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of IBD with the onset of colorectal neoplasia. Since then 
it has been established, that ulcerative colitis in particular 
[2], and also Crohn’s disease [3] pose an increased risk for 
patients to develop colorectal carcinoma (CRC). In fact, 
the two high-risk conditions for colorectal cancer are either 
hereditary diseases (i.e., familiar adenomatous polyposis or 
Lynch Syndrome) or chronic colitis. But while colitis-asso-
ciated carcinoma (CAC) represents only a small fraction of 
all colorectal cancer cases, in patients with ulcerative colitis 
the development of a malignant disease is associated with 
high morbidity and mortality. In a landmark meta-analysis, 
eaden et al. [4] evaluated the cumulative risk of colitis-
associated cancer with 1.6 % at 10 years, 8.3 % at 20 years 
and 18.4 % at 30 years. Rutter and colleagues [5], who 
examined 600 patients from a 30-year colonoscopic sur-
veillance program found a considerably lower incidence, 
but still 10.8 % of ulcerative colitis patients developed 
colitis-associated neoplasms after 30 years of disease dura-
tion. Alarmingly, more than half of the invasive carcino-
mas detected (16/30) were interval cancers. Tumor onset in 
IBD patients even increases when colitis is diagnosed at a 
young age and accompanied by prolonged disease duration, 
right-sided colitis, pancolitis [2] and/or primary scleros-
ing cholangitis [6]. Further contributing factors are colonic 
strictures and postinflammatory polyps [7, 8]. Interestingly, 
proctitis and proctosigmoiditis do not increase the chance 
of developing colonic neoplasia [9].

Pathophysiology and molecular basis

Sporadic and colitis-associated colorectal neoplasia

Most scientific data on the pathophysiology of colorec-
tal tumorigenesis available today has been gathered from 

Abstract Crohn’s disease and ulcerative colitis are both 
associated with an increased risk of inflammation-associ-
ated colorectal carcinoma. Colitis-associated cancer (CAC) 
is one of the most important causes for morbidity and mor-
tality in patients with inflammatory bowel diseases (IBD). 
Colitis-associated neoplasia distinctly differs from sporadic 
colorectal cancer in its biology and the underlying mecha-
nisms. This review discusses the molecular mechanisms of 
CAC and summarizes the most important genetic altera-
tions and signaling pathways involved in inflammatory car-
cinogenesis. Then, clinical translation is evaluated by dis-
cussing new endoscopic techniques and their contribution 
to surveillance and early detection of CAC. Last, we briefly 
address different types of concepts for prevention (i.e., anti-
inflammatory therapeutics) and treatment (i.e., surgical 
intervention) of CAC and give an outlook on this important 
aspect of IBD.

Keywords Inflammatory bowel disease · Ulcerative 
colitis · Crohn’s disease · Colitis-associated cancer · 
Colorectal carcinoma · endoscopy · Chemoprevention

Introduction

when Crohn and Rosenberg [1] published their first reports 
about inflammatory bowel disease (IBD) in the beginning 
of the last century, they already highlighted an association 
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sporadic colorectal carcinoma. In various landmark tri-
als—some of which are the most cited papers in recent his-
tory—vogelstein and colleagues were the first to describe 
a series of molecular events that turn normal mucosa first 
into hyperplastic epithelium, then into adenomatous polyps 
with dysplastic cells and then into malignant carcinoma 
with invasion of the basement membrane and metastasis 
[10–13]. what has become known as the adenoma–carci-
noma sequence (vogelstein hypothesis) started with the 
discovery that mutations in the APC (adenomatous poly-
posis coli) gene initiate colorectal tumor development [14]. 
This gene had until then only been found to be altered in 
germline cells of patients with hereditary neoplasms of the 
colon, a condition called familiar adenomatous polypo-
sis (FAP). Further mutational steps include alterations in 
the K-ras (Kirsten rat sarcoma viral oncogene homolog) 
oncogene, loss of function of the retinoblastoma (rb1) and 
the TP53 gene—two major tumor suppressors—and dele-
tion of the DCC (deleted in colorectal cancer) gene. These 
genetic alterations are paralleled by distinct histopathologic 
changes. But while in sporadic cancer, genetic disposition 
and alterations acquired during aging are key factors that 
promote carcinogenesis, in colitis-associated cancer it is 
the inflammation which drives tumor development [15]. A 
constant inflammatory stimulus leads to lesions with dif-
ferent morphologic features such as flat and serrated struc-
tures, often times occurring simultaneously at multiple sites 
of inflamed mucosa. This is represented by the modified 
inflammation-low-grade/high-grade dysplasia–carcinoma 
sequence. Although similar mutations as in colorectal can-
cer are found in colitis-associated cancer, they occur in dif-
ferent stages of the disease and with different underlying 
etiology [16].

Mutations

For the TP53 gene, which encodes for the p53 protein and 
is regarded as the “guardian of the genome” [17], defined 
mutations and loss of heterozygosity (LOH) are observed 
early in inflammatory carcinogenesis. This is in contrast to 
its role in sporadic colorectal cancer, where it is regarded 
as one of the last protectors from invasive carcinoma. Loss 
of heterozygosity means that only one mutation can lead to 
total loss of gene function, which is the case if you have 
only one allele left due to prior mutations or inheritance 
[18]. It was found that 50–85 % of colitis-associated can-
cers have deletions in the TP53 gene [19]. Furthermore, in 
over 50 % of colonic tissue specimens of ulcerative colitis 
patients p53 deletions could be observed without any sign 
of dysplasia or neoplasia [20]. This was explored in fur-
ther detail by Brentnall and colleagues [21], who carefully 
mapped whole colectomy specimen of ulcerative colitis 
patients. They could prove that, mutations in the p53 gene 

succeeded aneuploidy, which is then followed by LOH. 
LOH thereby seems to correlate with progression into inva-
sive carcinoma. The importance of the TP53 gene in colitis-
associated cancer is also highlighted by a growing amount 
of data from animal studies. For example, it has been 
shown that mutant prolongs chemically induced NFκB 
activation in mice harboring a germline p53 mutation. This 
causes severe damage to the mucosa and increases the risk 
to develop colitis-associated tumors. It further seems to 
rapidly enhance the progression from high-grade dysplasia 
to invasive carcinoma [22].

while in sporadic carcinoma mutations in the APC gene 
were described to initiate tumorigenesis, this does not seem 
to be the case in colitis-associated cancer [23]. LOH in 
the APC gene loci was found in 0 % of normal mucosa of 
ulcerative colitis patients (0/6) and also 0 % of specimen 
of active colitis (0/7). Only in high-grade dysplasia APC 
mutations start to occur in 27.3 % of patients (3/11) while 
50 % of cases of colitis-associated carcinoma (3/6) display 
alterations in this tumor suppressor gene as examined by 
Fogt et al. [24]. In contrast, in sporadic benign adenomas 
already 21 % of the specimen (4/19) displayed APC muta-
tions. The role of APC in colitis-associated cancer progres-
sion has been confirmed by others and is also supported by 
substantial evidence from animal studies [16]. For exam-
ple, it has been shown that in APCmin (multiple intestinal 
neoplasia) mice chemically induced dextran sodium sulfate 
(DSS) colitis increases tumor frequency especially for later 
stages of dysplasia and carcinoma development [25]. Con-
sistently, analysis of β-catenin, an important intracellular 
signaling molecule in the APC and wnt pathway, which is 
mutated in many types of cancers, showed no alterations 
in most specimen of active ulcerative colitis, dysplasia and 
colitis-associated cancer [26]. This may be at least in part 
based on the fact, that mesalazine, a common treatment 
for IBD patients has been shown to inhibit in particular 
β-catenin metabolism [27]. Furthermore, other inflamma-
tory pathways have been demonstrated to bypass various 
components of the wnt/APC/β-catenin signaling axis and 
still promote intestinal tumorigenesis [28–30]. Data on 
K-ras alterations in colitis-associated cancer show muta-
tions occur less frequently in inflammatory carcinogenesis 
[31]. In patients with ulcerative colitis, alterations in this 
gene tend to appear at more advanced stages, such as high-
grade dysplasia and carcinoma. Furthermore, a risk factor 
for K-ras mutation seems to be a disease history longer 
than 10 years [32, 33]. Further steps in inflammatory car-
cinogenesis are the loss of tumor suppressor gene DCC 
resulting in low-grade dysplasia followed by the activation 
of other less frequent proto-oncogenes, such as src high-
grade dysplasia [34].

while the majority of research on genetic alterations 
focused on specimens of ulcerative colitis patients, the 



3525Colitis-associated neoplasia

1 3

situation in individuals with Crohn’s disease is less 
clear. This may be due to the fact, that tumor onset is 
less likely in this form of IBD. In one of the few stud-
ies on mutations in small bowel adenocarcinomas, it was 
shown that K-ras and p53 alterations occur early during 
inflammatory tumor development, while APC, DCC and 
TGF-β-RII mutations are rare, which contrasts with spo-
radic colorectal cancer [35]. Further studies are needed 
to evaluate similarities and differences in tumor genet-
ics of ulcerative colitis and Crohn’s-associated neopla-
sia (Fig. 1).

Oxidative stress

One major mechanism, which links inflammation to pro-
neoplastic genetic alterations is oxidative stress [36–38]. 
Oxidative stress is mainly produced by cells of the innate 
immune system such as macrophages and granulocytes 
and includes the generation of various reactive oxygen and 
nitrogen species (ROS, NOS). This “respiratory/oxidative 

burst” is a crucial component of the unspecific defense 
orchestrated by innate immune cells. while effectively kill-
ing mucosal pathogens, ROS and NOS also pose a constant 
mutational challenge for the intestinal epithelium [39]. This 
results in DNA breaks, DNA adducts and damage to cel-
lular lipids and proteins [40]. Consequently, direct or indi-
rect inhibition of oxidative stress has been demonstrated 
to effectively delay DNA damage and decrease intestinal 
tumor development [41–43]. when oxidative stress is pre-
sent, this not only leads to activation of the DNA dam-
age response (DDR) [44] and but also effects particular 
regions of the genome, which are the telomeres. In fact, in 
a series of papers, the Rabinovitch group could show that 
colonocyte telomeres shorten with age almost twice as 
rapidly in ulcerative colitis patients as in normal controls. 
Furthermore, phospho-H2AX, a marker of the DDR, was 
significantly higher in colonocytes of ulcerative colitis 
patients than in control [45]. O’Sullivan et al. could show 
that genomic instability in patients with ulcerative colitis is 
related to telomere shortening and that this parameter can 

Fig. 1  Pathophysiology of sporadic and colitis-associated carcinoma
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be used to identify patients with progressive disease and 
predisposition to colitis-associated cancer [19, 46, 47].

Soluble factors and signaling cascades

Apart from oxidative stress and subsequent genomic altera-
tions induced by cells of the innate immune system, solu-
ble factors also contribute to inflammation-associated car-
cinogenesis. These soluble factors include inflammatory 
cytokines, chemokines, growth- and transcription factors. 
In this regard, most of the data available today has been 
gathered from animal studies [48], which are a useful tool 
to mimic human disease. But despite preclinical advances 
translation into clinical application remains challeng-
ing nonetheless [49]. One key player of inflammation is 
the nuclear factor ‘κ-light-chain-enhancer’ of activated B 
cells, better known as NFκB. NFκB is activated not only 
in sites of inflammation, but interestingly also in many 
solid tumors and cancer cell lines [50]. Greten and col-
leagues examined the NFκB pathway in the most frequent 
mouse model of colitis-associated colorectal cancer, the 
so-called AOM + DSS model. Azoxymethane (AOM) is 
a potent mutagen and repeated cycles of dextran sodium 
sulfate induce colonic inflammation. After knocking down 
the IKKβ kinase, an important enzyme upstream of NFκB, 
mice were significantly protected against inflammatory 
tumor development [51, 52]. It was further shown that toll-
like receptors (TLR) play an important role in the inter-
action between the intestinal microflora and the mucosal 
immune defense via NFκB activation [53].

Another molecule that has a pivotal role in inflamma-
tory carcinogenesis of the colon is IL-6. IL-6 is produced 
predominantly by cells of the innate immune system such 
as monocytes and macrophages. In these cells, IL-6 expres-
sion is regulated through the activation of several transcrip-
tion factors such as C/eBPβ (CAAT/enhancer-binding 
protein β), AP-1 (activator protein 1) and also NFκB [54]. 
In subsequent studies, Becker and colleagues were able to 
demonstrate, that it is not the membrane bound form of the 
IL-6 receptor, which is responsible for the tumor promoting 
effect, but rather a trans-signaling mechanism with soluble 
form of the IL-6 receptor. A dimer of IL-6 and its soluble 
receptor interacts with glycoprotein 130 (gp130, CD130), 
and thereby enables the activation of subsequent down-
stream signaling cascades [55, 56]. Major effector is the 
signal transducer and activator of transcription 3 (STAT3) 
through phosphorylation. STAT3 activation has been 
shown to be an important step for promotion and progres-
sion through the induction of various target genes. These 
target genes are involved in tumor cell survival, prolif-
eration, metastasis and others [57–59]. The role of IL-6 in 
colitis-associated carcinogenesis has further been explored 
by Grivennikov and colleagues, who could show that both 

IL-6 and STAT3 are required for the survival of intestinal 
epithelial cells and development of colitis-associated can-
cer [60, 61]. very recently, IL-11 was further identified as 
another key cytokine of the IL-6 family during gastrointes-
tinal tumorigenesis [62]. Supporting these data, high levels 
of IL-6 could be found in patients with colon carcinoma 
[63]. Consequently, the anti-IL-6R antibody tocilizumab 
has been tested in clinical trials for both inflammatory dis-
eases and cancer and shows promising results in some of 
these conditions [64].

Another important cytokine in the pathogenesis of both 
IBD and colitis-associated cancer is the tumor necrosis 
factor α (TNF α). TNF α is secreted predominantly by 
macrophages but other cells have the ability to release 
TNF α at the site of inflammation. The cytokine acts 
mainly through the TNF receptor 1 (TNF-R1) and has 
multiple effects depending on the tissue context. Its role 
as a pro-inflammatory mediator made it an attractive tar-
get in IBD therapy. In fact, TNF-targeting therapeutics 
are an integral part of the anti-inflammatory regime in 
Crohn’s disease as well as ulcerative colitis [65]. TNF α 
promotes inflammatory carcinogenesis by inducing DNA 
damage, proliferation and angiogenesis in the intestinal 
epithelium. when TNF-R1-deficient mice were exposed to 
AOM/DSS these mice showed reduced inflammation and 
fewer colitis-associated tumors. In addition, bone mar-
row chimera from TNF-R1-deficient mice or mice treated 
with etanercept, a soluble TNF receptor, developed fewer 
colonic neoplasms [66]. This is supported by newer data 
in mice receiving long-term DSS mimicking chronic coli-
tis. when treated with infliximab, a monoclonal antibody 
targeting TNF α, only 16.7 % of mice developed tumors, 
compared to 75.0 % percent of control mice. Surprisingly, 
treatment was effective only at early time points of DSS 
colitis to prevent animals from developing inflammatory 
tumors. This is in favor of a ‘top-down’ treatment rather 
than a ‘step-up’ regimen [67]. Unfortunately, to date there 
are no good data dealing with a potential preventive effect 
on inflammatory carcinogenesis in patients receiving anti-
TNF therapeutics.

Another important cytokine of the interleukin family 
for inflammatory bowel disease as well as colitis-associ-
ated colorectal carcinoma is IL-10. This has extensively 
been studied in IL-10-deficient mice, which spontaneously 
develop colitis mimicking inflammatory bowel disease 
in humans [68–70]. IL-10 is produced by monocytes and 
Th2 lymphocytes. Together with TGFβ it is a major anti-
inflammatory cytokine [71]. It has been demonstrated, that 
variants of the IL-10 gene are linked to susceptibility to 
developing ulcerative colitis [72]. The cytokine has even 
been evaluated in various clinical trials but so far results 
with recombinant IL-10 do not fulfill the expectations 
[73]. It has further been shown, that IL-10 also promotes 
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inflammatory carcinogenesis but the underlying mecha-
nisms have not been elucidated entirely [74].

There are also other cytokines, which do not have a 
direct effect on the intestinal epithelium but still contrib-
ute to colitis-associated carcinogenesis. In this regard, the 
IL-12 family and IL-23 in particular seems to be a crucial 
molecule in IBD and colitis-associated cancer develop-
ment [75, 76]. IL-23 levels are upregulated in various can-
cers including colorectal cancer and in preclinical animal 
studies, ablation of IL-23 and its receptor lead to protec-
tion against carcinogenesis in different inflammatory tumor 
models [77–79]. In this regard, IL-23 also influences other 
pro-inflammatory and thus pro-tumorigenic cytokines such 
as IL-6, IL-17 and IL-22.

Another signaling molecule that becomes increasingly 
important in colitis-associated carcinogenesis is the vascu-
lar endothelial growth factor veGF and its main effector 
molecule the veGFR-2. The veGF/veGFR-2 signaling 
axis and its role on angiogenesis have been studied exten-
sively in sporadic colorectal cancer and led to the approval 
of Bevacizumab, a monoclonal antibody targeting veGF, 
after it has been proven beneficial in a large phase III clini-
cal trial [80]. The role of angiogenesis in chronic inflamma-
tion, however, is less clear [81]. Growing evidence suggests 
that veGF is also secreted by various immune cells at the 
site of inflammation to induce neovascularization, enhance 
vascular permeability and also directly activate other cells 
of the immune system [82]. Scaldaferri and colleagues [83] 
could demonstrate that acute DSS colitis was aggravated 
in mice constitutively overexpressing veGF, which could 
be reversed, by overexpressing a soluble veGFR protein. 
Furthermore, it has recently been shown, that veGFR-2 

signaling links inflammation and carcinogenesis in a 
STAT3-dependent manner. Chronic inflammation leads to 
an upregulation of the veGFR-2 directly on the intestinal 
epithelial cells, where it promotes proliferation and tumor 
development [59].

The importance of inflammatory mediators in the devel-
opment of colorectal neoplasia is also supported by a dif-
ferent observation: Aspirin and non-steroidal anti-inflam-
matory drugs (NSAIDs) such as ibuprofen, were found to 
decrease the risk of developing sporadic colorectal carci-
noma [84, 85]. These drugs even have a beneficial effect in 
patients with familiar adenomatous polyposis, the heredi-
tary condition in which germline mutations in the APC 
gene lead to a very early onset of intestinal neoplasia [86]. 
These data were further supported by a data that demon-
strated that 5-ASA (5-aminosalicylic acid) can decrease the 
risk of colitis-associated cancer in patients with IBD [87, 
88]. In contrast, a new study by Ishikawa and Herschman 
[89] found that tumor formation not necessarily requires 
COX-1 or COX-2 expression in AOM/DSS-treated mice. 
Thus, further studies concerning the role of anti-inflamma-
tory drugs such as anti-TNF α therapeutics, COX inhibitors 
and other NSAIDs in colitis-associated carcinogenesis are 
needed.

Cell types

Cells of the innate immune system (neutrophils, mono-
cytes, macrophages, mast cells, dendritic cells, etc.) have 
been regarded mainly as pro-tumorigenic, as they facilitate 
an unspecific inflammatory response [90]. Among others 
this has been studied by Mangerich et al. [91] in a model 

Fig. 2  Cells and mediators 
involved in inflammatory bowel 
disease and colitis-associated 
cancer and their therapeutic 
implications
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of infection-induced IBD. The role of cells of the adaptive 
immune system however is more complex. CD4+ effector 
T cells, respectively various subsets of this cell population, 
were shown to be critical for the maintenance of chronic 
inflammation in patients with Crohn’s disease and ulcera-
tive colitis [92]. This would also suggest some CD4+ T 
cell subsets as possible promoters of colitis-associated 
carcinoma. Indeed, a Th2 response has been attributed 
to the progression of experimental and human sporadic 
CRC, whereas a Th1 response has been associated with an 
improved prognosis in this disease [93–95]. CD8+ T cells 
play a very important role in cancer immunosurveillance. 
Regulatory T cells (Tregs) have been shown to have a pro-
tective effect on inflammation and autoimmunity, but this 
suppression of the immune system can be deleterious. In 
fact, Tregs have been demonstrated to reduce the host anti-
tumor immune response mediated by CD8+ T cells [96]. 
Unfortunately, there are only limited data about the role of 
Tregs in the immunosurveillance of inflammation-associ-
ated cancer. Interestingly, in a study by erdman and cow-
orkers, Tregs were able to reduce tumor growth in APCmin 
mice, which spontaneously develop colon cancer and have 
been used for the study of sporadic CRC development, 
indicating that further data on Tregs are needed [97–99].

Apart from immune cells and inflammatory cytokines, it 
becomes more and more apparent, that other cell types have 
an important role in sporadic and colitis-associated car-
cinogenesis. In sporadic colorectal cancer it has been well 
established, that the cells of origin are the intestinal stem 
cells (ISCs) [100–103]. Using various sophisticated mouse 
models, it could be shown, that ISCs are located at the base 
of the intestinal crypt and express the marker Leucine-rich 
repeat-containing G-protein-coupled receptor 5 (LGR5). 
Targeted knockout of the APC gene in these stem cells 
resulted in tumor development, while this was not the case 
when APC was deleted in a non-stem cell population [103]. 
The influence of chronic colitis on these cells is less clear. 
In a very recent highly published study, the Greten group 
could show that during inflammation also non-stem cells of 
the intestinal epithelium can re-acquire stem like properties 
and that this leads to the development of colorectal cancer 
via NFκB and wnt-signaling [104]. Not only the stem cell 
niche is in the focus of colorectal carcinogenesis but also 
the tumoral stroma seems to be of particular importance. 
For example, Neufert and colleagues [105] could demon-
strate very recently, that tumor fibroblast-derived epiregulin 
promotes growth of colitis-associated neoplasms through 
eRK (Fig. 2).

Intestinal microflora

Having elucidated the role of cellular and soluble factors 
in the pathogenesis of IBD and colitis-associated cancer, it 

has to be discussed, that the human intestine is host of a 
highly complex microbiome with a variety of over 1,000 
different species [106]. The intestinal microbiome fulfills 
numerous physiologic functions such as development and 
maturation of the immune system, vitamin synthesis and 
food digestion [107]. As for malignant diseases, a large 
body of evidence also shows that in various types of can-
cers different microorganisms and viruses can significantly 
contribute to tumor development and progression [107–
109]. This seems to be of particular relevance in colitis-
associated carcinogenesis. For example, germ-free mice, 
do not develop colitis and tumor frequency is dramatically 
reduced in the APCmin as well as the AOM + DSS model 
[110, 111]. In a study by Arthur and colleagues [112] it 
could further been demonstrated, that colitis can lead to 
alterations in microbial composition, which promote tumo-
rigenesis by inducing the expansion of certain bacteria with 
genotoxic capabilities. But while some specific pathogens 
have been identified such as Helicobacter and Bacteroides 
spp [113–115], we are far from understanding the role of 
intestinal microbes in health and disease.

epigenetic alterations in CAC

Apart from mutations and genetic factors influencing IBD 
and consequently CAC development, epigenetic factors 
could potentially mediate interactions between the envi-
ronment and the genome in patients with CD and UC. The 
field of epigenetics subsumes all heritable genetic changes 
that are not due to changes in the DNA sequence itself. The 
three major epigenetic mechanisms are RNA interference 
by microRNAs, histone modification and DNA methylation 
[116, 117]. In resection specimen of patients with active 
UC, for example, a substantial number of loci have been 
demonstrated to be differentially methylated when com-
pared to non-inflamed tissue. These loci include MYOD1, 
GDNF, HPP1 and CDH1 and are associated with cancer 
development [118]. Interestingly, a study by Dhir et al. 
[119] could show methylation of wNT signaling pathway 
genes which occur early in patients with IBD colitis and 
increase during inflammatory carcinogenesis. This is in 
contrast to actual mutations in this pathway, which are typi-
cal for late colitis-associated tumorigenesis. Furthermore, 
studies have shown that various DNA methylation patterns 
can be found in the colonic mucosa of IBD patients that are 
related to aging. This potentially reflects a higher prolifera-
tion rate in these tissues and could contribute to genomic 
instability [120]. Data on the role of histone modification 
in IBD and CAC are scarce and are mainly derived from 
the use of histone deacetylase inhibitors [121, 122]. For 
RNAi by microRNAs, several candidates could be identi-
fied, which are differentially expressed and seem to be 
involved in the pathogenesis of IBD such as miR-150 [123] 
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or miR-192 [124]. In addition, when a molecule involved 
in processing miRs in the intestine is ablated this leads to 
spontaneous intestinal inflammation [125].

Translational approaches

Diagnosis of colitis-associated cancer

Endoscopic surveillance

with IBD patients being at high risk to develop colorec-
tal cancer, surveillance colonoscopy is considered to be 
the gold standard in the diagnosis of dysplastic and neo-
plastic changes. Current guidelines recommend the first 
surveillance colonoscopy 8–10 years after onset of the 
first symptoms. endoscopic examinations are then sched-
uled every 1–2 years. In high-risk patients with extraintes-
tinal manifestations, screening should take place annually. 
But, because that risk depends on various factors, such as 
disease duration or anti-inflammatory therapy, the role of 
preventative surveillance programs remains controversial. 
Opponents argue that as many as 50–80 % of colitis-asso-
ciated cancer lesions are not visible during colonoscopy 
[126] and point to a relatively high number of patients that 
need to be enrolled in these programs to identify a patient 
with colitis-associated cancer [5, 127]. This is even more 
relevant when taken into account that the usual endoscopic 
procedure in patients with IBD is to take multiple non-tar-
geted biopsies. Rubin and colleagues [128] calculated that 
at least 56 of these biopsies needed to be taken at every sin-
gle surveillance colonoscopy to rule out dysplasia with a 
95 % confidence interval. Although in large part driven by 
technological advances, diagnosis of IBD and CRC is also 
highly dependent on our understanding of the pathophysi-
ology and molecular events, which occur during inflamma-
tory carcinogenesis.

Emerging technologies

Recently, new endoscopic imaging techniques have been 
introduced, which allowed a more detailed visual represen-
tation of mucosal and submucosal features. For example, 
high-definition (HD) technology can be applied for endos-
copy to achieve a higher resolution and greater magnifica-
tion. It has been shown that HD endoscopy could substan-
tially contribute to detect and characterize flat neoplastic 
lesions as often found in patients with IBD [129]. Other 
technologies include the use of different filters to highlight 
various mucosal features. enhancing the appearance of the 
crypt helps to differentiate neoplastic from non-neoplastic 
changes and enables the performance of targeted biopsies. 
In a meta-analysis of six randomized controlled trials it was 

found that the diagnostic accuracy of chromoendoscopy for 
colitis-associated cancer detection dysplastic lesions is con-
siderably high [130]. It has been further shown that some 
of these techniques might be useful in the diagnosis of coli-
tis-associated dysplasia and neoplasia [131–133].

Another promising diagnostic tool is denoted confo-
cal laser endomicroscopy (CLe) [134]. It uses miniatur-
ized confocal microscopic probes that are integrated in 
conventional endoscopes und thus provide the endoscopist 
with direct in vivo histologic imaging of the mucosa dur-
ing ongoing examination. For precancerous lesions in IBD, 
Kiesslich et al. demonstrated that when CLe was combined 
with chromoendoscopy 4.75-fold more neoplasia could 
be detected in surveillance colonoscopies of patients with 
ulcerative colitis compared to conventional endoscopy. 
In addition, only half of the biopsies were necessary and 
CLe could predict neoplastic changes with high sensitiv-
ity and specificity. [135–137]. Only recently, CLe was even 
explored to perform molecular-targeted microscopic imag-
ing in vivo in various models of sporadic colorectal cancer. 
This was achieved by aiming at different tumor epitopes 
such as eGFR (epithelial growth factor receptor) and 
veGF (vascular endothelial growth factor) with fluores-
cently labeled antibodies [138, 139]. Also imaging of COX 
activity was feasible with an activate probe [140]. The first 
step from bench to bedside in molecular-targeted imaging 
with CLe in IBD patients was then achieved using fluo-
rescently labeled anti-TNF α therapeutics in patients with 
ulcerative colitis. Specific imaging was not only feasible, 
but also it could be used to predict the response to therapy 
in a small cohort of patients receiving anti-TNF α treat-
ment [141]. This is very promising, as these therapies are 
costly, not without side effects and there is a distinct group 
of non-responders. Further applications of this in vivo 
molecular-targeted imaging include early detection of coli-
tis-associated carcinoma by targeting pre-neoplastic stages. 
In summary, the role of endoscopy and surveillance pro-
grams in patients with IBD remains a controversial issue, 
but recent technologic advances could potentially improve 
diagnosis of colorectal neoplasia in IBD patients [142].

Systemic treatment of colitis‑associated cancer

Having examined recent diagnostic advances in IBD and 
colitis-associated cancer, which in part originated from 
growing knowledge about molecular mechanisms in the 
pathophysiology of IBD, we would like to close this review 
by looking at some important aspects in the current treat-
ment of colitis-associated cancer. As described above, for 
sporadic colorectal cancer it has been shown that chemo-
prevention can lower the incidence and reduce the risk 
for individuals to develop colorectal cancer. Therapeu-
tics that can be used in colorectal cancer prevention are 
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drugs inhibiting inflammation (COX inhibitors, Salicy-
lates etc.). This might result from the fact that sporadic 
colorectal cancer and inflammation-associated cancer are 
promoted by similar pathways. So the rationale in using 
anti-inflammatory drugs in IBD patients not only to treat 
their chronic disease, but to prevent development of colitis-
associated cancer is very strong. while several studies sup-
port this concept, the evidence is somehow conflicting due 
to differences in study design and details of the medication 
regimen.

Chemoprevention of colitis-associated cancer

Aminosalicylates

Aminosalicylates are in integral part of maintenance ther-
apy in IBD patients as they are inexpensive and fairly safe 
to use. Several studies have tried to elucidate the potential 
of sulfasalazine and mesalazine in the prevention of colitis-
associated cancer development in patients with long-stand-
ing inflammation. It was shown, that colitis-associated can-
cer incidence can be reduced over 75 %, when mesalazine 
was used, while sulfasalazine was not as that much effec-
tive. The highest risk reduction was seen when 1 g/day was 
administered, but both drugs showed also dose-dependent 
effects [143–145]. This was supported by animal studies 
in which the administration of 5-ASA or 5-ASA prodrugs 
demonstrated a significant inhibitory effect on the develop-
ment of intestinal tumors [146, 147]. One of the main influ-
enced pathways is the NFκB signaling axis, for example. 
while several studies came to similar conclusions, some 
groups were not able to reproduce these findings and could 
not observe any significance when these drugs were used. 
However, the majority of the investigations have found at 
least a protecting effect, supporting the role of mesalazine 
and to some extent sulfasalazine as chemopreventive agents 
in colitis-associated cancer development [148, 149].

Ursodesoxycholic acid

In patients with the non-intestinal manifestation of primary 
sclerosing cholangitis, ursodesoxycholic acid is usually 
used to treat this liver condition. Surprisingly it could be 
observed, that especially in ulcerative colitis patients, that 
drug could prevent development of colitis-associated cancer 
and even dysplasia, when compared to untreated patients. It 
is unclear what the underlying molecular mechanisms are 
but it has been suggested that ursodesoxycholic acid acts 
antioxidative and thereby reduces mutational stress by ROS 
and RNS. Also bile acids, which are believed to have car-
cinogenic potential, are reduced [150–152]. Again, further 
studies are needed to clearly show a beneficial effect of 
these drugs [153].

Glucocorticoids

Glucocorticoids only play a minor role in chemopreven-
tion of CAC. while these therapeutics are important in 
the treatment of acute flares of IBD, their adverse effects 
during long-term use are dreaded. So there are only few 
studies dealing with glucocorticoids and the risk of CRC 
development in patients with IBD. Among others, van 
Staa and colleagues [154] could show, that regular use 
of glucocorticoids and other immunosuppressants was 
associated with a reduced risk of CRC (adjusted OR 
0.38), while only taking oral glucocorticoids even slightly 
increased the risk to develop CRC. The use of budeson-
ide, a glucocorticoid with minimal systemic absorption, 
could pose a potential alternative, but has yet to be evalu-
ated in this regard [155].

Biologicals

For treatment with neutralizing antibodies and other bio-
logicals, there are unfortunately no solid data about pre-
ventive properties against dysplasia or colitis-associated 
cancer [156, 157]. Animal studies however suggested that 
chronic colitis mimicked by repeated cycles of DSS lead 
to a reduced onset of colitis-associated neoplasia, when 
animals were treated with infliximab compared to standard 
therapy without biologicals [67]. In a recent retrospective 
study on follow-up data of patients with infliximab, 4 out 
of 651 patients with IBF developed colorectal cancer, while 
probability calculations from epidemiologic data would 
have predicted a slightly higher number [158]. Other bio-
logicals, such as anti-IL-6 receptor antibody Tocilizumab 
or anti veGF antibody Bevacizumab have only recently 
been suggested for treatment of IBD and colitis-associated 
cancer patients, so there are no data in chemoprevention of 
colitis-associated cancer as of yet [73].

Conclusion

In summary, chronic inflammation is the key factor that 
creates a favorable environment for initiation and progres-
sion of colitis-associated carcinoma in patients with inflam-
matory bowel disease.  A large amount of data has been 
obtained by drawing parallels to sporadic colorectal cancer, 
but the whole pathogenesis of ‘inflammatory carcinogen-
esis’ is not completely understood [159]. Studying colorec-
tal cancer and colitis-associated neoplasia in particular can 
help to elucidate the important role of the immune system 
and microbiota in the development of solid tumors [94, 
109]. Diagnosis of colitis-associated cancer is one of the 
big challenges in gastrointestinal endoscopy, which might 
be improved by new endoscopic imaging and resection 
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techniques. Clear guidelines should be thoroughly adopted 
and applied in clinical practice to minimize the risk of 
tumor development for patients suffering from IBD [160].
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