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Abstract The skeletal muscle has the capacity to repair

damage by the activation and differentiation of fiber sub-

laminar satellite cells. Regeneration impairment due to

reduced satellite cells number and/or functional capacity

leads to fiber substitution with ectopic tissues including fat

and fibrous tissue and to the loss of muscle functions.

Muscle mesenchymal cells that in physiological conditions

sustain or directly contribute to regeneration differentiate

in adipocytes in patients with persistent damage and in-

flammation of the skeletal muscle. These cells comprise the

fibro-adipogenic precursors, the PW1-expressing cells and

some interstitial cells associated with vessels (pericytes,

mesoangioblasts and myoendothelial cells). Resident

fibroblasts that are responsible for collagen deposition and

extracellular matrix remodeling during regeneration yield

fibrotic tissue and can differentiate into adipose cells. Some

authors have also proposed that satellite cells themselves

could transdifferentiate into adipocytes, although recent

results by lineage tracing techniques seem to put this theory

to discussion. This review summarizes findings about

muscle resident mesenchymal cell differentiation in adi-

pocytes and recapitulates the molecular mediators involved

in intramuscular adipose tissue deposition.
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Abbreviations

SC Satellite cells

MRF Myogenic regulatory factors

MHC Myosin heavy chain

MEF Myogenic enhancer factors

EMC Extracellular matrix components

MMP Matrix metalloproteinases

PPARc2 Peroxisome proliferator-activated receptor c2
UCP1 Uncoupling protein 1

DMD Duchenne muscular dystrophy

MRI Magnetic resonance imaging

sca-1 Stem cell antigen 1

PDGFR Platelet-derived growth factor receptor

FAP Fibro-adipogenic precursors

TGFb1 Transforming growth factor beta

SP Side population

PIC PW1-expressing cells

NG2 Neural/glial antigen 2

PG Proteoglycans

miRNAs MicroRNAs
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HDAC Histone deacetylases
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BMP Bone morphogenetic proteins

IGF1 Insulin-like growth factor 1

IL Interleukin
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Satellite cells and skeletal muscle regeneration

Skeletal muscle physiologically responds to fiber degen-

eration with a complex and highly coordinated regenerative

process. This leads to the repair of damaged tissue or to the

establishment of new fibers that progressively substitute

those damaged, restoring original integrity [1]. Satellite

cells (SC) are localized between the sarcolemma and the

basal lamina of healthy fibers in a resting, quiescent state;

they are the protagonist of this regenerative process [2].

Following damage, they activate myogenic program, pro-

liferate and differentiate into myoblasts that are able to fuse

with themselves or with other fibers [3, 4]. The state of

quiescence is characterized by a reversibly arrested G0

phase and expression of the paired-box protein Pax7 [5].

Activated, cell cycling SC express myogenic regulatory

factors (MRF) (Myf-5, MyoD, and MRF4) [4, 6]. The

down-regulation of Pax7 and the expression of the myo-

genic factor myogenin characterized the final commitment

of these cells to myogenic differentiation [7, 8]. Terminally

differentiated cells form multinucleated structures and ex-

press muscle proteins such as myosin heavy chain (MHC)

[8]. During this process, a subset of SC progeny does not

down-regulate Pax7 and returns to the quiescent state

during the process of self-renewal [9].

Expression of Pax7 marks SC [5]. In the absence of

Pax7, SC can be detected, but their maintenance and pro-

liferation are defective: in mutant mice, postnatal growth

and regeneration are severely compromised with progres-

sive loss of SC after birth mainly because of apoptosis [10,

11]. Pax3, the Pax7 paralog, is transcribed in these cells at

least in some anatomical districts [12], but it does not exert

any anti-apoptotic role [11, 13].

MRF gene family encodes for nuclear proteins with a

conserved basic helix–loop–helix domain responsible for

dimerization, DNA binding and the establishment of

myogenic lineage as well as the control of terminal dif-

ferentiation. These proteins drive the myogenic program

when ectopically expressed from a constitutive promoter in

non-myogenic cell [14]. Mice with homozygous deletion of

MyoD or Myf-5 have, however, fairly normal muscles

indicating overlapping functions for these MRF [15, 16].

On the contrary, myogenesis is severely disrupted in dou-

ble mutant mice that do not express MyoD and Myf-5, and

Myogenin is not transcribed [17]. This may be explained

considering that expression of MyoD depends on Pax7,

whereas in this postnatal context expression of Myf-5 is

Pax independent [11]. Similarly, MRF4 null mice have a

normal muscle phenotype even if they are characterized by

myogenin overexpression [18]. MRF myogenin has a

unique function in the transition from myoblast to a fully

differentiated myotube [19, 20].

In vitro studies demonstrate that, once expressed, MRF

translocate to the nucleus and bind to DNA by

heterodimerization with non-myogenic proteins encoded

by the E1A and HEB genes [21, 22]. Their activity is in-

deed finely regulated: MRF are also subjected to negative

control at the post-transcriptional level by direct interaction

with repressors that block their binding to DNA or by

indirect mechanisms (phosphorylation/dephosphorylation,

acetylation, ubiquitination). Expression of Id protein in-

duced by growth factors sequestrates the MRF dimers

blocking their activity [23], and a similar control is exerted

by cell cycle regulators [24, 25] and other repressors

(MyoR, Mist1, ZEB, I-mfa) [26–29]. Protein kinases A and

C [30, 31], cell cycle kinases [32, 33] and mitogen-acti-

vated protein kinases regulate MRF via phosphorylation

that inhibits or promotes their activity [33, 34]. MyoD co-

precipitates with co-activators that have acetyltransferase

activity, suggesting that gene acetylation is an additional

regulation mechanism [35]. Finally, MRF and in particular

MyoD and myogenin have short half-lives and their

degradation is regulated by the ubiquitin system [33].

A second class of transcription factors that controls

myogenesis is the myogenic enhancer factor (MEF)-2

family, which transcriptionally activates various muscle-

specific genes including creatine kinase and MHC, desmin

and MRF [36, 37]. Although these factors are not muscle

specific, mRNA splicing regulates their muscular expres-

sion [38]. Similarly to MRF, they initiate myogenic

program when overexpressed in non-muscle cells [37].

Many studies have underlined a regulatory network be-

tween MFR and MEF: their DNA-binding sites are located

in close proximity and overexpression of MRF induces

MEF [39, 40].

These complex and highly regulated mechanisms of

SC’s activation and differentiation are necessary for re-

generation, since the muscle cannot restore its original

integrity in the absence of SC [41, 42]. Nevertheless, the

regenerative process involves additional cells. Immune

cells, firstly dominated by neutrophils and subsequently by

macrophages, rapidly infiltrate tissue upon damage. They
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remove debris, but also drive SC myogenesis [43, 44]. In

the regeneration contest, endothelial/vascular cells are then

responsible for the vasculature remodeling and supply of

energy to newly formed fibers [45]. Angiogenesis and

myogenesis proceed simultaneously and endothelial cells

regulate SC’s activation [46]. Interstitial fibroblasts exert

another important role in regeneration. They proliferate

upon fiber damage and synthesize collagen and other ex-

tracellular matrix (ECM) components to provide a scaffold

that supports SC migration and new fiber formation. ECM

presents growth factors as well as other signaling mole-

cules to fibers [47]. The subsequent degradation of ECM,

driven by proteases (including matrix metalloproteinases,

MMP), is required for normal tissue repair [48].

During the last decade, other muscle cells of mes-

enchymal origin that contribute to regeneration have been

also identified: they reside in the interstitium between

fibers eventually associated with vessels. They, in physio-

logical conditions, sustain SC activation and differentiation

and/or directly differentiate in myoblasts and form new

fibers [49–51].

Muscle regeneration versus fat tissue deposition

Despite the regeneration ability of healthy skeletal muscle,

extensive and widespread fiber destruction is a common

feature of various diseases in which the trigger cannot be

eliminated, such as skeletal muscular dystrophies. Genetic

defects of different dystrophin complex proteins that lead

to sarcolemma fragilities during contraction are the basis of

these diseases; persistent injury jeopardizes the ability of

the tissue to heal and progressively leads to fiber substi-

tution with ectopic tissues such as bone, fibrotic tissue and

fat [52, 53].

The muscle fat includes both acellular lipid droplets

within the fibers and interstitial adipocytes characterized by

drops of triglycerides and cholesterol ester (that can be

stained by O-red oil) and by the expression of peroxisome

proliferator-activated receptor c2 (PPARc2), perilipin,

leptin, adiponectin and fatty acid-binding protein 4 [54].

Intra- and interfiber fat is usually white, but brown adipo-

cytes have also been identified [55]. These cells that

express uncoupled protein 1 (UCP1) and are characterized

by uncoupled respiration could be useful when skeletal

muscles fail to produce heat during physical exercise [56].

Intramuscular fat is a characteristic of muscles with

impaired SC function as demonstrated in injured mutant

mice with ablation of Pax7, myogenin or MyoD [13, 15,

19]. It is also a histopathological characteristic of muscle

dystrophies [57, 58], inflammatory myopathies [59], sar-

copenia due to disuse or nerve injury as well as aging [60–

65], obesity, diabetes and other metabolic diseases [66–68].

In Duchenne muscular dystrophy (DMD), the most severe

and prevalent among dystrophies, intramuscular fat can

reach as much as 50 % of muscle mass in young boys [69].

Evaluation of muscular fat content by magnetic resonance

imaging (MRI) represents, for DMD as well as for

inflammatory myopathies, a biomarker of disease pro-

gression or activity. It also provides a potential outcome

measure for the assessment of treatment efficacy in clinical

trials [69–71]. In DMD, older boys show higher muscle

fatty infiltration as measured by MRI; their characteristic

pattern is the presence of fat mainly in the gluteus and the

adductor magnus. Semimembranous muscles, biceps and

rectus femoris, are fatty infiltrated too, while gracilis and

sartorius muscles are usually spared [72]. Images show

both intermuscular and intramuscular adipose depositions

and seem to correlate [72]. MRI analyses of DMD muscles

reveal that muscles showing clear signs of inflammation

and edema are not always infiltrated by adipose tissue. In

contrast, other muscles undergo marked fatty deposition in

the absence of a prominent inflammatory reaction [73].

To investigate muscle adipose tissue deposition in ex-

perimental mouse model, glycerol injection is most

commonly used [74], but adipogenesis can be also de-

tected after cardiotoxin injection or freeze injury,

depending on the genetic background of mice [75–77].

This indicates that activation of cells responsible for fat

deposition could be a hallmark of regeneration processes

regardless of the trigger, and that there is a strict con-

nection between SC and adipocyte precursors. It seems

important to take into consideration that some cytokines

released by adipocyte precursors can positively regulate

myogenic cell proliferation and differentiation [78], and

ablation of muscle adipogenic cells impairs regeneration

[79, 80]. This suggests that the intramuscular pre-adipo-

cytes are per se important for muscle homeostasis and

underlines the importance of investigating the factors that

influence the choice between regeneration and ectopic

tissue deposition.

Different cells of mesenchymal origin, including SC

themselves, appear to be able to differentiate into adipo-

cytes when cultured in vitro in the presence of adipogenic-

inducing factor (including insulin, dexamethasone and

3-isobutyl-1-methylxanthine) [81] and, therefore, con-

tribute to adipose tissue deposition in vivo. This review

focuses on muscle resident cells responsible for intrafiber

adipogenesis in damaged/inflamed muscle including recent

findings about SC transdifferentiation obtained relying on

innovative methods for cell isolation and lineage tracking.

We also analyze molecular regulators of muscle adipogenic

precursors in muscle and consider the meaning of adipose

cells in the pathophysiology of the skeletal muscle. Finally,

since fatty degeneration occurs and often, but not always,

associates with skeletal muscle fibrosis in chronic
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neuromuscular diseases, we discuss differences and re-

semblances between the two events.

Skeletal muscle resident cells are sources

of intramuscular adipose tissue deposition after damage

Many cells contribute to ectopic intrafiber adipose tissue

formation, both resident in the skeletal muscle and

originating from adipose tissue or bone marrow. Figure 1

depicts muscle resident cells involved in regeneration or in

fibrosis and fatty degeneration tissue formation (SC,

endothelium, interstitial cells and fibro-adipogenic precur-

sors, matrix fibroblasts) and their interactions during the

two events.

SC transdifferentiation

SC exist as heterogenic populations of precursor cells

committed to the myogenic lineage and are endowed with

‘‘stem cell’’ properties, such as self-renewal. Upon damage,

SC re-enter the cell cycle and, after some rounds of divi-

sion, the majority of them proceed along the myogenic

pathway. Some cells, however, down-regulate myogenic-

Fig. 1 Schematic

representation of muscle

resident cells involved in

regeneration or in adipo-fibrous

tissue formation and of their

interactions. a In physiological

conditions, fiber damage

induces satellite cells (SC)

activation after basal lamina

breakage, proliferation and

differentiation into myoblasts

that fuse to form new myotubes.

Fibro-adipogenic precursors

(FAP), located in the interstitial

matrix, sustain SC cell

regeneration by soluble factors

and conversely SC inhibit their

differentiation into adipocytes.

Interstitial cells (PW1-

expressing cells or PIC,

pericytes, mesoangioblasts and

myoendothelial cells)

differentiate into myoblasts and

contribute to regeneration.

Fibroblasts, endothelium and

infiltrating macrophages sustain

myogenesis. Fibroblasts are also

responsible of ECM

remodeling, which in addition

favors myoblast migration and

fusion. b In a situation of

persistent damage regeneration

fails because of SC number

reduction and/or functional

impairment. In this case, ectopic

fibro-adipose tissue deposition

comes into view: it is sustained

by interstitial mesenchymal

cells, including FAP, as well as

by fibroblasts and chronic

inflammation. SC

transdifferentiation along the

adipocyte program also occurs
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specific proteins and revert to quiescence to maintain the

stem cell compartment [82, 83]. Both quiescent and acti-

vated SC express two isoforms, different in length, of the

stem cell marker CD34 [84]. Based on this stem cell po-

tential, some authors suggest the possibility that SC

transdifferentiate to non-myogenic cells including adipo-

cytes. Several in vitro studies indicate that immortalized

myoblasts (such as C2C12 and L6 myoblasts) and primary

SC can differentiate into non-myogenic cells, including

adipocytes. This SC transdifferentiation has been investi-

gated using both isolate cells and single fibers maintained

in culture [54, 85–88]. Differentiation appears more likely

to occur in SC isolated from damaged muscle, such as in

experimental models of obesity or aging, and in cells cul-

tured in conditions of high oxygen pressure [89–91]. The

SC isolation methods as well as the use of immortalized

cell lines represent a potential criticism of these ex-

periments. SC are usually isolated by enzymatic digestion

of muscle followed by propagation in myogenic-selecting

conditions or by clonal proliferation. This carries risk of

contamination, depending on the method employed.

Moreover, usually cell clones are cultured for long periods

of time with a certain risk of spontaneous transformation

with the generation of cells that are defective for differ-

entiation [79].

Cell sorting by fluorescence-activated flow cytometry

provides a powerful tool for cell isolation. The selection of

specific SC markers (e.g., Pax7) limits contamination by

non-myogenic cells [92, 93]. Similarly, quiescent SC can

be also isolated using SM/C-2.6 [94, 95], anti-integrin a7
[96, 97] or anti-syndecan 3/4 [98] antibodies. Some authors

have employed CD34 for myoblast isolation [84]. How-

ever, the use of this antigen for SC’s retrieval is debatable;

in human muscle, CD34negative precursors show an in vivo

and in vitro myogenic potential higher than CD34 positive

cells [99]. These progenitors indeed comprise cells with

adipogenic or myogenic commitment and myoadipogenic

bipotent precursors and can be separated by the expression

of CD56 and CD15 [100]. CD34 is also expressed, together

with the stem cells antigen 1 (Sca-1), by a recently iden-

tified population resident in skeletal muscle, localized in

the interstitial space, and able to differentiate into adipo-

cyte, endothelial and myogenic cells. These cells are

defined as myoendothelial cells [101]. It should be taken

into account that all the isolation methods based on qui-

escence markers may need validation for SC purification

from damaged muscles: activated cells have a reduced

expression of Pax7 as well as of the other quiescence

markers [6]. Some recent papers report investigations about

SC transdifferentiation employing the Cre-loxP recombi-

nation system for lineage tracing. Using the Cre–loxP

recombination system with the cre gene driven by the

MyoD promoter, Goldhamer and colleagues demonstrated

in vitro that the YFP clonal cells derived from MyoD

(cre?)R26R(YFPpositive) muscles (that also represent 98 %

of isolated Pax7positive cells) only undergo myogenic dif-

ferentiation [102]. These cells accumulate lipids within the

cytoplasm, but do not activate an adipogenic program and

do not express terminal differentiation markers of mature

adipocytes, such as adipsin or FAB4 [103]. The same group

investigated the origin of isolated adipocytes in Tie2–Cre

mice muscle fibers. Since Tie-2 identifies a population of

interstitial cells with adipogenic potential, they demon-

strated that the majority of adipocytes were Cre-

recombinant, underlining that the origin of muscle adipo-

cytes is different from that of SC. Consistently with the

previous studies, using a Cre/LoxP tracing system for Pax3

(a paired-box gene expressed during muscle development),

it has been demonstrated that intramuscular fat in leg

muscles (e.g., soleus and extensor digitorum longus mus-

cles) is derived from a lineage that is Pax3 negative, non-

SC lineage [80].

While these recent studies seem to call the SC

transdifferentiation theory into question, the possibility that

SCs could adopt an adipogenic fate in vivo during repeated

rounds of damage or under different death stimuli remains

to be clarified.

Brown adipocytes are present in muscles [104]. SC and

brown adipose tissue precursors derive from progenitors

that have common gene determinants: both cells originate

from a mesenchymal precursor that expresses Myf-5. In

2001, the group of Rudnicki demonstrated that lacZ? cells

isolated from Myf-5–nlacZ mice undergo myogenic, os-

teogenic and adipogenic differentiations [86]. More

recently using a Cre/LoxP-based system for SC lineage

tracing (Pax7–CreER; R26R-tdTomato), they showed that

SC could become brown adipocytes. The choice between

myogenic or brown adipose differentiation is tightly con-

trolled in physiological conditions by regulation of the

expression of nuclear Prdm16, a transcription factor re-

quired to establish brown adipocyte lineage [105]. Myf-5

expression in adipose tissue is heterogeneous and some

Myf-5-positive cells differentiate in vitro and in vivo into

adipocytes or myofibers according to the expression levels

of stem cell antigen (Sca-1) [106]. Accordingly, mes-

enchymal stem cells derived from adipose tissue

differentiate into functional skeletal muscle cells when

intramuscularly or intravenously injected in murine dys-

trophic muscle [107].

Fibro-adipogenic precursors (FAP)

Back to back papers published in 2010 identified very

similar cells located in the interstitial space between fibers

(but outside of vessels) that have adipogenic potential and

are important in skeletal muscle regeneration [78, 108].
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These cells, called fibro/adipogenic precursor cells (FAP),

can be identified and isolated from both wild-type (WT)

and dystrophic mice muscles as CD45negative, CD31negative

and Sca-1positive cells. They also express the platelet-

derived growth factor receptor a (PDGFRa) in the absence

of SC markers such as a-7 integrin, SMC 2.6 and Pax7 [78,

92, 108]. FAP and SC do not share common progenitors,

reside in close proximity within damaged muscle and are

both important for regeneration. Bromodeoxyuridine in-

corporation experiments reveal that FAP proliferate more

quickly than SC during the first 72 h after injury. Their

number returns to those measured in pre-damaged tissue

4–5 days later, concomitantly with SC-initiated muscle

regeneration [78]. This suggests that, when regeneration

physiologically occurs, FAP proliferate to sustain myoge-

nesis. They produce soluble factors that stimulate SC.

Among these, IL-6 has been identified in cells isolated

from WT animals [78], while FAP from leg dystrophic

muscles of young but not old mdx mice (a mouse model of

DMD) produce follistatin [109]. FAP also seem to play a

role in the phagocytic clearance of necrotic cells and de-

bris. This event is essential for effective muscle

regeneration [110].

FAP yield adipocytes in vitro when challenged with

adipogenic factors and in vivo under conditions that favor

adipogenesis, such as glycerol injection [79] or conditions

characterized by SC failure (e.g., DMD) [92]. Conversely,

efficiently proliferating myoblasts inhibit FAP differen-

tiation into adipocytes [79].

FAP isolated from healthy animals can also differentiate

into other cells of mesenchymal origin, including os-

teoblasts, chondroblasts and smooth muscle cells when

cultured under appropriate conditions. They apparently

never yield myogenic cells [78, 79]. Transforming growth

factor (TGFb1) acts on FAP to yield collagen expressing

fibroblasts: they are abundant in the fibrotic area of the

diaphragm muscle of mdx mice, indicating that FAP are the

possible source of fibrosis in these muscles [111].

Sca-1positive, a-7 integrinnegative cells isolated from the leg

muscle of mdx mice that received Tricostatin (TSA), a

histone deacetylases inhibitor, acquired myogenic potential

with the expression of MyoD and of the SWI/SNF chro-

matin-remodeling factor BAF60C (important for MyoD-

mediated transcription). These cells form MHC-positive

structures and less adipocytes when cultured for 6 days in

adipogenic conditions [112] However the expression of

PDGFRa, expressed by Sca-1positive-FAP, is not reported.

These data indicate that in chronically damaged muscles,

the environment profoundly modifies the FAP behavior.

Interestingly, a human counterpart of PDGFRa? pro-

genitors described in mice has been recently identified and

seems to aberrantly accumulate in muscle diseases [113].

This might open the possibility of developing new

approaches for DMD patient therapy based on the regula-

tion of FAP differentiation: the efficacy of treatment has

been already demonstrated in pre-clinical studies [92, 109,

114].

Myoendothelial cells, pericytes and mesoangioblasts,

and PW1-expressing cells (PIC)

Besides FAP, other mesenchymal cells that differentiate

into adipocytes have been identified. This is a heteroge-

neous group of cells located in the interstitium between

fibers (outside the basal lamina). Most of these cells are

tightly associated with muscle vessels and express the

platelet endothelial cell adhesion molecule. This stem cell

population is distinct from SC, but may have a myogenic

fate in vivo. It was identified in 1999 and purified based on

fluorescent dye Hoechst 33342 efflux; these cells have been

named side population (SP) [115]. SP cells express Sca-1

and c-Kit and may be either CD45negative or CD45positive:

despite the absence of Pax7 and desmin expression, they

can differentiate into myoblasts within muscle or in co-

culture with SC. They become hematopoietic cells after

intravenous injection [51, 115–119]. All these results

indicate that SP cells, though possessing a constitutive

haematopoietic potential, yield myoblasts upon appropri-

ate conditions. Tamaki and co-workers showed that

CD34positive cells are present outside the basal lamina.

Among these, some CD34positive/Sca-1positive/CD45negative

cells differentiate into myoblasts and endothelial cells

when injected into a recipient muscle and become adipo-

cytes in vitro. These cells have been named myoendothelial

progenitors [101]. They have been recently characterized

for the high expression of PDGFRb and absence of

PDGFRa, and have showed a multi-lineage potential (i.e.,

myogenic, endothelial and adipogenic) by clonal analysis.

Hence, these cells represent a subpopulation of SP cells

endowed with more pronounced myogenic potential.

Myoendothelial cells are also able to inhibit in vivo, under

physiological conditions, muscle adipogenesis via bone

morphogenetic protein (BMP) [120]. A human putative

counterpart able to differentiate in chondrocytes and os-

teoblasts has also recently been identified [121].

Pericytes, also known as aka mural cells, surround en-

dothelial cells in capillaries and microvessels. Like

myoendothelial cells, pericytes are characterized by the

expression of the neural/glial antigen 2 (NG2), a-smooth

muscle actin, CD146 and PDGFRb. They exhibit multi-

lineage developmental potential and differentiate into

skeletal myofibers, bone and cartilage [122, 123]. They

express PPARc2 and form lipid droplets when cultured in

adipogenic medium [124]. Proliferating pericytes do not

express Pax7, Myf5 and MyoD, but up-regulate rapidly

these pro-myogenic markers, together with myogenin
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before forming myotubes, in myogenic-inducing condition

[123]. Recently, two pericyte subtypes have been identified

using a double transgenic nestin–GFP/NG2-DsRed mouse.

Type 1 cells express nestin and type 2 do not [125]. Both

types re-enter into cell cycle and proliferate in vivo after

damage; however only type 2 pericytes, which are char-

acterized by the lack of CD34 and Sca-1 expression,

generate muscle cells. In contrast, type 1 nestinnegative

pericytes express Sca-1 and PDGFRa and differentiate into

adipocytes, but not into myogenic cells. This indicates that

a subset of pericytes may correspond to the previously

described FAP [126].

Mesoangioblasts, possibly a sub-fraction of pericytes,

have been first initially isolated from murine aorta and have

been found in skeletal muscle vessels of different species

[127]. Freshly isolated mesoangioblasts in culture express

several early endothelial markers such as fetal liver kinase-

1, Sca-1, CD34 and VE (vascular endothelial)-cadherin but

not the von Willebrand factor. A fraction of mesoan-

gioblasts consistently express smooth muscle actin [128].

Both murine and human mesoangioblasts differentiate into

skeletal myoblasts under condition permissive for myoge-

nesis, in osteoblasts after exposure to BMP-2, into

adipocytes and into chondrocytes and in smooth muscle too

[128, 129]. These cells express Pax3, which is required for

both myogenic and adipogenic differentiation [130]. After

long-term culture they lose myogenic differentiation ca-

pacity, but remain myogenesis inducible upon co-culture

with myoblasts. Therefore, they have a therapeutic poten-

tial in the treatment of skeletal muscle disease [128, 131].

Interestingly, mesoangioblasts apparently depend on the

interaction with polarized macrophages to yield effectively

functional contractile tissue [132].

Finally, Mitchell and co-workers identified another

mesenchymal population with adipogenic potential in the

early mouse postnatal muscle interstitium. These cells,

called PIC, express PW1, a protein coded by a zinc finger

gene which as a role in the myogenic and neuronal lineage

development [133]. PIC share with SC the PW1 expres-

sion, but do not express Pax3 or Pax7 and display

myogenic potential in vitro. They form new fiber after

in vivo engraftment while retaining the ability to differ-

entiate into a-smooth muscle actin-positive myofibroblasts

in vitro [133]. A recent paper by the same group of re-

searches revealed that postnatal PIC were a heterogeneous

population. They express different levels of PW1 and sca-1

and are endowed with different differentiation potentials

[134]. A fraction of cells express a high level of sca-1

(Sca-1high), and 60 % of these positive for PW1 show also

PDGFRa. Another group of PW1? cells expressing low (or

middle, Sca-1med) level of sca-1 is abundant in the early

mouse postnatal stages, but rapidly declines later on. They

are no longer detectable after 5–7 weeks of age. When

analyzed in early postnatal stages, Sca-1medPW1? cells

have both myogenic and adipogenic potential, higher than

that of PW1?/Sca-1high cells. In adult muscles, following a

decline of Sca-1medPW1?, PW1?/Sca-1high cells increase

their myogenic potential. It is important to note that the

fraction of PDGFRa?/PW1? cells, which is not myogenic,

could overlap at least in part with already described FAP.

All PIC seem to express mRNA for NG2, indicating a

possible overlap of these cells also with muscle pericytes.

Fibroblasts

Stromal fibroblasts synthesize ECM proteins including

elastin, laminin, fibronectin, proteoglycans (PG) and the

various isoforms of collagen [135]. Fibroblasts are also

sensitive to mechanical loading and synthesize different

amounts and types of collagen. Moreover, they express

different levels of MMP according to the need of each

specific muscle [136]. They play an active role in repara-

tive myogenesis through ECM remodeling; fibroblasts

proliferate and migrate after damage and provide new

ECM components. These elements stabilize the damaged

tissue, provide a scaffold to new fibers and drive the for-

mation of neuromuscular junction. Upon injury resolution,

they undergo apoptosis. Concomitantly, they regulate ma-

trix remodeling and degradation by the expression of

proteases and regulation of their specific inhibitors [137].

Chronic diseases, including DMD, are characterized by

recurring cycle of damage and regeneration, alongside

persistent inflammation. Those events lead to the devel-

opment of fibrosis, an accumulation of aberrant ECM

within the tissue [138]. In non-muscle organs, activat-

ed/fibrogenic fibroblasts can be easily identified by the

expression of vimentin and, in particular, of a-smooth

muscle actin (aSMA), a contractile protein of stress fibers.

It exerts mechanical tension on the ECM, providing a

mechanically resistant support, and hence the name of

‘myofibroblasts’. In tissues such as of liver or lung, my-

ofibroblasts may derive from various cells including

resident mesenchymal cells and epithelial and endothelial

cells or from circulating progenitors derived from the bone

marrow. Myofibroblasts are activated by a variety of

mechanisms, such as cytokines produced by lymphocytes

and macrophages, autocrine factors and pathogen-associ-

ated molecular patterns [137]. Notably, one greatest

limitation of the study of fibrosis in the muscle is the lack

of markers for activated fibroblasts; vimentin or aSMA are

also expressed by myoblasts, albeit at lower levels. Re-

cently, transcription factor 4 (Tcf4) has been identified as a

newly identified fibroblast marker. The key role of fi-

broblasts in regeneration has been recently underlined,

inducing their ablation using a Tcf4CreERT2 system: this

leads to depletion of the SC pool with premature
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differentiation and formation of smaller regenerated my-

ofibers [139].

In muscle chronic disorders, fibroblasts continue to

proliferate, leading to a progressive and self-perpetuating

ECM deposition known as fibrosis, with a mechanism re-

sembling and often accompanying muscle fat deposition

[140, 141].

Fibroblasts could also directly convert to adipocytes.

Green and Kehinde demonstrated this in 1974; when 3T3

fibroblasts are cultured in adipogenic medium they in-

crease their content in fatty acid, precursors of

triglyceride synthesis, and activity of lipogenic enzymes.

This cellular differentiation occurs when cells stop

growing [142, 143]. In 2006, these cells were shown to be

pluripotent and could be reprogrammed to pluripotency

by transduction of four stem cell-specific transcription

factors. The discovery led to the award of the 2012 Nobel

Prize to Prof. Takahashi [144]. The fate of skeletal

muscle stromal fibroblasts in vivo remains unclear and the

lack of specific markers for these cells increases the

problem complexity. In human tissues including skeletal

muscle, TE-7 has been recently validated as a fibroblast-

specific protein [145]. TE-7?/CD56- cells have been

isolated from muscle biopsies. They express collagen IV,

fibronectin, vimentin and PDGFRa and respond to fatty

acid treatment with full adipocyte differentiation [146].

Interestingly, FAP can be identified in mdx diaphragm

fibrotic areas and differentiate in vitro into collagen type

I-producing cells upon TGFb stimulation [111]. Accord-

ingly, fibroblast-activated protein-a? stromal cells express

PDGFRa and sca-1 like FAP [147], and PDGFRa
knockin mice, characterized by chronic activation of the

receptor, have diffuse fibrosis in the skeletal muscle, as

well as other organs [148].

The interplay between muscle fibrosis and adipoge-

nesis in pathological conditions as well as the possible

connection of stromal skeletal muscle fibroblasts and

FAP during physiological regeneration remain to be

clarified.

Regulators of skeletal muscle adipocytes-generating

cells

The differentiation of pre-adipocytes into fully differenti-

ated adipocytes (endowed with lipid droplet and expressing

adipocyte proteins) is finely regulated and already de-

scribed in non-muscle tissue [149]. Some molecular

regulators of muscle resident mesenchymal precursor dif-

ferentiation in adipocytes have been identified. Table 1

summarizes the best-characterized pathways of intramus-

cular pre-adipocyte differentiation describing their

suggested sources and signaling pathways. T
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Nutrient availability

Nutrient and energy availability is crucial for muscle

homeostasis. Myofibers burn substrates to produce energy

and have a relatively high content of mitochondria, de-

pending on the type of fiber. Adipocytes are responsible for

energy storage and are endowed with few oxidative or-

ganelles [54]. SC activation and differentiation is also

hinged on mitochondrial biogenesis [150]. Muscle-derived

stem cells and SC undergo adipogenic differentiation when

exposed to persistent hyperglycemia via oxidative stress or

mTOR activation [151, 152]. Moreover, restriction of

protein synthesis by essential amino acid reduction seems

to favor SC’s transdifferentiation into adipocytes, without

affecting their viability [153]. The efficacy of dietary in-

terventions in attenuating muscle loss and restoring muscle

mass in sports and geriatric medicine and in the treatment

of neuromuscular disease [154] may also be grounded on

the regulation of muscle adipose tissue deposition.

PPARc

PPARc is a key regulator of adipogenesis. A number of

diverse lipids, lipid-like compounds and drugs activate

PPARc and induce pre-adipocytes to generate fully dif-

ferentiated adipose cells. Up-regulation and activation of

PPARc in mesenchymal cells induce adipogenesis and

modulate insulin sensitivity [54, 85]. PPARc expression

and activation induce repression of MyoD [85]. Recent

data indicate the existence of a mutual regulation between

PPARc and myogenic factors such as MyoD. The simul-

taneous expression of the proteins in mesenchymal cell

generates myotubes or adipocytes, but not hybrid cells. In

adipocytes, the ubiquitin–proteasome system induces My-

oD degradation. In myotubes, PPARc histone acetylation is

inhibited in several loci including that of C/EBPa, the

essential pro-adipogenesis PPARc partner [155].

WNT

The wingless-type mouse mammary tumor virus integra-

tion site family (WNT) was first identified for a role in

carcinogenesis. The proteins also have important function

in myogenesis, where the integration of multiple WNT

signals allows the self-renewal and the differentiation of

muscle precursors. WNT signals deregulation leading to

the disruption of muscle homeostasis and to fibrosis [156,

157]. The WNT-activated canonical-b catenin pathway

negatively controls adipogenesis and favors myogenic

differentiation [158]. Interestingly, WNT signaling is

down-regulated in aging [159]. WNT 10 has an important

role in the control of intramuscular adipogenesis. Its defi-

ciency/inhibition is involved in adipose tissue deposition

after injury caused by diverse triggers, including car-

diotoxin, low temperatures and rotator cuff tear [159, 160].

Myokine and adipo-myokine

The skeletal muscle has been identified as an endocrine

organ. It releases soluble factors called myokines, at least

in part responsible for the beneficial effect of exercise in

neuromuscular disorders [161]. They are synthesized by

skeletal muscle tissue especially during contraction and

exercise and can act within the muscles in an au-

tocrine/paracrine manner and in distant tissues in an

endocrine fashion. Most myokines are also secreted by

adipose tissue and are therefore referred to as adipo-

myokines [162]. The adipo-myokine family includes an-

giopoietin-like 4, fibroblast growth factor 21, follistatin-

like 1, interleukin 6 (IL-6), interleukin 8, monocyte

chemoattractant protein-1, myostatin, and vascular en-

dothelial growth factor. IL-6, myostatin and follistatin may

control differentiation of mesenchymal precursor in adi-

pocytes within the muscle as described in this review.

Interleukin-6 (IL-6)

Mechanical load increases IL-6 production depending on

exercise duration, intensity and the muscle mass. It is the

best-characterized adipo-myokine: IL-6 may act locally

within the muscle in an autocrine/paracrine manner or

may be secreted. IL-6 is produced during inflammation. It

has well-described roles in the adipose tissue and in the

liver including the inhibition of insulin-signaling path-

ways [163, 164]. In myotubes, recombinant IL-6 enhances

insulin-stimulated Akt phosphorylation and seems to have

a beneficial effect on insulin-stimulated glucose disposal

and fatty acid oxidation [165]. Muscle-derived IL-6 may

locally inhibit the effects of other inflammatory cytokines

such as tumor necrosis factor-alpha. Recently, it has re-

ceived significant attention for its regulatory role in

muscle wasting during cachexia [166]. Its role in muscle

resident pre-adipocytes differentiation remains to be elu-

cidated. Interestingly, FAP up-regulate expression of IL-6

after muscle damage. The cytokine is the possible

regulator of FAP-induced stimulation of myogenic dif-

ferentiation [78]. Production of not yet identified soluble

factors (probably including IL-6) during pre-adipocytes/

myoblasts interaction results in adipogenic inhibition via

suppression of lipogenic genes such as lipoprotein lipase,

adipsin and glycerol-3-phosphate dehydrogenase [167].

These findings support the hypothesis for a role of IL-6 in

the control of metabolism during contraction with a pro-

myogenic effect. Conversely, the chronic elevation of IL-

6 released from adipocytes may induce muscle insulin

resistance.
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Myostatin/follistatin

Myostatin is a developmental protein which acts as a

negative regulator in myogenesis. It is a member of the

TGFb protein family produced by both skeletal muscle

cells and adipose tissue. It inhibits muscle differentiation

and growth. Accordingly, myostatin knockdown accord-

ingly promotes myogenesis [168]. Based on these

observations during the last decade, experimental therapies

with myostatin blockers to treat DMD have been developed

[169]. Myostatin stimulation or inhibition of adipogenesis

was alternatively described depending on cell types and

culture conditions. Its expression in mesenchymal cells

promotes its adipogenic differentiation via Smad3 with a

negative cross talk with b catenin [170, 171]. Myostatin

inhibits lipid accumulation in pre-adipocytes cell lines and

fibroblasts [172, 173]. The inhibitory role of myostatin in

muscle is counterbalanced by the endogenously produced

follistatin [174]. White and brown adipocytes also produce

follistatin [175, 176]. In particular in brown adipocytes,

follistatin induces differentiation of pre-adipocyte cells. In

sharp contrast, myostatin inhibits this process [176, 177].

Interestingly, FAP of young mice exposed to the histone

deacetylase inhibitor TSA do not differentiate into adipo-

cytes and efficiently stimulate SC differentiation producing

a high level of follistatin [110].

Bone morphogenetic proteins (BMP)

Sequence similarities link TGFb to the BMP family of

proteins. In spite of this, the BMP pathway is a positive

regulator of muscle mass [178]: BMP-2/4 up-regulates

inhibitors of TGF-b-induced myogenesis repressors to

block the TGF-b1-negative effect on myogenesis [179].

Like myostatin, BMP could both induce and repress

adipogenesis. Ablation of BMP receptor 1 in mouse muscle

mesenchymal precursors (myoendothelial progenitors) in-

creases their adipogenic differentiation upon BMP4

stimulation, while the myogenic differentiation is reduced

[180]. In apparent contrast, sca-1-positive cells isolated

from skeletal muscle adopt an adipogenic fate after BMP7

treatment even if they seem to differentiate into brown

instead of white adipocytes [104]. To gain a full appre-

ciation of the role of TGFb and BMP, further studies are

needed. However, a crucial point has already emerged:

both proteins regulate target genes via Smad. The manner

by which the two subfamilies of ligands recruit different

Smad proteins in various cell types is important for the

skeletal muscle physiology [181]. Unraveling the

mechanism may be advantageous for developing suitable

inhibitors or mimetic agents to treat adipose tissue-related

dysfunctions.

Insulin-like growth factor 1 (IGF1)

IGF1 is ubiquitously expressed in all tissues. Blood con-

centrations are high, because of its production by liver,

bone and adipose tissue. The expression level of IGF-

binding proteins is tissue specific. In the case of skeletal

muscle, IGF-I signaling is a requisite for development

[182]. Studies on precursor clonal cells have revealed that

IGF1 is a crucial player in both adipocyte and myoblast

differentiation. Although growth arrest is necessary for

differentiation, IGF1 paradoxically stimulates both prolif-

eration and differentiation of the cells. IGF-1 acts through

Rho GTPase to switch in the adipogenesis–myogenesis

fate. To alter the differentiation process it is sufficient to

manipulate the activation of the Rho GTPases;.a reduction

in the levels of the Rho inhibitory protein, p190-B Rho-

GAP, results in the reduction of adipogenesis and in

increase of myogenesis. IGF-1 receptor directs the down-

modulation of Rho GTPase activity by regulating the sub-

cellular distribution of p190-B RhoGAP. This leads to in-

creased IGF-1 signaling to downstream proteins previously

implicated in adipogenesis [183].

Extracellular matrix

Muscle cells are surrounded by the basal lamina composed

of collagen IV, laminin and heparin sulfate-containing PG.

These are directly linked to sarcolemma and sustain muscle

structural integrity. These enable the tissue mechano-

transduction and act together with other components of

muscle ECM named endomisium (around muscle cell)

perimysium (around groups of muscle cells) and epimysi-

um (around whole muscle) [184]. These elements have

quite different compositions, but contain fibrils of collagen

I and III in close association to collagen V, PG and gly-

coproteins (such as perlecan and fibronectin). ECM is

mainly produced primary by fibroblasts: however other

muscle cells within the muscle such as myoblasts are able

to synthesize various ECM proteins upon activation [185].

Recent evidence pinpoints a role for ECM in the

regulation of SC growth and differentiation. Data suggest

that a tightly regulated dynamic interplay between intrinsic

SC factors and extrinsic molecules of the microenviron-

ment exists. Therefore, ECM, the adjacent vascular system,

the intramuscular fibroblasts and preadipocytes are defined

as SC niche [185, 186]. Isolated SC quickly change their

fate and lose self-renewal capacity. Hence, the recent quest

for appropriate scaffold to culture of SC [187]. Genetic and

pharmacological studies in both animals and humans

demonstrated that loss of almost any ECM components can

lead to a myopathy often accompanied by fibrosis and to

further fatty degeneration [138].
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Differentiation of multipotent stem cells into various

lineages is influenced by their interactions with ECM

components. Muscle mesenchymal stem cells sense me-

chanical properties of their matrix (i.e., strain, shear stress,

substrate rigidity and topography) and respond to envi-

ronmental changes differentiating into mature myoblasts

[188]. Activation of the muscle adipogenesis process oc-

curs rapidly when ECM is disrupted. In healthy mice, ECM

damage can be induced by nylon mesh material implanted

to create space between fibers. The mice show abundant

adipocytes at week 2 that invade and replace fibrous ma-

terial. By week 4 granulation tissue typical of wound

healing is detected [189].

MMP are a heterogeneous group of zinc-containing,

calcium-dependent endopeptidases. They are part of the

ECM and they have been extensively studied for their role

in muscle regeneration. MMP differ in substrate specificity,

cellular localization and regulation. After damage, their

expression is rapidly up-regulated. Their activation favors a

number of processes, namely myogenesis and angio-

genesis. MMP control the migration of inflammatory and

endothelial cells and fibroblast and the proliferation and

differentiation of myogenic precursors. Specific inhibitors

finely regulate them. MMP activation needs the cleavage

by membrane-type 1 MMP or plasmin. Once activated,

MMP are regulated through covalent binding by specific

inhibitors. Collagenases and MMP further remodel ECM

when fiber integrity is restored. [185].

Upon administration of GM6001, a broad-spectrum

MMP inhibitor, in vitro muscle-derived stem cells display a

reduced migration capacity as well as a reduced myogenic

and adipogenic differentiation. Accordingly, in vivo treat-

ment of injured mice with the MPP inhibitor jeopardizes

skeletal muscle healing [190].

Another important ECM component is collagen. The

muscles of DMD patients that show increased ECM de-

position express lower levels of the PG decorin and

significantly higher levels of collagens I and VI. Expres-

sion of collagen VI a5 and a6 chains has been recently

identified [191]. Collagen’s role in regulating pre-adipo-

cyte differentiation has been well investigated in vitro

[192]. Pre-adipocytes synthesize various ECM proteins

in vitro; they produce type II, V and VI collagens and some

glycoproteins. When stimulated with adipogenic-inducing

medium, these cells arrange type III and IV collagen and

laminin in a non-fibrous structure, increase expression of

type V and VI and reduce the expression of type II and type

I collagen and of fibronectin [193–195]. Bovine pre-adi-

pocytes derived from the muscle and 3T3-L1 cells have

been treated with modulators of type V and VI collagen. As

a consequence, they reduce triglyceride synthesis and their

adipose differentiation is inhibited [193, 196]. In vivo, the

role of collagen in the control of adipogenic differentiation

in conditions of jeopardized repair is still unclear.

The role of PG in pre-adipocyte proliferation and dif-

ferentiation has been studied in vitro using 3T3-L1 with

dishes coated with biglycan and decorin and fibronectin.

Biglycan and decorin reduce proliferation of pre-adipo-

cytes, partly by induction of apoptosis. Co-treatment with

fibronectin restores normal proliferation [197]. In vivo, co-

injection of an extract of basement membrane proteins and

basic fibroblast growth factor into mouse leg or masticatory

muscle induced angiogenesis followed by fat pad forma-

tion [198]. Nevertheless, the exact role of muscle PG as a

regulatory factor for muscular pre-adipocytes proliferation

and differentiation remains to be investigated.

Inflammatory cells

Inflammatory cells including macrophages are recruited

into the extra-fiber environment after injury to remove

debris and sustain SC activity [43, 199]. Alterations of

macrophage responses (e.g., an imbalance between the

different macrophage sub-types) have profound effects on

muscle regeneration and induce fibrosis as in DMD [138].

The absence or the alteration of macrophage metabolism

has important consequences also for adipose tissue depo-

sition within the muscle. The administration of an inhibitor

of macrophage colony-stimulating factor and reduction of

the differentiation and proliferation of macrophage/mono-

cyte lineage induce intramuscular adipogenesis and

abundant collagen deposition after cardiotoxin damage

[200]. The role of macrophages is at least in part due to

secreted factors; mesenchymal stem cells isolated from

mouse skeletal muscle and incubated with macrophages

conditioned medium show reduced tendency to differenti-

ate into adipocytes [201]. Macrophages are also important

for the storage and recycling of iron, a function that is

tightly dependent on their polarization state [202] and that

might play a role in the effective regeneration of the tissue

(G. Corna and PRQ, unpublished results). Effective recy-

cling of myoglobin-associated iron might be a relevant step

to prevent fat deposition. It might require the effective

recruitment and in situ activation of leukocytes able to

properly support the reconstitution of effective vasculature

in the regenerating tissue [203, 204].

Adipose tissue of obese subjects is infiltrated by in-

flammatory macrophages positive for F4/80, CD11b and

CD11c which predominantly display a classically activa-

tion, (M1-like macrophages) [205, 206]. Skeletal muscle

macrophages that classically infiltrate dystrophic muscle

could contribute locally to the adipose intrafiber deposi-

tion: therapeutic interventions that control the shift

between M1 and M2 macrophages exert a beneficial effect
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in animal models of dystrophy and might also regulate

muscle adipogenesis [207, 208].

Heredia and co-workers have recently demonstrated that

eosinophils are also important for muscle adipogenesis and

in particular for FAP regulation. IL-4a receptor null mice

are defective in muscle regeneration. Using a GPF reporter

construct for IL-4 gene, they identified eosinophils as the

dominant cell type producing the cytokine [110]. Accord-

ingly, eosinophil-deficient mice showed defective

regeneration after injury. A specific up-regulation of IL-4a
in FAP is detected and inhibits their differentiation into

adipocytes, thereby preventing muscle fatty degeneration.

Finally, FAP stimulated via eosinophil-derived IL-4 show

an increase ability to clear cell and tissue debris by

phagocytosis [110].

Nitric oxide (NO)

NO is a key signaling molecule synthesized from L-argi-

nine by a family of NO synthases (NOS). Neuronal NOS

(called NOSl) is the most important NOS in skeletal

muscle and is located at the sarcolemma of fibers in the

dystrophin complex. As a small, hydrophobic gas molecule

NO readily diffuses into cells. It acts on different targets by

cGMP-dependent or -independent pathways and in cross

talks with other molecules [209–212]. In muscle, it controls

the structure, bioenergetics, mitochondrial function and

number, energy and oxygen supply, and excitation–con-

traction coupling [213–216]. Alteration of NO synthesis

has an important role in the pathophysiology of muscle

diseases and in particular of DMD [217, 218]. Restoration

of NO generation, by genetic or pharmacological inter-

ventions with NO donating drugs, ameliorates dystrophic

phenotype increasing regeneration and preserving muscle

morphology in animals [219–223]. This intervention has

high profiles of safety and tolerability with promising signs

of efficacy in humans [224].

We and other groups have explored the mechanisms

beyond the therapeutic potential of NO. It has been found

that it has multiple actions on survival, self-renewal, acti-

vation and differentiation of SCs. Some of these effects

depend on NO-induced increase of cGMP generation,

while others are independent of it [222, 225–228]. We have

recently demonstrated that NO influences FAP differen-

tiation. Long-term treatment of mdx dystrophic mice with

NO donor drugs inhibits adipose tissue deposition in tib-

ialis anterior muscles in vivo and reduces the

differentiation to adipocytes of both WT and mdx FAP [92]

(Fig. 2a). NO inhibits the increase of PPARc induced by

adipogenic medium by controlling both its promoter ac-

tivity and the expression of microRNA-27b (miR-27b), an

important PPARc post-transcriptional regulator [92]

(Fig. 2b). In dystrophic muscles, the treatment with the

drug, and the subsequent enhanced expression of miR-27b,

reduced the expression of adipocyte markers [92]. These

NO actions are cGMP independent and apparently not

critically involved in the initial stages of FAP adipogenic

differentiation; NO does not affect the expression of the

early adipogenesis transcription factors KLF4, c-EBPb and

CHOP10. However, it regulates factors active at a later

stage in adipogenesis, such as PPARc, an adipogenic

transcription factor active at later phases of the process.

NO does not apparently affect the TGFb-induced differ-

entiation of FAP in fibroblasts (Fig. 2c). However, it

regulates muscle fibrosis by controlling miR-133a, a

known regulator of collagen type I expression [92]. The

mechanism by which NO regulates microRNAs (miRNAs)

133a and 27b has not been clarified yet. NO might induce

S-nitrosylation as demonstrated for other miRNAs (miR-1

and miR-29) and can function as a histone deacetylase

(HDAC) inhibitor (see below) [229]. The role of NO in the

control of adipose differentiation of other mesenchymal

stem cells responsible for intrafiber adipose tissue deposi-

tion remains to be investigated.

Another interesting issue to explore is NO capacity to

induce mitochondrial biogenesis and to regulate mito-

chondrial function in these cells. These effects are critically

dependent on its concentrations, NOS localization and

exposure of the target; in isolated mitochondria, high

concentrations of NO inhibit complexes of the mitochon-

drial respiratory chain irreversibly, whereas physiological

lower levels of NO reversibly inhibit cytochrome c oxidase

[230, 231]. In intact cells, physiological levels of NO sti-

mulate the uptake and oxidation of glucose and fatty acids

by skeletal muscle and adipose tissue, while they inhibit

the synthesis of glucose, glycogen and fat, and enhance

white adipocyte lipolysis [232]. These effects could also

control brown adipocyte generation and exert beneficial

effects on energy production in defective muscles. NO

stimulates cell expression of both PPARa and PGC-1a
[216, 233]. PGC-1a, the master regulator of UCP1 ex-

pression, is involved in the development of brown

adipocytes as well as in mitochondrial biogenesis [234].

Histone deacetylases and micro-RNA

Histone deacetylases (HDAC) are enzymes that remove

acetyl groups from lysine residues of histones, thus

regulating gene expression. Blockade of HCAC by drugs

such as valproic acid or Tricostatin A (TSA) results in

chromatin expansion, facilitating transcription. Among the

HDAC family, HDCA2 seems to control the expression of

many skeletal muscle genes such as follistatin, the en-

dogenous antagonist of myostatin [235]. HCDAC inhibitor

treatment of mdx mice ameliorates dystrophy by enhancing

regeneration and preventing fibrotic scars and fat
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deposition [229, 236]. HDAC are effective only when ad-

ministered to young mice. This indicates that a permissive

environment is essential. In isolated cells, TSA increases

SC differentiation capacity similarly in young and old

mice, whereas FAP response to the drug changes dra-

matically with the age of the donor. FAP isolated from

young animals and exposed to TSA fail to differentiate into

adipocytes, produce high level of follistatin and efficiently

stimulate SC differentiation. On the contrary, the adi-

pogenic potential of FAP obtained from 12 months old

animals was unaffected by treatment with HDAC inhibitors

and unable to stimulate SC [109]. Furthermore, HDAC

inhibitor treatment of FAP isolated from dystrophic mice at

the early stage of the disease de-repressed their latent

myogenic program inducing myogenic transcriptional ma-

chinery. HDAC-induced up-regulation of myogenic

miRNAs (mir1.2, miR133 and miR206) seems to mediate

the effect [237].

Fig. 2 Nitric oxide inhibits adipose tissue deposition and FAP

adipocyte differentiation in dystrophic muscle. a Nitric oxide effect

on adipose tissue deposition (upper panels) and on FAP differen-

tiation in adipocytes (lower panels) for tibialis anterior muscles, cells

isolated from untreated mdx mice (untreated) and from mice that

received an NO donor drug (NO-treated). Adipose tissue in section

was revealed using an anti-perilipin antibody (upper panels) while

O-red oil was used to count adipocytes in culture (lower panels).

Hoechst was employed for nuclei staining. Quantification of perilipin-

positive area (upper) and adipocytes number (lower) are reported in

the right graphs (mean ± S.D). **p\ 0.001 and ****p\ 0.0001 vs.

untreated, scale bars are 20 lm. b Expression of PPARc mRNA and

mir27b (left and right, respectively) in tibialis anterior muscles

obtained from untreated mdx mice (untreated) and from mice that

received an NO donor drug (NO treated); mean ± S.D. *p\ 0.05 vs.

untreated. c Percentage of collagen-positive cells in FAPs cultured in

the absence (untreated) or in the presence of an NO donor (NO

treated) and stimulated with TGFb; mean ± S.D
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Micro-RNA

Micro-RNAs (miRNAs) are small non-protein coding

RNAs, some of which act as post-transcriptional gene

regulators in muscle development and function [238].

Among miRNAs specifically expressed in muscles, miR-1/

206 and miR-133 are the most studied. miR-1 and miR-133

have distinct roles in modulating proliferation and differ-

entiation of cultured myoblasts; miR-1 promotes

myogenesis by targeting HDAC4 (histone deacetylase 4).

Unlike miR-1, miR-206 expression is restricted to skeletal

muscles where it plays a crucial role in the differentiation

of activated SCs, by targeting Pax7 mRNA, and in my-

oblast differentiation by targeting multiple genes [239].

Their expression is altered in muscle disorders including

DMD [240, 241]. MiRNAs have recently emerged as cru-

cial determinants for cellular lineage decision. By a

peculiar repressing activity on the 30 UTR (untranslated

region) of target mRNAs, miRNAs have been reported to

confer proper timing and robustness or differentiation

program. Mir129a is highly expressed in SP interstitial

muscle cells and contributes to maintain their quiescent

state, blocking proliferation and differentiation in adi-

pogenic, osteogenic and myogenic cells targeting PPARc,
Runx1 and Pax3 [242].

Fat deposition versus fibrosis

Fibrosis reflects excessive accumulation of ECM compo-

nents, particularly of collagen. Stromal fibroblasts, which

play a fundamental role in normal repair, are also crucial in

fibrosis that is a hallmark of chronic neuromuscular dis-

orders. When regeneration fails, fatty degeneration occurs.

Fibrosis and fatty degeneration of muscle are certainly

strictly linked and share common precursor cells [111].

Nevertheless, it is not entirely clear whether fibrosis and

adipose degeneration in muscle damage are the two sides

of the same coin or if independent/alternative pathways

sustain them. Some issues should be highlighted.

The two processes occur often, but not always together

during muscle degeneration. In experimental models of

acute injury, the type of insult is relevant. For example

after glycerol injection, adipogenesis is predominant, while

after acute ischemia fibrosis occurs [108, 243].

The link between fibrosis and aberrant inflammatory

reaction is well established in muscles: virtually no fibrotic

tissue can be identified in the absence of inflammation. A

link with the infiltration by inflammatory, M1-like, mac-

rophages has been suggested in adipose tissue [206].

However, detailed MRI analyses of DMD muscles indicate

that inflamed and edematous muscles are not always af-

fected by adipose tissue infiltration, while other muscles

display fatty deposition in the absence of a prominent in-

flammatory reaction [72].

Finally, fibrosis appears to correlate with the loss of

muscle locomotor activity and the reduction of contractile

fiber force, at least in DMD [244]. On the contrary, MRI

investigations of DMD patients fail to demonstrate a cor-

relation between intramuscular adipose tissue and muscle

strength.

Signals for fibroblast or adipocyte differentiation seem

to act at least in vitro. TGFb and connective tissue factors

as well as myostatin easily induce fibroblast activation and

fibrotic features [138]. Although the effect of TGFb/myo-

statin has not been completely clarified, mesenchymal stem

cells fail to differentiate in adipocytes in the presence of

those proteins [172, 245]. Similarly, PDGF receptor inhi-

bition reduces fibrosis in mdx mice diaphragm, but

promotes in vitro adipogenesis in mesenchymal stromal

cells [114, 246].

Concluding remarks

Progressive loss of muscle mass and contractile function is

a common feature of skeletal muscle diseases characterized

by impairment of the tissue repair process. This process is

consistently accompanied by adipose intrafiber deposition.

SC play a central role in regeneration; alteration of their

regulatory signals within the tissue explain muscle adipo-

genesis. The close anatomic contact between fat and

muscle cells suggests a reciprocal influence. In fact, several

molecules coming from the muscle or from the regen-

erative milieu in turn affect the deposition of adipose

tissue. Mesenchymal stem/progenitor cells are reported to

exist in almost all mammalian organs. The ability to dif-

ferentiate toward adipogenic, osteogenic and chondrogenic

lineages is a hallmark of these cells. Strong evidence

indicates that differentiating into a certain lineage is not an

intrinsic property of mesenchymal cells in physiological

condition. Their differentiation fate changes during disease

progression and might be detrimental. Dissecting the

mechanism of mesenchymal cells interactions and differ-

entiation ought to be an important object of future studies.

A better understanding of the molecular pathways that

regulate gain or loss of muscle mass and muscle-to-fat

conversion is crucial for treating muscle wasting-associat-

ed disorders along with their physical and metabolic

complications. Fibrosis and fatty degeneration are a con-

sequence of regeneration failure. Fibrosis is induced in

disease characterized by chronic inflammation. Fibrosis

and adipogenesis are often simultaneous and share the

some precursor cells. However, fibrosis and inflammation

can occur in the absence of adipogenesis and in vitro the

differentiation of precursors in adipocytes or fibrogenic
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cells seems to be regulated by different molecular path-

ways. These data suggest that fibrosis and fatty

degeneration could be the outcome of independent pro-

grams recruited during skeletal muscle degeneration.
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