groups of muscles, while 
resistance exercise specifically increases muscular strength, 
power, and endurance by using smaller groups of muscles 
[1]. Also, the intensity of the exercise protocol is important: 
fatty acids represent the main source of energy at low and 
moderate intensities, while at high intensities, glycogen 
and phosphocreatine become the main fuels [1, 2].

As discussed in more detail in the next sections, a cor-
rectly performed PA improves cognitive performance 
[3], and affects the brain reward system [4] by inducing 
a sense of satisfaction. By modulating several signaling 
mediators, exercise influences mood [3] and nociception 
[5], modulates immune system functions [6], as well as 
whole-body energy metabolism [7]. These features con-
tribute to the concept that PA is not only important for a 
healthy everyday life, but may also help to prevent and 
even treat chronic diseases that afflict modern society 
because of a sedentary lifestyle [8]. In particular, the ben-
eficial effect of physical exercise has been clearly docu-
mented under different pathophysiological conditions 

Abstract  Recognized as a “disease modifier”, physi-
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cost-saving method for prevention, treatment and manage-
ment of human disease conditions. The traditional view 
that PA engages the monoaminergic and endorphiner-
gic systems has been challenged by the discovery of the 
endocannabinoid system (ECS), composed of endogenous 
lipids, their target receptors, and metabolic enzymes. 
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might mediate some of the PA-triggered effects through-
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eficial effects on cognition, mood, and nociception, while 
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affecting the central nervous system (CNS) [8], as well as 
peripheral tissues [9–11].

It seems noteworthy that exercise can become harm-
ful in the case of unaccustomed, vigorous, or eccentric 
muscle actions that overstretch and hence, disrupt sar-
comeres, and induce oxidative stress and inflammatory 
responses [12]. Although the body has been shown to 
adapt to harmful exercises [12], damaging activities can 
clearly promote or aggravate pathological conditions 
[12, 13].

The endocannabinoid system (ECS)

Endocannabinoids (eCBs)

In the early 80s, several authors investigated the biologi-
cal background of exercise-wide effects. Early hypoth-
eses relied on the well-documented antidepressant and 
anxiolytic effect of PA [14], and pointed to a possible 
role of monoamines [15] and endorphines [16] in exercise 

neurochemistry. In the last decade, the evidence that PA 
induces some of the psychotropic effects elicited by the 
Cannabis sativa active ingredient Δ9-tetrahydrocannabinol 
(Δ9-THC, Fig.  1), like bliss, euphoria, and peacefulness, 
strengthened the hypothesis that endocannabinoids (eCBs) 
might mediate, at least in part, the central and peripheral 
effects of exercise [14].

The eCBs are lipid mediators including esters, amides, 
and ethers of arachidonic acid [the most active ω-6 polyun-
saturated fatty acid (PUFA) in our body], which mimic the 
effects of Δ9-THC primarily by binding to and activating 
type-1 (CB1) and type-2 (CB2) cannabinoid receptors [17, 
18]. The most studied eCBs are N-arachidonoylethanolamine 
(anandamide, AEA), an N-acylethanolamine (NAE) [19], 
and 2-arachidonoylglycerol (2-AG), a monoacylglycerol [20, 
21] (Fig. 1). The NAE family also includes the appetite-sup-
pressor N-oleoylethanolamine (OEA) and the anti-inflamma-
tory and anti-proliferative N-palmitoylethanolamine (PEA) 
(Fig. 1) [22]. Both OEA and PEA are considered eCB-like 
compounds rather than authentic eCBs, because they usually 
do not bind to CB1 or CB2, but have some cannabimimetic or 

Fig. 1   Chemical structure of 
the main plant-derived and 
endogenous cannabinoids
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non-cannabimimetic actions through the activation of other 
molecular targets (see below) [22].

The eCB family also includes other bioactive members, 
like 2-arachidonoylglycerol ether (noladin ether) [23], 
O-arachidonoylethanolamine (virodhamine) [24] and N-ara-
chidonoyldopamine (NADA) [25]. More recently, both 
N-docosahexaenoylethanolamine (DHEA) and N-eicosap-
entaenoylethanolamine (EPEA) (derived from the dietary 
ω-3 PUFA docosahexaenoic acid and eicosapentaenoic 
acid, respectively) (Fig. 1) have been shown to activate both 
CB1 and CB2 [26]. Although a clear understanding of the 
biological and pathophysiological relevance in vivo of these 
“ω-3 eCBs” is still missing, they are receiving growing 
attention as potential anti-proliferative agents [27].

eCB‑binding proteins

AEA and 2-AG activate different signaling pathways 
depending on the specific receptor engaged [17, 18]. CB1 
and CB2 are G-protein coupled receptors (GPCRs) that 
represent the main targets of eCBs [17, 18]. CB1 is highly 
expressed in brain areas that control emotionality, cognition, 
memory, motor, and nociception, and that include cortex, 
limbic system, hippocampus, cerebellum, and several nuclei 
of the basal ganglia. CB1 is also expressed in peripheral 
cells and tissues, including adipose tissue, liver, and skeletal 
muscle [17, 18]. CB2 is mainly present in the immune sys-
tem [28], but is also expressed within the CNS [29], where 
it might play a relevant role in coping with insults [30].

Both CB1 and CB2 are coupled to Gi/o proteins, thus 
inhibiting adenylyl cyclase and stimulating different mem-
bers of the mitogen-activated protein kinase (MAPK) fam-
ily [17, 18]. CB1 can also activate A-type and inwardly 
rectifying K+ currents and inhibit N- and P/Q-type calcium 
currents [17, 18]. In addition, CB1 has been recently shown 
to stimulate Gs proteins [18], and to be modulated by spe-
cific accessory proteins [17].

Accumulated experimental evidence indicates that 
endogenous, plant-derived (like Δ9-THC and the non-psy-
choactive substance cannabidiol, CBD) (Fig.  1) and syn-
thetic cannabinoids (synthocannabinoids) can activate the G 
protein-coupled receptor 55 (GPR55) [31, 32]. This orphan 
receptor shares low sequence homology with CB1 and CB2, 
is coupled to Gαq and Gα12/13, and has been proposed as a 
possible “CB3”. It regulates several biological processes 
both in the CNS and peripherally, by activating small 
GTPases (like Rho) and distinct MAPK kinases [31, 32].

In addition to CB receptors, AEA but not 2-AG binds 
to transient receptor potential vanilloid type 1 (TRPV1) 
Ca2+ channels, highly expressed in a subset of primary sen-
sory neurons, both centrally and peripherally, and in vari-
ous non-neuronal cells [33]. By triggering signaling cas-
cades associated with Ca2+ homeostasis, the AEA-TRPV1 

interaction (that occurs at the inner side of the plasma 
membrane) leads to the control of CNS functions including 
nociception [34], and of basic biological processes like the 
induction of apoptosis [35, 36].

Finally, both AEA and 2-AG bind (directly or indirectly) 
to nuclear peroxisome proliferator-activated receptors 
(PPARs) α and γ, thus regulating lipid and glucose metabo-
lism [37, 38], as well as inflammatory responses [39].

Concerning eCB-like compounds, both OEA and PEA 
seem to act through the activation of PPAR-α, thus either 
regulating feeding and body weight (OEA) or reducing 
inflammatory responses (PEA) [22, 40]. However, some 
effects of PEA might also depend on the activation of CB 
receptors, as well as of TRPV1 [22, 40], thus suggesting 
that eCB-like compounds deserve further investigation.

eCB metabolic enzymes

eCBs are produced in response to numerous stimuli (i.e., 
neuronal activity, glucocorticoids, insulin, and cytokines) 
[41–45] by a variety of cells throughout the body, from 
brain [41] to peripheral tissues like adipose tissue [38], 
muscles [45], heart, kidney [41], and immune cells [46, 
47], just to name a few.

Indeed the biological activity of eCBs is tightly regu-
lated by their metabolism [48]. The main biosynthetic 
enzyme of AEA is a Ca2+-dependent N-acylphosphati-
dylethanolamine-hydrolyzing phospholipase D (NAPE-
PLD) [40], which is specific for NAEs and releases AEA 
from N-arachidonoylphosphatidylethanolamine (NArPE). 
Additional routes allow AEA biosynthesis [41]. For 
instance, a tyrosine phosphatase can release AEA from 
phospho-AEA, which in turn derives from NArPE through 
the action of a phospholipase C [49]. Moreover, the find-
ing that mice lacking the NAPE-PLD gene have unaltered 
NAE levels in their brain allowed researchers to dem-
onstrate that NAE biosynthesis also occurs through the 
sequential action of the α–β hydrolase enzyme ABH4, and 
of glycerophosphodiesterase 1 [50]. AEA is inactivated by 
a two-step process: cellular uptake and intracellular deg-
radation. As yet, several hypotheses have been made to 
explain AEA transport across plasma membrane, includ-
ing passive diffusion, carrier-mediated bidirectional trans-
port through a specific eCB membrane transporter (EMT), 
and caveolae-related endocytosis [51, 52]. Moreover, 
it has recently been shown that AEA, once transported 
inside the cell, is shuttled to its final destinations by 
intracellular transporters, like fatty acid-binding proteins 
5 and 7, heat-shock protein 70, albumin, and fatty acid 
amide hydrolase (FAAH)-like transporter [48, and refer-
ences therein]. In this context, a relevant role is played 
by adiposomes that are intracellular lipid droplets repre-
senting a dynamic reservoir for AEA sequestration and a 
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platform for accumulation, trafficking, metabolism, and 
signaling of this eCB [48, 53]. The most relevant degrada-
tive enzyme of AEA is the serine hydrolase FAAH (now 
called FAAH-1) that hydrolyzes it into arachidonic acid 
and ethanolamine [54, 55]. Additionally, AEA hydroly-
sis can be catalyzed by a newly discovered FAAH-2 [56], 
or by a lysosomal N-acylethanolamine-hydrolyzing acid 
amidase [41]. In this context, it should be recalled that 
both OEA and PEA share, at least in part, the catabolic 
routes of AEA [22, 40]. Therefore, they might potentiate 
the activity of true eCBs by inhibiting their degradation, 
through the so-called “entourage effect” [22].

Also the biosynthetic pathway of 2-AG begins with the 
hydrolysis of its phospolipid precursors, by the means of 
phospholipase C or phosphatidic acid phosphohydrolase 
that generate diacylglycerol [41]. The latter is then con-
verted to 2-AG by sn-1-diacylglycerol lipases (DAGLs) α 
and β, which are abundant in adult and developing nerv-
ous tissues, respectively [57]. After its cellular uptake, most 
likely through the same EMT that transports AEA, 2-AG 
is hydrolyzed by monoacylglycerol lipase (MAGL) [58], 
although FAAH, and more interestingly, other lipases like 
αβ-hydrolases 6 and 12 [59, 60], can contribute to its deg-
radation. A schematic representation of the ECS is reported 
in Fig. 2.

Although the primary fate of AEA and 2-AG seems to 
be their inactivation via hydrolysis, they might also be oxi-
dized by cyclooxygenase-2 and lipoxygenase isozymes, 
thus producing oxidized eCBs that are involved in 

regulating brain synaptic transmission and other biological 
processes [61, 62].

Changes in the ECS during PA

To our knowledge, the first experimental study aimed 
at investigating the influence of PA on ECS in humans 
was carried out in 2003 by Sparling and coworkers [63], 
who showed increased plasma AEA content after 45 min 
of moderate intensity exercise on a treadmill or cycle 
ergometer. Since then, other human studies have shown 
increased blood concentrations of AEA, but interestingly 
not of 2-AG, after 30–45  min and up to 5  h of aerobic 
exercise [64–67]. Of note, the eCB-like compounds PEA 
and OEA have been shown to parallel the changes of AEA 
during 60 min of moderate aerobic exercise, immediately 
followed by 30  min of intense exercise, reaching a peak 
during the subsequent 15 min of recovery [65].

A dependence of the increase of AEA concentration on 
exercise intensity has also been documented. Plasma levels 
of AEA significantly increased upon 30  min of moderate 
exercise (heart rate of 72 and 83 %), but not at lower and 
significantly higher exercise intensities, where the age-
adjusted maximal heart rate was 44 and 92 %, respectively 
[67]. Finally, AEA levels were enhanced by combining 
exercise with mild hypobaric and hypoxic conditions due to 
high altitude [64].

Moreover, our group has recently shown that an active 
lifestyle upregulates lymphocyte FAAH activity through 

Fig. 2   Schematic repre-
sentation of the ECS. 2-AG 
2-arachidonoylglycerol, AEA 
anandamide, AITs anandamide 
intracellular transporters, CBR 
cannabinoid receptors, DAGL 
diacylglycerol lipase, EMT 
endocannabinoid membrane 
transporter, FAAH-1/2 fatty 
acid amide hydrolase 1 and 2, 
MAGL monoacylglycerol lipase, 
NAPE-PLD N-acylphosphati-
dylethanolamine-hydrolyzing 
phospholipase D, PPAR nuclear 
peroxisome proliferator-acti-
vated receptor, TRPV1 transient 
receptor potential vanilloid type 
1. See text for further details
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an interleukin (IL)-6-dependent stimulation of the FAAH 
gene promoter [42]. Finally, two additional studies have 
investigated the effects of human chronic exercise com-
bined with dietary restriction on ECS. In the first study, a 
1-year life intervention was able to lower AEA and 2-AG 
plasma levels in viscerally obese men, where an overstim-
ulated ECS is known to promote weight gain and meta-
bolic impairment [68]. The second study demonstrated 
that the expression of the FAAH-encoding gene was low-
ered in abdominal adipose tissue of overweight or obese 
women, who followed concomitant aerobic and diet pro-
grams [69].

Animal studies support these investigations, confirm-
ing that eCBs are also modulated in the CNS [70, 71]. For 
instance, 8 days of voluntary exercise is able to increase AEA 
levels, CB1 density, and activity in rat hippocampus [70]. 
A very recent study has reported that in rats, acute aerobic 
exercise [a single bout on a rodent treadmill, until fatigue 
(≈50 min), after 3 days of training] triggers eCB-dependent 
analgesic effects at central and peripheral levels [71]. The lat-
ter is the first study to report increased 2-AG levels after a 
moderate acute aerobic exercise protocol, and is among the 
few articles indicating a positive peripheral effect of eCBs. 
Indeed, that eCBs increase during exercise nicely supports 
the belief in positive effects of PA on the CNS, but not on 
peripheral tissues (see below).

It seems of particular interest that short exercise pro-
tocols are accompanied by the upregulation of eCB sign-
aling in murine striatum [72], whereas longer training 
is paralleled by reduced CB1 expression in the striatum 
and hippocampus of adolescent rats [73], and adipose 
tissue of rats on a high-fat diet (HFD) [74]. Similarly, 
acute aerobic exercise affects plasma levels of AEA, but 
usually not of 2-AG [63–67], which is instead affected 
by chronic exercise only when combined with caloric 
restriction [68]. Altogether, these results seem to suggest 
that ECS not only activates different pathways depend-
ing on exercise length, but can even adapt to a physically 
active lifestyle [42]. This hypothesis is further supported 
by a transversal study conducted on humans and dogs 
(two cursorial species), and ferrets (a non-cursorial spe-
cies). AEA, but not 2-AG, levels were found to increase 
in humans who ran for 30 min at moderate intensity, and 
in dogs that walked or ran for the same time and at the 
same intensity; in contrast, no changes were reported 
in ferrets under the same experimental conditions [66]. 
Humans and dogs have evolved a behavior suitable for 
running with a neurobiological motivational reward, 
and hence, a reduction in anxiety and pain, in order to 
improve their fitness condition; instead, ferrets are not 
adapted to long-distance running at high speeds, but 
rather use high accelerations over short distances [66]. In 
the light of these evolutionary differences, the available 

data appear supportive of a role for eCBs in PA of those 
mammals that are “made for” endurance exercise [66].

Implications of the ECS in motor activity: from brain 
to muscle

Every movement, whether simple or not, is based on a com-
plex network of connections extending from different brain 
areas to muscles [75] and that, as schematically depicted 
in Fig.  3, have been shown to be influenced by the ECS. 
Solid experimental data, for instance, indicate that the ECS 
controls motor activity by interacting with the dopamin-
ergic system in the basal ganglia network. Here, (1) CB1 
co-localizes with both type-1 and type-2 dopamine (D1 and 
D2) receptors [18]; (2) AEA production is enhanced by D2 
receptor activation [43], thus inducing a process known as 
long-term depression (LTD) in high-frequency-stimulated 
striatal slices; and (3) a CB1 blockade leads to long-term 
potentiation (LTP) expression [76].

In the cerebellum, synaptic activation of Purkinje cells 
triggers the release of 2-AG that retrogradely mediates LTP 
and depolarization-induced suppression of excitation, thus 
contributing to the coordination, precision, and accurate 
timing of movement [77].

The ECS, and particularly CB1, is also implicated in the 
regulation of contraction frequency. In the isolated lamprey 
spinal cord, eCBs released upon type-1 metabotropic glu-
tamate receptor (mGluR1) activation induce LTD during 
rhythmic locomotion, in a CB1-dependent manner [78]. 
More recently, it has been reported that 2-AG is mobilized 
from neurons of the spinal network during locomotor activ-
ity, and acts via CB1 in synergy with nitric oxide (NO), to 
shift the balance between excitation and inhibition, and to 
potentiate locomotor frequency [79]. Interestingly, CB1 
has been shown to positively regulate transcription factors 
that control corticospinal motor neuron differentiation [80]. 
Accordingly, CB1

−/− mice show alterations in corticospinal 
motor neuron generation and subcerebral connectivity that 
cause defective skilled motor function [80].

Studies on vertebrate striated neuromuscular junctions 
have shown that activation of CB1 in nerve terminals (where 
the receptor is highly expressed) inhibits acetylcholine 
release [81]; similarly, in isolated fast and slow muscles of 
frog, CB1 has been reported to reduce tension evoked by 
caffeine, which is known to act on sarcoplasmic calcium 
release [82]. In this context, it should be stressed that cal-
cium handling and energy supply are important events for 
movement. Indeed, ATP is necessary for muscle contraction, 
and also for key calcium-handling proteins like sarcoplas-
mic reticulum Ca2+-ATPase (SERCA), whose uncoupling 
causes muscle fatigue [83, 84]. NADA stimulates SERCA 
uncoupling with subsequent cytoplasmic ATP depletion 
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[85], while both AEA and AM404 (an EMT inhibitor) 
directly inhibit Ca2+ flux in transverse tubule membrane 
vesicles derived from rabbit skeletal muscle cells [86, 87].

Concerning the general effects of systemic administra-
tion of (e)CBs, it is known that the locomotor activity of 
mice and rats is enhanced by AEA and other CB1 agonists 
in some studies [88, 89], but is decreased in others [90–
92]. Moreover, the finding that both the activation and the 
blockade of CB1 decreased running activity in mice selec-
tively bred for high voluntary wheel running, as well as in 
their wild-type littermates [93, 94], further confirms that 
the effects of ECS on movement not only depend on vari-
ables in the experimental paradigm (e.g., strain, sex, age, 
and locomotor measurements), but also on the intrinsic 
complexity of the system per se.

Interplay between PA and ECS in the CNS

Several experimental data support the hypothesis that ECS 
might, at least in part, explain PA effects on brain func-
tions, because: (1) CB1 is the most abundant GPCR in the 
brain participating in neuronal plasticity [18]; (2) eCBs are 
involved in several brain responses that greatly overlap with 
the positive effects of exercise; (3) eCBs are able to cross 
the blood–brain barrier [95]; and (4) exercise increases 
eCB plasma levels [64–67].

Cognition

Physical activity improves brain plasticity and cognition 
by increasing hippocampal neurogenesis and cell prolif-
eration, as well as dendritic length and complexity [3, 96]. 
Moreover, exercise critically influences the pleiotropic sub-
stance and mood controller brain-derived neurotrophic fac-
tor (BDNF), responsible for the development, regeneration, 
survival, and maintenance of neurons [3, 97]. In addition, 
ECS, and particularly CB1, is involved in the modulation 
of neurogenesis (Fig.  4). Indeed, neural progenitor cells 
express high levels of CB1, able to promote in vitro neu-
roprogenitor differentiation and maturation, via inhibition 
of the extracellular-signal-regulated kinase 1/2 (ERK1/2) 
signaling pathway [98]. In vivo, CB1 contributes to embry-
onic and adult hippocampal neurogenesis [99], which 
coherently decreases in CB1

−/− mice [100], along with 
impaired progenitor cell proliferation and astrogliogen-
esis [101]. It seems noteworthy that increased hippocam-
pal neurogenesis correlates with both high AEA levels and 
increased CB1 activity in the same brain area [70]. Finally, 
eCBs positively regulate BDNF activity in the brain: 
reduced levels of this neurotrophin are detected in the brain 
of CB1

−/− mice [102], whereas increased BDNF content is 
found upon CB1 activation [103] (Fig. 4).

An interplay between ECS and PA in neurogenesis 
has been recently suggested [70]. Daily administration 

Fig. 3   Schematic represen-
tation of the main effects 
triggered by ECS in body areas 
involved in locomotor activity. 
ACh acetylcholine, LTD long-
term depression, LTP long-term 
potentiation, SERCA sarcoplas-
mic reticulum Ca2+-ATPase. 
See text for further details
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of the CB1 agonist AM251 to rats with free access to a 
running wheel for 8 days abrogates a voluntary exercise-
induced increase in cell proliferation [70] (Fig.  4). Yet, 
these data seem to be at variance with another study that 
failed to show any difference in hippocampal neurogen-
esis between CB1

−/− mice allowed free access to a running 
wheel for 6  weeks and their wild-type littermates [91]. 
Nonetheless, these discrepancies might depend on dif-
ferences in species (rats vs mice), experimental approach 
(pharmacological vs genetic), and/or duration of running 
(8 days vs 6 weeks).

Pharmacological elevations of AEA (via inhibition of 
FAAH activity) enhance learning and memory in rats, in a 
CB1- and PPAR-α-dependent manner [104, 105] (Fig.  4). 
In this context, it should be recalled that OEA and PEA 
are also substrates of FAAH, and that these eCBs-like 
compounds, though inactive at CB1, bind to and activate 
PPAR-α [105]. Therefore, it is tempting to speculate that 
both OEA and PEA might contribute to AEA-induced 
improvement of hippocampal functions via PPAR-α sign-
aling. On the other hand, other studies failed to confirm 
such a positive effect of eCBs. Indeed, FAAH and EMT 
inhibitors (URB597 and AM404, respectively), as well as 

CB1 agonists (Δ9-THC, HU-210 or R-methanandamide) 
were found to negatively influence working memory and/or 
short-term memory of rats [106]. These apparently conflict-
ing data might be explained by recalling that pharmaco-
logical approaches might increase the eCBs content above 
physiological levels, thus affecting other brain processes 
that, in turn, might reduce performance in cognition tests 
[107, 108].

Mood

Due to the increased demand for energy, wheel running 
activates the hypothalamic–pituitary–adrenal (HPA) axis, 
thus raising circulating levels of glucocorticoids, endo-
crine signals that change in adaptation to stress [109, 110]. 
Moreover, acute and chronic exercise influences the activ-
ity of BDNF [3, 65], and reduction of the latter substance in 
the hippocampus (observed, for example, following stress-
dependent activation of the HPA axis) critically contributes 
to stress vulnerability and depression [3]. Accordingly, vol-
untary running has been found to positively correlate with 
hippocampal BDNF levels in a rodent model of depression 
and anxiety [3].

Fig. 4   Schematic representation of the interplay between PA and 
ECS in the CNS. Red arrows indicate negative effects, green arrows 
indicate positive effects. Specific references are included for each 
item. References in red PA/ECS interplay confirmed in the specific 

brain area, references in green suggested PA/ECS interplay for the 
indicated function, but not necessarily related to the particular area, 
references in black ECS effects not yet proven to be related to exer-
cise. See text for further details
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(e)CBs and BDNF might interact in mood control (Fig. 4). 
For example, Δ9-THC treatment of intact and olfactory bul-
bectomized rats (an animal model of depression) increased 
BDNF expression in hippocampus and frontal cortex, thus 
exerting anti-depressant properties [111] (Fig.  4). Pharma-
cological inhibition of FAAH elicited anxiolytic-like and 
antidepressant-like effects in chronically and mildly stressed 
rats (a behavioral model with high isomorphism to human 
depression) [112]. Instead, a blockade of CB1 precipitated 
depression-like symptoms in clinical trial subjects [113].

eCBs have been also shown to regulate the HPA axis 
(Fig.  4). Glucocorticoids, indeed, quickly increase brain 
levels of eCBs, which suppress excitatory inputs in the par-
aventricular nucleus, rapidly shutting down the HPA axis 
in a CB1-dependent manner [44]. Involvement of the ECS 
in stress response is also supported by a study performed 
on a rat model of post-traumatic stress disorder, showing 
that WIN55,212-2 (injected systemically or in basolateral 
amygdale) prevents stress-induced effects [108]. Accord-
ingly, CB1

−/− mice exhibit an increased susceptibility and 
neuroendocrine response to chronic stress [114, 115].

Finally, a recent study enrolling healthy, trained male 
cyclists showed that intense aerobic PA behaves as a physi-
ological stressor, able to increase plasma AEA levels, that 
in turn might mediate the neuroplastic and anti-depressant 
effects of exercise through a BDNF-dependent mechanism 
[65] (Table 1; Fig. 4).

Rewarding

Cognitive processes are also influenced by reward circuitry 
and by dopamine signaling [107], which are crucial in pro-
cessing environmental rewarding stimuli, in drug addic-
tion, and in voluntary exercise [4, 72, 116]. Expanding 
on the reward system, it should be recalled that dopamine 
and eCBs are intimately connected and cooperate in a fine-
tuned manner, thus influencing reward due to food, drugs of 
abuse, and drugs of electrical brain stimulation [117]. More-
over, much like addictive drugs, exercise activates dopamine 
transmission [4]; consequently, it might reduce drug abuse-
dependence by counteracting positive-reinforcing effects 
produced by cocaine and marijuana [118, 119] (Table 1).

It seems apparent that the reinforcing properties of exer-
cise are mediated by the ECS in mouse striatum, where 
voluntary exercise alters sensitivity of CB1 in controlling 
γ-aminobutyric acid (GABA) transmission (Fig.  4) [72]. 
Indeed, the synaptic response to the selective CB1 agonist 
HU210 was normal after a single day of exposure to a run-
ning wheel or to sucrose consumption, but it was potentiated 
after 7  days of treatment. Remarkably, GABA functions 
slowly returned to normal after treatment discontinuation 
[72], thus confirming that the GABA receptor adapts to CB1 
signaling in response to running activity. In keeping with 

these data, conditional deletion of CB1 selectively associ-
ated with GABA neurons leads to decreased wheel-running 
performance in mice [116]. Moreover, negative effects of 
intra-ventral tegmental area (VTA) administration of CB1 
antagonists on voluntary exercise were lost in CB1GABA

−/− 
mice, thus indicating that VTA dopaminergic activity is also 
controlled by eCBs during voluntary exercise [116] (Fig. 4).

Finally, in obese Zucker rats that were allowed to press 
a lever in order to reach a running wheel, 2-AG was seen 
to decrease the rewarding effect of exercise in obese rats in 
a dose-dependent manner, by modulating both lever press 
and revolution on the running wheel [120] (Fig. 4).

Pain

Pain reduction during exercise is crucial to improving per-
formance and allowing individuals to continue exercise. 
The mechanism of analgesia associated with exercise is not 
yet fully understood [5]; nonetheless, several pieces of data 
suggest that ECS might be involved in exercise-mediated 
analgesic effects (Fig. 4). eCBs and their molecular targets 
are, indeed, present in pain-related regions [34], where they 
have been shown to exert analgesic properties by the retro-
grade activation of CB1 [121, 122]. Such an effect is poten-
tiated by the pharmacological or genetic inactivation of 
FAAH [123, 124]. Coherently, levels of the two eCB con-
geners, PEA and N-stearoylethanolamine (both substrates 
of FAAH), have been found to increase after low-force 
exercise in women with chronic widespread or neck/shoul-
der pain, in association with reduced pain intensity [125].

Since eCBs are lipids that are able to readily cross the 
blood–brain barrier [95], it is conceivable that increased eCB 
concentrations in blood, observed during exercise, might 
lead to central reduction in pain perception, thus possibly 
contributing to an immediate feeling of well-being. Indeed, 
acute aerobic exercise has been demonstrated to increase 
plasma levels of AEA, 2-AG, PEA, and OEA in rats. Sys-
temic and intrathecal injections of specific antagonists of 
CB1 and CB2, as well inhibitors of eCB transport and hydrol-
ysis, showed that eCBs and their congeners contribute to 
exercise analgesic effects, either centrally or peripherally. Of 
note, the wide pharmacological approach used in this study 
was able to indicate a likely CB1 and CB2 involvement in the 
eCB anti-nociceptive effects during this exercise protocol 
[71], a fact that should be further explored in the future in 
order to deepen our knowledge on exercise and ECS.

Appetite

Exercise can raise energy expenditure several fold, so 
that compensatory mechanisms are activated at both cen-
tral (i.e., in hypothalamus) and peripheral levels, with an 
impact on food intake [126].
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High-intensity training increases the orexigenic neu-
ropeptide Y (NPY) [127, 128]; similarly, acute exercise 
protocol increases agouti-related protein (AGRP) plasma 
levels [128, 129], while the anorexigenic pro-opiomelano-
cortin and cocaine- and amphetamine-regulated transcript 
(CART) are reduced [128].

Physical activity also influences release of peripheral 
orexigenic/anorexigenic mediators that enable commu-
nication among different energy-related tissues and the 
brain. In particular, exercise decreases the release of ano-
rexigenic leptin [130, 131], while raising circulating lev-
els of orexigenic adiponectin (both deriving from adipo-
cytes) [131]. The orexigenic hormone ghrelin (primarily 
secreted from stomach) seems less responsive, although 
some studies reported an exercise-dependent decrease 
[130]. Nevertheless, most of these energy signals are 
strongly dependent on exercise type, duration, and inten-
sity [132]. Leptin release, indeed, is affected by long-term 
exercise, while adiponectin levels are influenced by short-
term exercise [132]. Likewise, acute exercise elevates 
post-prandial concentrations of peptide YY (a gut ano-
rexigenic hormone), but not of ghrelin [133], while resist-
ance exercise decreases ghrelin levels, but not peptide YY 
content [134].

eCBs influence feeding behavior by mainly acting on 
the hypothalamus, thus contributing to energy homeo-
stasis modulation [for complete reviews, see Refs 45, 
135]. 2-AG and AEA, indeed, increase feeding behavior 
in rodents [136] (Fig.  4). Their levels, reduced by leptin 
[137] and enhanced by ghrelin and glucocorticoids [44, 
138], significantly increase in the hypothalamus during 
fasting, thus returning to basal levels after feeding [45]. 
Although levels of AEA are less sensitive to food restric-
tion [45], this eCB increases NPY release in vitro [139]. 
Finally, FAAH−/− mice have reduced levels of CART in 
appetite-related hypothalamus areas [140]. To date, it 
is clear that (e)CB effects on feeding are CB1-depend-
ent. Indeed, CB1

−/− (much like FAAH−/−) mice are lean, 
hypophagic, and resistant to diet-induced obesity [141, 
142], while CART-deficient mice are resistant to inhibition 
of food intake dependent on rimonabant (a CB1 antago-
nist) [140]. Genetically and diet-induced obese mice have 
recently been reported to have more CB1-expressing inhib-
itory inputs and 2-AG biosynthetic enzyme DAGL in the 
lateral hypothalamus, compared with lean littermates, and 
such alterations are reverted to lean mice conditions upon 
leptin administration [143].

Interestingly, the influence of wheel running (over a 
6-week period) and genotype (CB−/− vs CB+/+ mice) on 
food intake has been documented [91]; accordingly, volun-
tary exercise on a running wheel enhances the CB1 inverse 
agonist-dependent reduction of appetite in mice after 1 day 
of treatment [144].

Interplay between PA and the ECS in peripheral tissues

Peripheral energy homeostasis

Due to increased energy demand during exercise, PA 
induces the metabolic remodeling of several tissues that 
contain lipid and carbohydrate stores, and thus it exerts a 
general positive effect on peripheral energy homeostasis. 
Indeed, PA improves insulin sensitivity and metabolic flex-
ibility in muscles [145, 146], diminishes accumulation of 
lipids in liver [147, 148], and increases lipolysis in adipose 
tissue by: (1) activating the sympathetic nervous system; 
(2) increasing adipose tissue blood flow; and (3) stimulat-
ing fatty acid oxidation [149] (Fig. 5).

Conversely, eCB tone mainly exerts a negative influ-
ence on peripheral energy homeostasis [45, 135, 150]. 
For instance, AEA-treated soleus muscles from lean rats 
showed decreased basal and insulin-induced glucose 
uptake [151]. Accordingly, a CB1 blockade in L6 rat myo-
tubes increased glucose uptake through phosphatidylino-
sitol 3-kinase/protein kinase B (Akt) [152] and ERK1/2 
kinases [153], without affecting the expression of GLUT1 
or GLUT4 glucose transporters [152] (Fig. 5).

To date, no effect has been found on glucose uptake 
using CB2 or TRPV1 antagonists [152], though it has been 
reported that CB2

−/− mice, which did not develop diet-
induced obesity and insulin resistance, increased insulin-
mediated glucose uptake in skeletal muscles [154]. Treat-
ment of primary skeletal muscle cells with AEA or with 
a pre-adipocyte-conditioned medium inhibited insulin-
dependent glucose uptake, decreased Akt phosphorylation, 
and activated ERK1/2 and p38-MAPKs [155]. Moreover, 
AEA has been found to further disturb the insulin pathway, 
by increasing insulin receptor substrate 1 phosphorylation 
at Ser307, and thus triggering an inhibitory action [155].

Importantly, AEA was also able to induce basal glucose 
uptake on its own at high concentrations (10 μM), perhaps 
due to 5′ AMP-activated protein kinase (AMPK) activa-
tion [156] (Fig.  5). Indeed, two distinct pools of GLUT4 
exist in muscle cells [157] and insulin regulates GLUT4 
trafficking principally via the PI3K/Akt pathway; instead, 
other stimuli like exercise appear to do so (at least in part) 
via activation of the stress kinase AMPK2 [158]. In line 
with this, AEA treatment of human primary skeletal mus-
cle myotubes increased AMPK-α mRNA expression [61]. 
In the same study, AEA (5 μM) was also able to increase 
the expression of PPAR-γ co-activator-1α, a transcription 
factor engaged to regulate mitochondrial biogenesis, glu-
cose uptake, and fat oxidation [61]. The latter data might 
suggest a possible eCB positive effect on muscles, through 
alternative pathways that could also be targeted by an 
eCB-like compound, like OEA and PEA. Should this be 
the case, further studies on eCB-triggered signaling might 
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provide further support to the beneficial effect of an exer-
cise-dependent rise of plasma eCBs.

eCB molecular targets, which are present in several adi-
pose depots, such as visceral and subcutaneous adipose 
tissues, are linked to energy homeostasis in different ways 
(Fig. 5). While CB2

−/− mice fed HFD maintain insulin sen-
sitivity and do not show signs of obesity-induced inflam-
mation [154], GPR55 expression is elevated in obese sub-
jects and correlates with visceral adipose tissue; moreover, 
its activation increases Ca2+ levels and expression of lipo-
genic enzymes in differentiated adipocytes [159]. CB1 
activation stimulates glucose uptake in adipocytes [38], 
and enhances their endocrine function, by increasing vis-
fatin expression and decreasing adiponectin expression 
[160]. Once again, these effects appear in contrast with 
those generally elicited by PA [131, 132]. Finally, rimona-
bant treatment in HFD rats produces profound metabolic 

remodeling of adipocytes, and hence it counteracts fat 
accumulation by: (1) affecting glycolysis, via induction 
of glyceraldehyde-3-phosphate dehydrogenase expres-
sion [161]; (2) influencing the tricarboxylic acid cycle 
and β-oxidation pathway, via increase of carnitine acetyl-
transferase and carnitine palmitoyltransferase II expres-
sion [162]; and (3) impairing lipogenesis, via inhibition of 
stearoyl-Coenzyme A desaturase 1 expression [163] and 
pre-adipocyte proliferation [161]. It has also been postu-
lated that ECS might modulate adipose tissue biology by 
interacting with PPARδ, shown to play a role in adipose 
remodeling during endurance exercise [164]. In agreement 
with this hypothesis, HFD rats showed all signs of meta-
bolic syndrome, like adipocyte hypertrophy, elevated CB1 
expression, and reduced PPARδ, which disappeared after 
a chronic exercise consisting of swimming for 1 h per day 
thrice a week, for 6 months [74].

Fig. 5   Schematic representa-
tion of effects of PA and the 
ECS at the peripheral level. 
ROS reactive oxygen species, 
RNS reactive nitrogen species. 
↑: increase; ↓:decrease; ↑↓: 
increase or decrease depend-
ing on exercise intensity, type, 
and duration (when referred to 
PA), and on activated pathways 
(when referred to ECS). See 
text for further details



2692 M. Tantimonaco et al.

1 3

Moreover, a study enrolling viscerally obese subjects, 
who followed a lifestyle program combining a healthy diet 
and physical activity for 1 year, showed an improved pro-
file of conventional metabolic risk factors, body weight 
loss, waist circumference reduction, and a 7  % decrease 
in plasma AEA and a 62 % decrease in plasma 2-AG lev-
els [68] (Table 1). Coherently, lean and agouti mice, given 
AM251 (a CB1 antagonist) combined with voluntary exer-
cise, lost more body weight than mice supplemented with 
the CB1 antagonist alone [144]. Since obesity and physical 
inactivity affect insulin and leptin, which both negatively 
regulate eCB levels [137, 150, 165], it is conceivable that 
in obese and sedentary subjects, increased eCB tone might 
depend on the lack of control exerted by the two hormones. 
Moreover, given that the upregulation of eCB tone affects 
peripheral energy homeostasis in favor of fat accumulation, 
a compensatory mechanism aimed at limiting the exces-
sive production of eCBs upon exercise might exist in order 
to prevent anabolic processes and to favor catabolism and 
energy supply. In this context, it should be stressed that the 
in vivo biological actions of eCBs are tightly regulated by 
a metabolic control, where FAAH has been recognized as 
a major player [166]. Incidentally, we found that physi-
cally active subjects (practicing regular aerobic exercise 
for about 8 h per week) have increased lymphocyte FAAH 
activity when compared to sedentary individuals [42].

The liver is a key organ for the storage and disposal of 
carbohydrates, proteins, and fats, and it is known to be influ-
enced by both PA [146] and ECS [45, 135] (Fig.  5). HFD 
mice, indeed, showed increased CB1 expression and AEA lev-
els in hepatic cells [167, 168]. Consistently, a CB1 blockade 
decreased liver steatosis and dyslipidemia [167, 168]. On the 
other hand, at least in healthy subjects it seems that previous 
chronic exercise (8-week training) does not affect liver ECS 
response to fasting-refeeding cycles; indeed, in rats fed with 
fructose (an animal model of liver steatosis), diet-depend-
ent increases of CB1, CB2 and FAAH expression were not 
affected by 8 weeks of treadmill exercise, and instead lowered 
plasma levels of free fatty acids and triacylglycerols [169].

Collectively, only a few reports confirm [71], suggest, 
or hypothesize [61, 156] a positive peripheral eCB effect 
during exercise. Thus, it would be very important to further 
investigate eCB-dependent mechanisms and/or their tissue 
specificity, in order to better understand the relationship 
between PA and ECS. At any rate, it has been convincingly 
demonstrated that the major role of eCBs at the periphery 
is opposite to that of PA and, if dysregulated, might also 
lead to pathological conditions [45, 150]. Therefore, it is 
conceivable that eCB metabolic routes are modulated to 
control eCB tone, a hypothesis that has been already dem-
onstrated for FAAH in lymphocytes of subjects practicing 
regular physical activity [42]. Proving this concept also for 
other ECS elements might be an asset in the future.

Immune system and redox state

A growing body of evidence points to the ability of exercise 
to induce, in a type-, duration-, and intensity-dependent man-
ner, physiological changes in the innate and adaptive immune 
system (Fig.  5). Acute exercise (1) increases the number 
of circulating monocytes, neutrophils, and lymphocytes 
[170]; (2) reduces the CD4+/CD8+ T cell ratio [171]; (3) 
increases mobilization of memory (but not naïve) lympho-
cytes [171]; (4) enhances the number and activity of natural 
killer cells [172]; and (5) markedly increases pro-inflamma-
tory cytokines, such as IL-1β, IL-6, IL-8, and tumor necrosis 
factor (TNF)-α [173]. Nonetheless, all parameters returned 
to basal levels within 24  h from the end of exercise [13]. 
Instead, prolonged exercise or frequent bouts of vigorous 
exercise temporarily depress immune system, thus result-
ing in higher susceptibility to infections, particularly among 
athletes [13]. Against this background, it is well-recognized 
that regular PA exerts general positive effects in preventing 
and reducing systemic inflammation, by: (1) downregulating 
the release of pro-inflammatory cytokines from monocytes 
and macrophages; (2) decreasing the number of circulating 
activated immune cells [174]; and (3) increasing the amount 
of blood T regulatory (Treg) cells [175]. By reducing the 
accumulation of visceral adipose tissue (a condition often 
occurring in the case of a sedentary lifestyle), exercise also 
decreases macrophage infiltration in this organ, thus contrib-
uting to lower levels of pro-inflammatory cytokines in the 
blood [176]. In this context, a key role is played by skeletal 
muscle that, during contraction, releases myokines like IL-6, 
IL-8, and IL-15 [177]. Among them, IL-6 plays a metabolic 
role by increasing insulin sensitivity, hepatic glucose produc-
tion, lipolysis, and fat oxidation [177, 178], and promotes an 
anti-inflammatory environment that suppresses the long-term 
effects of elevated pro-inflammatory cytokines [179].

Regular PA also promotes the generation of reactive 
oxygen and nitrogen species (ROS and RNS, respectively), 
which positively regulate redox-sensitive transcription fac-
tors (NF-κB and AP-1) [180], force production by contract-
ing muscles [181], exert a beneficial impact on vascular 
functions [182] and induce satellite cell proliferation and 
differentiation [183]. The downside is that, when exer-
cise is inappropriate, ROS and RSN levels dramatically 
increase, thus triggering oxidative stress that contributes to 
muscle fatigue and damage, as well as to pro-inflammatory 
responses [181, 184–186] (Fig. 5).

All ECS components are highly expressed in the 
immune system, where they are differentially modulated 
depending on leukocyte activation state: CB2 (undetectable 
in naïve T cells) and FAAH increase and decrease, respec-
tively, in activated lymphocytes [46, 187–189], while AEA 
content augments (due to upregulated NAPE-PLD activity) 
in LPS-stimulated macrophages [46, 47].
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The crucial role of ECS in immune responses is well-
recognized [28] (Fig.  5): for instance, AEA/CB2 interac-
tion strongly suppresses CD4+/CD8+ T lymphocyte pro-
liferation, impairs the pro-inflammatory responses of both 
T helper (Th) 17 and Th1 cells [189], and stimulates anti-
inflammatory activity of Treg and Th2 cells [190] (Fig. 5).

The ECS (particularly CB1) also modulates the redox state, 
by regulating inducible and endothelial nitric oxide synthase 
expression, mitochondrial biogenesis, respiration rate, and 
ROS/RNS generation [79, 191–194]. Furthermore, CBD has 
been shown to increase the production of ROS that, in turn, 
trigger CD4+ and CD8+ T cell apoptosis [195] (Fig. 5).

Overall, based on its ability to modulate immune 
responses, ECS might play a role in exercise-related changes 
of immune functions and cellular redox state. The inter-
play among eCB tone, exercise, and the immune system 
is, indeed, evident in subjects habitually practicing moder-
ate exercise, who show increased FAAH activity in their T 
lymphocytes (but not in other blood cells), when compared 
to sedentary individuals. Such an upregulation, which is 
mediated by factors released during exercise, including IL-6 
[42], IL-10 (whose release is enhanced by IL-6), and IL-4 
[6, 179], represents a compensatory mechanism occurring in 
active individuals and aimed at avoiding an excessive incre-
ment of eCBs upon exercise. Indeed, high eCB levels exert 
the same effects as prolonged exercise, i.e., depression of 
the immune system; therefore, both PA and eCB tone should 
be maintained in an optimal range, in order to favor an anti-
inflammatory environment able to counteract side effects 
like muscle damage and immune suppression [6, 179].

Concluding remarks and future directions

A growing body of evidences strongly indicates an interplay 
between PA and eCB tone, both centrally and peripherally. 
Indeed, eCBs are crucial in controlling locomotor activ-
ity, and much like exercise, they positively affect cognitive 
functions, nociception, and other brain processes. Thus, it is 
conceivable that some exercise-dependent effects in the CNS 
might depend (at least in part) on eCB signaling. This hypoth-
esis is strongly supported by several human studies showing 
that exercise is able to increase the circulating levels of eCBs 
in a type-, intensity- and time-dependent manner. Yet, in the 
majority of reports, unlike exercise, eCB tone negatively 
affects peripheral energy homeostasis towards fat accumula-
tion, which better describes an obesity-directed condition or 
a sedentary lifestyle. It seems necessary, therefore, that eCBs 
are tightly regulated during PA, in order to maintain their ben-
eficial effects while avoiding impaired energy metabolism, 
oxidative stress, and inflammatory processes.

Otherwise, future research should probably aim at clari-
fying these aspects, for example by exploring the influence 

of different exercise protocols on distinct proteins of the 
ECS, as well as on different eCB-dependent signaling cas-
cades. As yet, data on the effect of combining both exercise 
and diet on human eCB levels are still very few, and are 
all based on chronic exercise protocols. Nonetheless, it is 
well-known that dietary fat composition influences tissue 
levels of eCBs [196]: a standard Western diet rich in ω-6 
PUFA (i.e., linoleic and arachidonic acids) enhances AEA 
and 2-AG levels, while reducing the levels of ω-3 PUFAs 
and their derivatives (e.g., DHEA and EPEA) [197].

Collectively, exercise is increasingly seen as a “disease-
modifier”, i.e., a powerful tool to help prevent and treat sev-
eral diseases, from metabolic disorders to neurodegenera-
tive pathologies. A better understanding of the role of eCB 
in exercise could further increase the therapeutic efficacy of 
exercise protocols. This could also broaden exercise-based 
treatments to diseases with motor deficit, cognitive impair-
ment, as well as oxidative or inflammatory disturbances. 
Indeed, eCBs might also be an alternative target for drug 
design, keeping in mind that conventional medicines imply 
tolerance, drug resistance, or unwanted side-effects.

In conclusion, the study of the combined effects of exer-
cise and eCBs can lead to a more holistic, cost-saving clini-
cal approach in related (and rather common) behaviors, like 
nicotine and alcohol dependence.
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