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Introduction

The innate immune system is the first line of defense in the 
intestinal tract, and it possesses a unique feature in recog-
nizing microbial components. The pathogens are detected 
by pattern recognition receptors (PRRs), which recognize 
a wide array of conserved structures of microorganisms, 
called the pathogen-associated molecular patterns (PAMPs). 
The PRRs sense specific viral and bacterial structures, and 
subsequently initiate various immunological responses. 
PRRs are located on either the cell membrane surface,  
e.g., Toll-like receptors (TLRs), or inside the cytoplasm, 
e.g., NOD-like receptors (NLRs) [1].

Muramyl dipeptide (MDP) is an immunoreactive peptide 
found in the peptidoglycan (PGN) motif which encodes “the 
building blocks” of bacterial cell walls [2]. MDP can activate 
several immunological signaling pathways, including the 
nucleotide oligomerization domain 2 (NOD2, a NLR mem-
ber) dependent pathway via specific interaction between 
NOD2 and MDP, resulting in activation of nuclear factor-κB 
(NF-κB), a ubiquitous transcription factor which induces 
expression of pro-inflammatory cytokines [2]. Multiple stud-
ies have linked NOD2 to severe immunological dysfunctions 
such as graft-versus-host disease [3], enhanced mortality 
during sepsis [4, 5], and Crohn’s disease (CD) [6, 7], indicat-
ing that MDP might play a pathophysiological role in these 
disorders. The NOD2 gene, which initially was identified as 
NOD1-related gene, was found to have a highly restricted 
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expression in monocytes [8]. The major effects of NOD2 in 
the pathogenesis of CD were later revealed by Hugot et al. 
[6] and Ogura et al. [7], who identified three disease-linked 
polymorphisms in the NOD2 gene. As described below, 
MDP also affects PRRs other than NOD2.

CD is one of the two main entities of inflammatory 
bowel disease (IBD), potentially affecting any part of the 
gastrointestinal tract; however, most commonly the terminal 
ileum or the perianal region [9, 10]. The etiology of IBD 
is still unknown, but considering epidemiological, genetic 
and immunological data together, IBD has a multifactorial  
etiology in which genetic alternations and environmen-
tal factors (i.e. microbial behavior) interact to produce the 
immunological background of the disease [11]. Accord-
ingly, it is becoming increasingly evident that an impaired 
innate immunity plays a crucial role in CD [12].

In this review, the recent studies on MDP-mediated 
pathways in the innate immunity of CD are summarized, 
covering both NOD2-dependent and NOD2-independent 
pathways. As described in detail below, MDP signaling 
is impaired on different levels in CD, and animal studies 
suggest that reversal of these pathways reduces intestinal 
inflammation. Revealing such mechanisms might lead to 
identification of new potential therapeutic approaches of 
this devastating disorder.

MDP intracellular delivery

In most Gram-negative and -positive bacteria, the PGN rep-
resents a key component of the cell wall with an important 
impact on maintaining the structural integrity of plasma 
membranes and anchoring cell components such as lipopro-
teins [2]. The pivotal role of PGN in the bacterial patho-
genesis is clearly highlighted by the fact that the most fre-
quently used antibiotics are targeting the PGN biosynthesis 
pathway [13]. MDP is a cleavage product, and the smallest 
bioactive motif of PGN that specifically binds to NOD2, and 
it leads to an activation of NOD2-mediated signal pathways 
and other pathways [14]. In general, the structure of PGN  
contains a repetition of disaccharides (glycans) cross-linked 
by short chains of amino acids (peptides) to form a lattice 
surrounding the entire cell. MDP consists of N-acetyl-
muramic acid linked to the two amino acids: D-Ala and 
D-isoGln (or D-Glu) [15]. The structure of MDP is unique 
in the way that MDP analogues composed of other amino 
acid lead to a reduced or inhibited ability to induce a bio-
logical response [2, 16].

There is accumulating evidence suggesting that NOD2 
might be a selective bacterial sensor due to the fact that 
N-acetyl (A)-MDP, which is found in most bacteria, less 
efficiently activates NOD2 than N-glycolyl (G)-MDP—
which is found in mycobacteria and related Actinomycetes 

species [17]. This is of interest since CD has been associated 
with mycobacteria infections [18]. Accordingly, Coulombe 
et al. [17] showed that G-MDP was more efficacious than 
A-MDP at inducing ovalbumin-specific T cell immunity in 
a model of adjuvancy. Further, G-MDP has been found to 
be more potent than A-MDP in NOD2-mediated activation 
of NF-κB, as well as c-Jun N-terminal kinase (JNK) [17]. 
A recent in vivo experiment has supported this finding in 
a setting where intravenously administrated MDP showed 
protective antiviral activity in mice exposed for influenza A 
virus (IAV). In this model, G-MDP showed more potency 
than A-MDP and with a greater antiviral activity against 
IAV [19].

In both Gram-negative and -positive bacteria, the PGN 
has to be cleaved during cell growth by autolysis which 
allows attaching/inserting of new material into the exist-
ing cell wall. The loss of PGN resulting from this cleav-
age is termed “PGN turnover”. However, these turnover  
products are normally captured and reutilized by the cell 
in another process named “PGN recycling”, which is 
typically observed in studies of Gram‐negative bacteria,  
e.g., Escherichia coli [20]. Whether PGN is also recycled in 
Gram-positive bacteria is basically unknown.

A number of studies have focused on identifying the 
mechanisms by which the extracellular NOD2 ligands 
reach the cytosolic receptor and trigger downstream effec-
tor functions (Fig. 1). The extracellular MDP can get access 
to the host cytosol through several ways. First, MDP can 
be taken up by the cell via membrane protein transporters, 
human peptide transporter 1 (hPepT1) [21] and pannexin-1 
(Fig.  1a) [22]. Inhibition of these transporters leads to 
reduced localization of MDP from the extracellular space 
to the cytosol [22, 23]. Although hPepT1 is expressed in 
monocytes and human enterocyte cell lines like HT-29 cells, 
most protocols for stimulating primary cells with MDP rely 
on artificial permeabilization of the cell membranes with 
liposome forming reagents like lipofectamine, suggesting 
that the hPepT1 system might be of limited efficiency in 
human cells [24]. Second, MDP similar to lipopolysac-
charide (LPS) may use a clathrin- and dynamin-dependent 
endocytic pathway to cross the host cell membrane (Fig. 1b) 
[25–27]. Clathrin and dynamin mediate a vesicle forma-
tion at the cell membrane, and an inhibition of clathrin or 
dynamin also leads to attenuated MDP-mediated signaling 
pathways [25]. The mechanism by which MDP is targeted 
to clathrin-coated pits for endocytosis remains unclear. Typ-
ically, endocytosis is thought to rely on adaptor transmem-
brane proteins, such as adaptor protein 2 (AP2), to mediate 
the recruiting process to coated pits by interaction to clath-
rin adaptors [28]. Third, it has been shown that phagocytic 
cells, interacting with the epithelium breaching microorgan-
isms and microbial components, presents a key mechanism 
in allowing components of microorganisms to be exposed 
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to intracellular receptors: Macrophages may generate such 
microbial components by ingesting whole bacteria and sub-
sequently digesting them in the phagolysosomes (Fig. 1c) 
[29, 30]. Thus, Herskovits et al. [29] have shown that NOD2 
is activated in stimulated macrophages by bacterial ligands 
generated in the phagosome and transported to the cytosol 
[29]. Finally, PGN containing MDP can be delivered into 
the cytosol by the previously mentioned intracellular PGN 
turnover after internalization of invasive bacteria into the 
cells (Fig. 1d) [31].

MDP-NOD2-mediated pathway

The NOD2 protein is located in the cytosol and is broadly 
expressed in macrophages, dendritic cells, and to a lower 
degree in intestinal epithelial cells (IECs), including Paneth 
cells of the small bowel [32]. The structure of NOD2 
consists of two N-terminal caspase recruitment domains 

(CARDs), a centrally located nucleotide-binding domain 
(NBD), a C-terminal of site of ligand binding (e.g., MDP), 
and a leucine-rich repeat region (LRR) (Fig. 2) [8]. MDP 
binds to the LRR of NOD2, which subsequently activates 
NF-κB and mitogen-activated protein kinases (MAPK) 
[33]. When activated, NF-κB translocates into the nucleus to 
initiate cell-specific genetic programs, such as immune acti-
vation, inflammation, and cell development [34, 35]. Recent 
studies have shown that the intestinal MDP–NOD2 pathway 
is tightly controlled by epithelium-associated lymphocytes, 
which specifically cleave the NOD2-detected MDP struc-
ture [36, 37]. Pro-inflammatory mediators produced by  
T helper 1 (Th1) cells, i.e. interferon-γ (IFN-γ) and tumor 
necrosis factor-α (TNF-α), upregulate the expression of 
NOD2 in IECs [38]. This reflects the importance of NOD2 
in the maintenance of the intestinal mucosal homeostasis, 
which actually links the innate and adaptive immunity.

The specificity of interaction between MDP and NOD2 is 
not completely understood. However, a recent study found 

Fig. 1   Mechanisms of MDP intracellular delivery. a Extracellu-
lar MDP can permeabilize the host cell through membrane recep-
tors such as hPepT1 and Pennexin-1. b Extracellular MDP can also 
be transported into the host cell by clathrin- and dynamin-dependent 

endocytic pathways. c Moreover, MDP can be derived from bacteria 
by the intracellular phagocytic cleavage. d Finally, MDP can addi-
tionally be released to the cytosol through autolysis of internalized of 
invasive bacteria

Fig. 2   Structure of NOD2. The structure of NOD2 consists of two 
N-terminal caspase recruitment domains (CARDs) which mediate 
protein–protein interactions, a centrally located nucleotide-binding 

domain (NBD) which mediates protein self-oligomerization required 
for activation, and C-terminal of site of ligand binding, i.e. leucine-
rich repeats (LRRs)
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that MDP binds directly to NOD2 with high affinity at a 
pH range of 5.0–6.5, compared with a pH range of 7.0–7.5 
[39], which is the estimation of human cytosolic pH [40]. 
A pH-dependent affinity of MDP–NOD2 interaction lines 
with earlier observations suggested that the internalization 
of MDP is optimal in the pH range from 5.5 to 6.5 [26]. 
MDP binding onto NOD2 causes a conformational change 
allowing a CARD–CARD interaction between NOD2 and 
RIP2 (receptor-interacting protein 2), a CARD-containing 
serine-threonine protein kinase [41, 42]. The activation of 
RIP2 results in polyubiquitination of NEMO (NF-κB essen-
tial modifier), also named IKKγ (inhibitor of IκB kinase γ), 
which is found in complex with IKKα and IKKβ [43, 44]. 
IKKγ polyubiquitylation leads to phosphorylation of IKKβ, 
which in turn phosphorylates IκB (inhibitor of NF-κB) 
resulting in dissociation of IκB from NF-κB. Subsequently 
NF-κB can translocate into the nucleus where it promotes 
transcription of several pro-inflammatory and anti-inflam-
matory cytokines, such as interleukin (IL)-1, IL-2, IL-6, 
IL-8, IL-12, and TNF-α [32, 33, 45, 46] (Fig. 3).

NF-κB can additionally be activated by another pathway, 
known as “the alternative pathway”, which has been classi-
fied according to the complex structure of NF-κB [35, 47]. 
The alternative pathway is, however, activated with much 

slower kinetics than the classical pathway [48]: The alter-
native NF-κB pathway is linked to the adaptive immune  
system, and is involved in the development of lymphoid 
organs by regulating the generation of B and T lympho-
cytes [35]. This pathway is activated by a small number of 
stimuli, including lymphotoxins (α and β), B cell activating 
factor (BAFF), receptor activator of nuclear factor kappa-
B ligand (RANKL), and NOD2 [35, 48, 49]. The alterna-
tive pathway induces NF-κB-inducing kinase (NIK) instead 
of NEMO to phosphorylate and activate the IKK complex, 
which facilitates induction of NF-κB dimers [34, 35]. The 
alternative pathway is a prerequisite for the development 
of secondary lymphoid tissues. Thus, mice with defects in 
the alternative pathway signaling are often associated with 
absence of lymph nodes, and a lack of specific lymphoid 
organization in spleen and thymus [50].

In IBD research, three independent gene variants of 
NOD2 exist, a frame-shift mutation [c3020insC (SNP13)] 
and two missense mutations [R702  W (SNP8); G908R 
(SNP12)]. Further, some rare variants have been associ-
ated with susceptibility to CD [6]. The frame-shift muta-
tion results in an incompetent truncated NOD2 protein [7].  
The NOD2 gene variants cause a reduced response to MDP 
by generating a loss-of-function phenotype [51]. Thus, 

Fig. 3   Signaling pathway of 
NOD2. Recognition of MDP 
through LRRs domain activates 
NOD2 and causes a confor-
mational change, allowing a 
CARD–CARD interaction 
between NOD2 and RIP2, 
receptor-interacting protein  
2 (also known as caspase like 
regulatory protein (CLARP) 
kinase). Activation of RIP2 
upon binding with NOD2 
results in activation of MAPK 
and NF-κB signaling pathways. 
RIP2 induces polyubiquitination 
(ub) of NEMO, NF-κB essential 
modifier (or IKKγ, inhibitor of 
IκB kinase γ), which is found 
in complex with IKKα and 
IKKβ. This is followed by the 
phosphorylation of IKKβ as 
well as the phosphorylation of 
IκB, inhibitor of NF-κB, and 
the release of NF-κB. NF-κB 
can subsequently translocate 
into the nucleus and promote 
transcription of many pro-
inflammatory and anti-inflam-
matory cytokines, including 
interleukin-1 (IL-1), IL-2, IL-6, 
IL-8, IL-12, and TNF-α
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human peripheral blood mononuclear cells (PBMCs) from 
CD patients with the frame-shift mutation (c3020insC) 
express reduced levels of pro-inflammatory cytokines, e.g., 
TNF-α, IL-6, and IL-8 in response to MDP [15, 52, 53].

In addition to activation of the NF-κB-mediated pathway, 
NOD2 stimulation further results in the activation of the 
MAPK: p38, JNK, and extracellular signal-regulated kinase 
(ERK), which are intracellular serine/threonine-specific 
kinases involved in activation of multiple cellular processes, 
including cell growth, proliferation, differentiation, migra-
tion, inflammation, and survival [54–58].

The MDP–NOD2 pathway and T helper cell regulation

During the last decade, a number of hypotheses have  
discussed the regulatory immunological role of the  
NOD2 mutations in skewing Th differentiation. One of 
these hypotheses claims, that MDP NOD2-activation 
results in a down-modulation of TLR2-mediated Th1 
responses, in which antigen-presenting cells (APCs) from 
Nod2-deficient mice exert increased amounts of IL-12 
supporting Th1 inflammatory responses [59]. This hypoth-
esis is supported by observations that administration of 
MDP protects mice from acute experimental colitis [60, 
61]. A second hypothesis suggests that defects in NOD2 
signaling polarize the adoptive immune system towards 
the Th1/Th17-type, resulting in excessive Th1/Th17 cell-
mediated inflammation, in which Th1 and Th17 cells are 
enriched at the inflamed gut together with increased lev-
els of pro-inflammatory cytokines [62, 63]. In addition 
to the previous hypotheses, other studies indicate that 
activation of NOD2 signaling enhances the Th17 polari-
zation. Thus, stimulation of human dendritic cells (DCs) 
with MDP has been shown to enhance NOD2-mediated 
production of IL-1β and IL-23 which in turn promotes 
IL-17 production by memory Th17 cells [64]. Moreover, 
a recently study reported by Geddes et al. [65] suggests 
a specific role for NOD2 in the early innate response. 
The authors used a mouse model in identifying an early 
NOD2-dependent Th17 response restricted to the acute 
phase of infections after treatment with pathogens, includ-
ing Salmonella, Typhimurium, and Citrobacter rodentium. 
NOD2 expression by myeloid and somatic cells was a 
crucial factor in recognition of pathogens and thereby for 
a functional early Th17 response [65]. Further, impaired 
acute Th17 responses in Nod2 knockout mice were associ-
ated with unaffected colonic colonization and diminished 
colonic inflammation at early stages, which is in contrast 
to an enhanced tissue destruction and increased bacterial 
translocation later in the course of the disease, indicating 
a protective role of the acute Th17 response in infection 
control [65]. However, treatment with human anti-IL-17A 

monoclonal antibodies has been revealed to be without any 
clinical effects in CD [66].

NOD2 also seems to be involved in immune regulatory 
pathways for maintaining the Th1/Th2/Th17 immune bal-
ance. For instance, mutations of NOD2 lead to an inhib-
ited IL-10 expression, which is assumed to suppress Th1 
cells [53, 67]. NOD2 mutations suppress transcription of 
human IL-10 by inhibitory activity of the nuclear ribo-
nucleoprotein hnRNP-A1, a nucleocytoplasmic shuttling 
heterogeneous nuclear ribonucleoprotein that accompa-
nies eukaryotic mRNAs from the active site of transcrip-
tion to that of translation [67]. Further, PBMCs with the 
3020insC frame shift NOD2 mutation have an impaired 
production of the anti-inflammatory cytokine, IL-10 [53, 
67]. Based on the observation that IL-10 knockout mice 
develop colitis, and that loss of function mutations in the 
IL-10 receptor gene lead to early onset of CD in humans, 
this finding adds another aspect to the importance of 
NOD2 for balancing various immune responses [68, 
69]. Another hypothesis is based on observations where 
NOD2 is found to have a reciprocal interaction with trans-
forming growth factor β-activated kinase 1, TAK1 [70]. 
NOD2 inhibits TAK1-induced activation of NF-κB [70], 
and TAK1 gene silencing decreases the frequency of Th1 
and Th17 cells [71]. This indicates that a loss-of-function 
phenotype of NOD2-mutations can lead to an increased 
TAK1-mediated Th17 cell activation. Recently, short non-
coding RNAs, known as microRNAs (miRNAs), were pro-
filed in DCs from patients with CD-associated mutations 
of NOD2, and a downregulation in two miRNA clusters 
was revealed. Interestingly, these clusters were suggested 
to regulate a critical component of the Th1/Th17 immune 
response [72].

The dysregulation of the immune balance in Th1/Th2/Th17 
is further considered to be of importance for a defective Th2 
immune response. Magalhaes et al. [73] showed that MDP 
activation of the NOD2-mediated pathway in DCs is insuffi-
cient to initiate Th2 immunity in absence of stromal-derived 
mediators, such as thymic stromal lymphopoientin (TSLP). 
TSLP is thought to promote Th2 immunity by an upregula-
tion of the expression of OX40 ligand (OX40L), which is 
a transmembrane protein expressed by APCs to recognize 
OX40, a receptor expressed by T cells [74, 75]. Magalhaes et 
al. found that NOD2 stimulation induced the upregulation of 
OX40L expression on DCs. Moreover, OX40-deficient mice 
had diminished capabilities in generating NOD2-drived Th2 
immunity [73].

T-regulatory Foxp3+ cells are important for the home-
ostasis of the intestinal immune response, and a lack of 
T-regulatory cells has been associated with development 
of experimental colitis [76]. The dynamic of T-regulatory 
Foxp3+ cells in IBD is still incompletely understood. Sev-
eral studies have revealed an increased number of mucosal T 



3396 M. Salem et al.

1 3

regulatory cells in active CD [77, 78]. On the other hand, the 
number of T-regulatory Foxp3+ cells has been found to be 
increased in the colonic lamina propria of children with CD 
treated with anti-TNF-α compared with both CD receiving 
conventional therapy and non-IBD controls patients with 
active CD [79]. Moreover, the number of T-regulator cells 
has also been reported to be higher in inflamed IBD mucosa 
than the peripheral blood [80]. It is therefore of interest that 
the MDP-NOD2 pathway seems to be necessary for sur-
vival signaling in T-regulatory Foxp3+ cells [81]. Further, 
T-regulatory Foxp3+ cells from CD patients with disease-
associated gene variants of NOD2 were more susceptible 
to cell death than wild-type NOD2 T-regulatory Foxp3+ 
cells, and the number of T-regulatory Foxp3+ cells were 
substantially decreased in NOD2-mutated patients [81]. The 
MDP–NOD2 pathway might therefore also be crucial for 
the mucosal immune homeostasis.

MDP has been used as vaccine adjuvant, suggesting that 
MDP additionally stimulates B cell adaptive immunity [82]. 
Taken together, these observations reflect the impact of the 
NOD2 signaling pathway in the dysregulation of adaptive 
responses related to the CD pathogenesis, although further 
clarification of the pathways involved is needed.

The MDP–NOD2 pathway in mucosal immunity

In the mucosal immunity, IECs provide a physical barrier 
with elemental signal-transduction functions in the main-
tenance of gut homeostasis. IECs consist of a number of 
epithelial cell types including Paneth cells [83]. The loss-
of-function phenotype of NOD2 mutations has been linked 
to deficiencies of the epithelial-barrier function, which 
promotes the intestinal bacterial flora invasion and inflam-
mation into the intestinal walls [84]. In Paneth cells, the 
expression levels of NOD2 increases in response to the 
intestinal bacteria [85, 86]. MDP stimulation of Paneth 
cells leads to a NF-κB-dependent expression and secre-
tion of α-defensins, i.e. anti-microbial peptides, into the 
intestinal lumen [87–90]. Thus, α-defensins levels in CD 
patients with NOD2 mutations are markedly reduced [91]. 
This reduction of α-defensins is consistent with activated 
intracytoplasmic digestion (i.e. crinophagy) of the secretory 
granules in CD Paneth cells [92]. In addition, Nod2 knock-
out mice have been reported to possess a reduced mRNA 
expression of Paneth cell-derived α-defensins. These mice 
have an impaired intestinal mucosal homeostasis reflected 
in a reduced intestinal bacterial clearance, and an increased 
bacterial load of the terminal ileum [93, 94].

In addition, an abnormal MDP-NOD2 pathway has 
been associated with intestinal disorders and higher bacte-
rial translocation. Thus, MDP stimulation of PBMCs from 
healthy individuals results in a 2- to 3-fold enhancement of 

TLR9 agonist stimulation of PBMC production of TNF-α 
and IL-8, whereas such an enhancement is not seen in 
PBMCs from CD patients bearing NOD2 mutations [95], 
suggesting that the synergistic cytokine response between 
NOD2 and TLR9 might have a role in maintaining intesti-
nal homeostasis. Moreover, it was recently found that MDP 
stimulation of murine colorectal epithelial cell lines leads 
to an enhanced TLR2 response in the shape of significantly 
increased expression levels of chemokines, cytokines, and 
tight junction molecules, e.g., claudin-3 and claudin-4, 
which are typically expressed from IECs in the colon 
to improve the barrier function [96]. Further, the NOD2  
genotype has been evidenced to influence the bacterial 
translocation in CD patients due to the fact, that the intes-
tinal endotoxin accumulation in heterozygous SNP8 and 
SNP13 is stronger than in homozygos SNP12 patients and 
wild-type patients [97]. In addition, Nod2 knockout mice 
are characterized by significantly higher tissue-associated 
intestinal bacterial levels [93, 94, 98]. Nod2 knockout mice 
suffered from an impaired bacterial clearance after exposing 
with pathogens, e.g., Listeria monocytogenes, Citrobacter 
rodentium, Salomonella, and Mycobacterium tuberculosis 
[99–101]. The increased bacterial colonization indicates a 
crucial role for NOD2 in the bacterial clearance. In a recent 
study, inhibition of NOD2 using carbamoyl phosphate syn-
thetase/aspartate transcarbamylase/dihydroorotase (CAD) 
(a newly discovered NOD2-interacting protein) leads to 
a dramatic decrease in the clearance of Salmonella [102]. 
Thus, NOD2 mutations may play an essential role in the 
maintenance of intestinal homeostasis, and the results indi-
cate that an impaired NOD2-mediated bacterial clearance 
might lead to accumulation of mucosal microbiota and 
secretion of higher levels of pro-inflammatory cytokines.

In mucosal immunity, innate lymphoid cell (ILC) popu-
lations, which are newly defined innate immune cells, have 
been shown to regulate the epithelial cell responses and 
maintain intestinal homeostasis [103]. ILCs are constituted 
of  both well-established and recently identified T cell popu-
lations and can be grouped into three major groups depend-
ing on specific transcription factors for their development 
and function: Group 1 ILCs depends on expression of T-bet 
(T-box expressed in T cells); Group 2 ILCs relay typi-
cally on expression of GATA3 (GATA-binding protein 3); 
and Group 3 ILCs which require the expression of RORγt 
(retinoid-related orphan receptor γ) [103, 104]. Although 
only a few studies have investigated the MDP signaling in 
ILCs, the presence of this pathway might be involved in the 
developmental and functional characteristics of ILCs. For 
instance, Natural Killer (NK) cells, which belong to Group 
1 ILCs and attend in the gut homeostasis by responding to 
commensally enteric bacteria through the innate immune 
system and cytolytic activity, express high levels of NOD2 
[105], and MDP treatment of these cells leads directly to 
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cell activation through the NOD2-mediated pathway [106]. 
In addition, MDP can also be sensed by TLR2 (described 
below) [107, 108], which is expressed on RORγt+ ILCs 
[109]. Therefore, MDP might have an indirectly influence 
on ILCs through modulation of other cellular components of 
the innate immunity. As previously mentioned, DCs stimu-
lated with MDP express high levels of IL-23 and IL-1β [64], 
cytokines that can induce production of IL-22 from RORγt+ 
ILCs [110, 111]. IL-22 has been reported to ameliorate 
intestinal inflammation in a murine model of experimental 
colitis [112], and to bolster intestinal epithelial barrier func-
tion by upregulation of antimicrobial peptides [113]. Over-
all, additional studies are, however, required to clarify the 
MDP signaling and its influence on ILCs responses.

The MDP–NOD2 pathway and autophagy

The MDP–NOD2 signaling pathway might be a potential 
regulatory target for other upstream and downstream genes. 
An interesting illustration of such genes is the autophagy-
related protein, 16-like 1 (ATG16L1), which has a key role 
in the process of cellular protein turnover as well as in han-
dling the intracellular bacteria [90, 114]. The prevalence of 
ATG16L1 polymorphism is high, as it exists in around 50 % 
of the European population; however, the loss-of-function 
mutations in ATG16L1 are associated to CD in form of a 
two-fold increased susceptibility [115–117]. Moreover, 
NOD2 is linked to ATG16L1 in the autophagy pathway, 
and is of importance for the recruitment of ATG16L1 at 
the site of bacterial entry [118]. The link between NOD2 
and ATG16L1 was shown by LPS and MDP stimulation of 
GFP-LC3-transduced bone marrow-derived macrophages 
(BMDMs), a cell population expressing functional Nod2: 
The MDP-treated, but not LPS-treated, BMDMs showed 
an activated autophagy in wild-type macrophages, whereas 
macrophages isolated from Nod2-deficent mice did not acti-
vate this pathway [118]. These observations indicate that 
the MDP–NOD2 signaling pathway is emerging as a crucial 
activator in autophagy, thereby linking important aspects 
of the pathogenesis of CD to disturbances of the innate 
immune system.

Cross-talk between NOD2 and other innate pathways

MDP sensing is not NOD2-restricted. Beyond the ability 
to activate NOD2-mediated signaling pathways, MDP can 
interact and signal through TLR2 [107, 108]. TLR2 rec-
ognizes MDP and activates the NEMO/NF-κB pathway 
through two independently upstream signaling pathways 
[119]. Further, TLR2 triggers the association with mye-
loid differentiation primary-response protein 88 (MyD88), 

which subsequently can signal either through tumor-necro-
sis factor receptor-associated factor 6 (TRAF6), or by bind-
ing to receptor-interacting serine/threonine kinase (RICK) 
activating pathways similar to those involved in NOD2-
signaling [42, 120–122]. Activation of TLR2 also facilitates 
induction of MAPK signaling pathways [119, 123–125]. 
In vitro data on MDP stimulation of splenic macrophages 
isolated from Nod2-deficient mice have shown an excessive 
NF-κB-dependent IL-12 production, pointing to a possible 
NOD2-negative regulatory role of the TLR2-mediated Th1 
response, whereas the expression levels of other inflamma-
tory cytokines produced by TLR2-signaling, such as TNF-α 
and IL-10, were unaffected [59]. In contrast, MDP stimula-
tion of NOD2 and TLRs, including TLR2 in human PBMCs, 
leads to a positive synergistic effect, while MDP stimulation 
of mutant NOD2 cells shows a lack of this immunological 
response, which results in an impaired NF-κB signaling 
pathway [52, 95]. This immunological response is, however, 
detrimental to the suggested pathogenesis of CD with ele-
vated levels of NF-κB activation-dependent Th1 cytokines 
[126–128]. However, the effect of NOD2-activation on 
TLR2-mediated cytokine response has, in another study, 
been found to depend on the MDP activation dose and the 
NOD2-genotype: Stimulation of NOD2-mutant monocytes 
with low doses of MDP results in a significant increase in the 
TNF-α production, as opposed to a downregulated response 
at higher MDP doses. However, when monocytes isolated 
from NOD2-deficient patients are stimulated with high-dose 
MDP, divergent dynamics are revealed as the response of 
downregulation lacks [129].

In addition to the previously mentioned NOD2- 
interaction, it has further been reported that NOD2 could 
play a role in activation of innate immune antiviral responses. 
The mechanisms underlying NOD2-mediated activation of 
antiviral responses remain controversial and poorly under-
stood. Sabbah et al. [130] concluded that NOD2 is the gen-
eral activator of antiviral cytokines, including IFN-β, in 
response to external viral stimuli such as single-stranded 
RNA (ssRNA) and respiratory syncytial virus (RSV). The 
authors found that the activation mechanism requires NBD 
and the LRR domain of NOD2 interaction with the mito-
chondrial antiviral signaling (MAVS) protein. The NOD2–
MAVS protein complex facilitates the NOD2-mediated 
response by activating interferon-regulatory factor 3 (IRF3), 
which subsequently translocates to the nucleus and activates 
production of cytokines such as IFNs [131]. However, the 
role of NOD2 in antiviral defense is questionable. Recent 
studies have reported that, although NOD2 has been impli-
cated in the antiviral responses against infections with IAV 
or murine norovirus-1, no critical role of NOD2 itself in 
antiviral activity has been revealed [19, 132]. Recent studies 
have further shown a synergistic proinflammatory cytokine 
response in human PBMCs stimulated with RSV followed 
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by MDP stimulation. Interestingly, this synergic response is 
absent in PBMCs isolated from CD patients homozygous 
for the 3020insC mutation in the NOD2 gene [133]. These 
results suggest a critical role of NOD2 in this synergy and 
add an interesting aspect in how the loss of function muta-
tions in NOD2 can eliminate essential immune responses.

The inflammasome-mediated pathway

Another outcome of MDP recognizing by PRRs is the for-
mation of inflammasomes, i.e. multiprotein complexes, 
which are involved in the conversion of pro-caspase-1 to 
caspase-1 through a CARD–CARD interaction. Active cas-
pase-1 leads to cleavage of pro-inflammatory cytokines, 
such as pro-IL-1β and pro-IL-18, allowing more secretion 
of mature IL-1β and IL-18 [134, 135] (Fig.  4). Recently, 
Meinzer et al. [136]. showed that Yersinia pseudotubercu-
losis induces an intestinal barrier dysfunction by subverting 
signaling of Nod2. They reported that acetylation of RICK 
and TAK1 kinases resulted in a reduced affinity for Nod2. 
Thus, the free Nod2 interacts with and activates caspase-1 
resulting in increased levels of IL-1β, which contributes to 
the induction of intestinal barrier dysfunction in Peyer’s 
patches [136].

The NLR family encodes a key component in the innate 
immunity by microbe recognition and the activation of 
response signaling pathways. One of these pivotal pathways 
is the NLR control of inflammatory caspases, such as cas-
pase-1 via formation of inflammasomes [137–139]. Four 
inflammasomes have been identified and named after the 
PRR that regulates their activity: NLRP1, NLRP3, NLRC4, 

and AIM2 (absent in melanoma 2), an intracellular DNA 
receptor [137, 140]. Three of them include PRRs from the 
NLR family: NLRP1, NLRP3, and NLRC4, which are  
composed of a C-terminal leucine-rich repeat domain, a 
central nucleotide-binding domain, and an N-terminal effec-
tor domain, CARD or pyrin domain (PYD) (Fig. 4) [141]. 
NLRPs contain PYD, while CARD mediates downstream 
protein–protein interaction in NLRCs [142]. Recently, 
AIM2, a non-NLR family member belonging to the inter-
feron-inducible HIN-200 protein family, was identified as 
a cytosolic double-stranded DNA (dsDNA) sensor facilitat-
ing formation of the AIM2 inflammasome. The AIM2 PYD 
interacts with adaptor protein apoptosis-associated speck-
like protein (ASC) to recruit caspase-1 via its CARD and 
results in caspase-1-dependent IL-1β induction [143–146].

The initial description of the inflammasome was estab-
lished on observations showing that formation of the human 
NLRP1 inflammasome was required for activation of the 
pro-inflammatory protease, caspase-1 [137, 147]. MDP has 
been identified as inducer for the NLRP1 inflammasome 
and IL-1β secretion, in which NOD2/NLRP1 complexes 
are believed to mediate the process of caspase-1-dependent 
IL-1β secretion [148], although no evident MDP–NLRP1 
interaction has been found [149]. In addition, MDP was 
found to induce the activation of NLRP3 inflammasome 
[22, 150]. The activation mechanism of the NLRP3 inflam-
masome requires induction of NLRP3 expression mediated  
by NF-κB [150–152]. A recent study revealed that NLRP3 
variants contribute to the CD susceptibility, indicating an 
important interference of the inflammasome in the patho-
genesis of CD [153]. The gain-of-function mutation in 
NLRP3 leads to elevated levels of IL-1β produced by human 

Fig. 4   MDP activation of  
pro-inflammatory cytokines 
through inflammasome- 
mediated pathway. The  
prototype structures of NLRP1, 
NLRP3 and NLRC4 consist of 
the following major interaction 
domains: The ligand sensing 
leucine-rich repeats (LRR), 
NACHT or the oligomerization 
domain, pyrin domain (PYD), 
or caspase recruitment domain 
(CARD), and function to find 
domain (FIIND). MDP interac-
tion with these NLRs leads to 
the formation of inflammas-
omes, which are able to convert 
pro-inflammatory cytokines into 
their biologically active form
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monocytes THP-1 cells [154]. This finding might also be 
associated with other severe inflammatory disorders, e.g., 
Muckle–Wells syndrome, familial cold autoinflammatory 
syndrome, and neonatal-onset multisystem inflammatory 
[155, 156].

Other MDP-dependent pathways and clinical  
implications

Decreased bone mineral density (BMD) is a common 
extraintestinal complication in IBD [157–159]. The balance 
between bone resorption and formation, i.e. the process of 
bone remodeling, is tightly regulated by osteoclasts and 
osteoblasts, respectively [160]. In recent studies, MDP has 
been found to contribute synergistically to the enhancement 
of osteoclasts formation through elevated NOD2-dependent 
expression of RANKL osteoblasts [161]. These observa-
tions suggest that MDP might play a key role in osteoclastic 
bone resorption in inflammatory bone diseases.

Moreover, MDP can elicit divergent biological effects 
dependent on the activated biological switch. For instance, 
a number of apoptotic pathways are induced by the  
MDP-dependent pathway, such as the calreticulin (CRT) and 
the ASC-mediated pathways [162, 163]. MDP activation  
of CRT, an endoplasmic reticulum Ca2+ binding chaper-
one with multiple functions [164], results in the induction 
of a conformational change of TNFR1-associated death 
domain protein (TRADD) or Fas-associated death domain 
protein (FADD), which subsequently activates caspase-8 
and thereby cell death in cell lines such as rabbit kidney 
epithelial cells and Hela cells [163, 165]. Normalization of 
this apoptotic pathway might imply a promising treatment 
procedure for IBD. For instance, repressing of FADD in a 
mouse model of acute experimental colitis leads to a modu-
lation of TNF-mediated intestinal epithelial apoptosis [166].

In addition to its role as an adaptor protein linking NLR  
proteins with caspases, the ASC protein interacts with MDP 
and activates caspase-8-mediated apoptosis [162]. Previously,  
ASC has been shown to be involved in the chemosensitivity  
of cancer cells [167], and the ASC-mediated apoptosis 
might thus be a potential target in oncology.

Concluding remarks

In combination with genetic and environmental factors, 
the luminal bacterial flora plays a pivotal role in the ini-
tiation and perpetuation of IBD. An analysis of published 
research shows that MDP induces a wide range of biological 
effects, and, further, that impairment of MDP-related path-
ways might contribute to the inflammatory process in CD. 
Thus, MDP can activate divergent extra- and intracellular 

PRRs and utilize several strategies for intracellular delivery. 
NOD2 is a well-known innate cytosolic receptor that senses 
the intracellular MDP. MDP–NOD2 interaction has been 
shown to activate NF-κB-dependent pro-inflammatory and 
antibacterial responses. Mutations in NOD2 are associated 
with an early onset and a more complicated clinical course 
of CD including fibrostenosis and fistulization, but the func-
tional link between these mutations and CD has not been 
entirely elucidated. There are several possible mechanisms 
for a dysfunctional role of NOD2 in CD susceptibility. It has 
been suggested that defects in NOD2 signaling polarize the 
adoptive immune towards Th1/Th17-type, which leads to an 
excessive Th1/Th17 cell-mediated inflammation. In addi-
tion, NOD2 signaling has been reported as both a negative 
and a positive regulator of TLR responses. A NOD2 muta-
tion can drive a Th1 immune response by negative regula-
tion of TLR2, whereas NOD2 can also provide a synergistic 
effect with TLR9 in maintaining intestinal homeostasis. An 
impaired NOD2 interaction with ATG16L1, and thereby 
impaired autophagy causing defect bacterial handling, is 
another likely mechanism of CD-associated dysbiosis.

Recent studies have expanded the induction ability of 
MDP beyond interaction with NOD2. Indeed, MDP has been 
shown to interact with inflammasomes, through NLRP1 and 
NLRP3, and to induce production of the pro-inflammatory  
cytokines belonging to the IL-1 family of cytokines. Further,  
NOD2 signaling might be impaired even in CD patients 
with the wild-type NOD2 gene variant, suggesting that 
epigenetic changes and alternations downstream to NOD2 
could play a key role in the bacteria–host interaction in 
CD [168]. The understanding of how interaction between 
MDP-producing bacteria and the innate immune system 
contributes to the pathogenesis of CD therefore relies on a 
better understanding of how shutting down of one part of 
the MDP response (e.g., by defect NOD2 signaling), poses 
imbalances towards other parts of the NOD2 response (e.g., 
non-NOD2-dependent signaling). Forcing or enhancing 
signaling through these pathways by stimulation with small 
molecules could in this way downgrade the imbalance and 
normalize the innate immune response, and thereby reduce 
the inflammatory burden in CD, as has been observed in 
experimental colitis [60, 169].

In this review, several findings related to the molecu-
lar mechanisms of intracellular delivery of MDP and its  
biological effect in the CD pathogenesis have been high-
lighted. Furthermore, the cross-talk between NOD2 and 
other innate signaling pathways of relevance to disease 
pathogenesis have been described, as well as the role of 
MDP in the inflammasome-mediated and various other 
pathways (e.g., NOD2 and TLR2). Altogether, these obser-
vations raise questions on the responsive roles of MDP for 
the innate immunity and CD pathogenesis, and it is assumed 
that clarification of the impact of MDP could possess major 
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implications of importance for future treatment strategies 
for CD.
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