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Introduction

Glutamatergic synapses mediate excitatory transmission 
in the central nervous system. Alpha-amino-3-hydroxy-
5-methyl-4-isoxazole propionic acid (AMPA) receptors 
(AMPARs) and N-methyl-d-aspartate (NMDA) receptors 
(NMDARs) are the two principal types of ionotropic glu-
tamate receptors in glutamatergic synapses, and changes 
in the trafficking, subunit composition, and signaling of 
these receptors are fundamental processes underlying syn-
apse strength. AMPARs are tetrameric cation channels that 
mediate fast excitatory synaptic transmission in the mam-
malian central nervous system [1]. NMDARs are also tetra-
meric cation channels; their activation requires glutamate 
(ligand-gating) and also membrane depolarization (voltage-
dependence), which removes the Mg2+ normally blocking 
the channel. Activated NMDARs allow Ca2+ to enter the 
neuron; the magnitude of the Ca2+ signal in the postsynaptic 
neuron largely determines whether long-term potentiation 
(LTP) or long-term depression (LTD) of AMPAR currents 
occurs [2].

During synaptogenesis, the subunit composition and rela-
tive abundance of AMPA and NMDA receptors are adjusted 
as crucial steps in the establishment of a functionally mature 
synapse. In younger neurons, the synapses are characterized 
by low AMPAR/NMDAR ratio. Maturation is marked by 
incorporation of NMDARs containing the GluNA2 subunit 
into the synapse and an increase in the AMPA/NMDA cur-
rent ratio [3].

In mature synapses, AMPAR trafficking is a major deter-
minant of both Hebbian and homeostatic plasticity. Hebbian 
plasticity is a mechanism by which long-lasting modifica-
tions in synaptic strength occur [4]. Synaptic modifications 
resulting from Hebbian plasticity give rise to LTP and LTD 
and are largely determined by the delivery and removal of 
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postsynaptic AMPARs. There is good evidence that LTP 
and LTD are substrates for at least some aspects of learning, 
memory, and cognition [5]; and some diseases characterized 
by defective learning and cognitive function are directly 
related to alterations in AMPAR trafficking [6]. Homeo-
static synaptic plasticity on the other hand is a mechanism 
ensuring that changes in synaptic activity occur within a 
limited range, thereby preserving the stability of neuronal 
circuits and functional integrity of the brain [7].

In this review, we examine recent findings that provide 
further understanding of the role of AMPAR trafficking in 
synapse maturation, Hebbian plasticity, and homeostatic 
plasticity. First, however, we summarize AMPAR structure 
and subunit composition and introduce many of the pro-
teins that interact with AMPARs and are involved in their 
trafficking.

AMPAR structure and subunit composition

AMPARs are homo or hetero tetramers assembled from 
GluA1-A4 subunits, encoded by genes GRIA1-4 [8]. The four 
subunits that make up each receptor combine in various stoi-
chiometries to form receptor subtypes with distinct channel 
properties [9]. Most AMPARs in adult hippocampus and cor-
tex appear to consist of the GluA1 plus GluA2, or GluA2 plus 
GluA3 subunits [10]. Since GluA3 is expressed at relatively 
low levels, over 70 % of GluA2 is associated with GluA1 [11].

All AMPAR subunits consist of an extracellular amino 
terminal domain (ATD or NTD), a ligand-binding domain 

(LBD) (S1 and S2), three membrane-spanning domains 
(M1, M2 and M3), one cytoplasmic re-entrant loop (P), and 
a carboxy-terminal intracellular region (Fig. 1) [9, 12, 13]. 
The extracellular and transmembrane regions of all GluAs 
are highly homologous and the four GluAs differ from 
each other mainly in terms of their intracellular cytoplas-
mic tails. The function of the NTD in AMPARs is to control 
the initial dimerization of subunits and to prevent heter-
omerization between AMPAR and kainate receptor subunits 
[14]. Subsequent tetramerization of dimers is mediated by 
associations at the ligand binding and membrane domains  
(M1–M3 and P) and also depends on Q/R editing of GluA2 
(see below) [15].

GluA1, GluA4, and GluA2L (alternative splice form of 
GluA2) have long cytoplasmic tails; GluA2, GluA3, and 
GluA4S (alternative splice form of GluA4) have short C-ter-
minal tails [16, 17, 18]. Alternative splicing also generates 
the flop (short) and flip (long) variants encoded by exons 14 
and 15, respectively, that differ by a 38-amino-acid insertion 
into a region that forms part of the extracellular LBD and is 
localized before the M3 domain [19, 20].

The flip variants of all subunits are prominently expressed 
before birth and their expression, as determined by in situ 
hybridization, remains largely unchanged during postnatal 
development and in the adult; whereas the expression of 
flop variants increases throughout development, and reaches 
adult levels by postnatal day 14 in the rat [21]. Flop ver-
sions are less responsive to AMPAR potentiators [21, 22] 
and generally de-sensitize more rapidly in response to glu-
tamate than receptors containing flip variant [19].

(B)

(A)

Fig. 1   a Schematic illustration of AMPAR tetramer in the mem-
brane. Tetrameric AMPARs are assembled from two dimers of dis-
tinct subunits. b Schematic illustration of structure of GluA subunit. 
All GluA subunits consist of three transmembrane domains (M1, M2, 
and M3), one re-entrant loop (P), an extracellular N-terminal domain 

(ATD or NTD) and a C-terminal intracellular region. Each GluA 
subunit is composed of a large extracellular ligand-binding core (seg-
ments S1 and S2) that serves as binding site for glutamate. The Q/R 
editing site controls Ca2+ flux and receptor tetramerization, whereas 
alternative splice flip and flop variants control gating kinetics
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Almost all (99 %) GluA2s in adult brain have a positively 
charged arginine (R) in the M2 channel-forming segment at 
position 607 (Q/R site), while the other AMPAR subunits 
have glutamine (Q) at this position [15]. This is not due to a 
primary coding difference, but to site-selective deamination 
of adenosine to inosine on the pre-mRNA, which changes 
the glutamine codon to an arginine codon [23]. Deamination 
is performed by ADAR2, a double-stranded-RNA-specific 
adenosine deaminase and principal RNA-editing enzyme 
in mammals; ADAR2 can regulate its own expression and 
activity by editing its own pre-mRNA [24]. Unedited (Q) 
GluA2 exists during embryogenesis where it seems to have 
the important role of directing human neural progenitor cell 
differentiation to neurons [25].

Edited R-containing subunits remain largely unassem-
bled and are retained at the endoplasmic reticulum, whereas 
unedited Q subunits readily tetramerize and traffic to syn-
apses. Furthermore, the presence of a positively charged 
amino acid (R) in the channel-forming segment effectively 
blocks calcium entry and results in AMPARs with relatively 
low conductance and a linear current–voltage relationship 
[26]. By contrast, AMPARs containing unedited subunits 
are Ca2+ permeable, have higher conductance, and are  
susceptible to voltage-dependent block by endogenous 
intracellular polyamines [26].

Thus, this single amino acid residue not only affects 
channel composition but also controls ion conduction and 
channel rectification as well as subunit retention at the 
endoplasmic reticulum [15]. That Q/R editing is essential 
for correct brain function and is demonstrated by the find-
ing that mice engineered to synthesize only unedited GluA2 
subunits [27, 28, 29] die early and develop seizures, as do 
ADAR2 knockout (KO) mice [23].

AMPAR-interacting proteins

AMPAR trafficking and synaptic targeting relies on interac-
tions with several types of proteins, comprising those that 
interact with the extracellular N-terminal domain; those that 
interact with the intracellular C-terminal domain (includ-
ing proteins with PDZ domains), and the so-called AMPAR 
auxiliary proteins.

Proteins interacting with the extracellular domain

The first two proteins demonstrated to interact with all four 
AMPA receptor subunits were neuronal pentraxin 1 (NP1) 
and neuronal immediate early gene neuronal activity-reg-
ulated pentraxin (NARP) [30]. NP1 induces clustering of 
GluA4 homomeric receptors—the main AMPARs expressed 
during synaptogenesis [30, 31] whereas NARP induces clus-
tering of GluA1-, GluA2-, and GluA3-containing AMPARs 

in both neurons and heterologous cells. Experimental over-
expression of the gene encoding NARP in neurons increases 
the number of synaptic AMPAR clusters [32], suggest-
ing that NARP may be important for stabilizing synaptic 
AMPAR clusters at excitatory synapses.

The extracellular domain of GluA2 is also the specific 
site for interaction with N-cadherin—an interaction impor-
tant for the formation, growth, and maintenance of dendritic 
spines. The first evidence of this was the finding that GluA2 
overexpression in mature cultured hippocampal neurons 
increased spine length, spine head width, and spine density, 
and that this activity required NTD [33]. GluA2 may there-
fore stimulate synaptic development and dendritic spine for-
mation via this novel structural interaction at the synaptic 
junction [34] (Fig. 2).

Proteins interacting with the intracellular domain

PDZ domain proteins interacting with the C-terminal 
domain

The C-terminus of GluA1 binds with a PDZ domain of 
SAP97—a member of the membrane-associated guanylate 
kinase (MAGUK) family [35]. SAP97 interacts with the 
protein kinase A (PKA) anchoring molecule AKAP79 [36], 
which may serve to enhance the GluA1 phosphorylation 
required for LTP [37]. Recently, it has been shown that neu-
ronal activity induces AKAP79/150 palmitoylation, which 
is required for AKAP79/150 recruitment at spines and for 
spine enlargement [38, 39]. In AKAP79/150-KO mice, PKA 
does not reach the postsynaptic membrane and the bidi-
rectional modulation of postsynaptic AMPARs is altered, 
with concomitant alterations in synaptic transmission and 
memory [40]. However, SAP97 has also been shown to act 
early in the secretory pathway to facilitate AMPAR matura-
tion [41]. Furthermore, while some studies have found that 
SAP97 overexpression in cultured neurons increased the 
number of synaptic AMPARs and NMDARs [42, 43], other 
studies report that SAP97 has no significant effect on excita-
tory postsynaptic currents (EPSCs) mediated by AMPAR or 
NMDAR [44, 45]. The situation is further complicated by 
the recent finding that SAP97 conditional KO mice have 
normal LTP [46]. Clearly, further research is required to 
elucidate the roles of SAP97 in AMPAR trafficking.

GluA2 and GluA3 share a C-terminal sequence (-SVKI) 
that interacts with glutamate receptor-interacting proteins 
(GRIP1/2) containing seven PDZ domains [47]; with AMPAR 
binding protein (ABP) [48, 49], which has six PDZ domains; 
and with PICK1, which contains a single PDZ domain. ABP 
seems to be a splice variant of GRIP2 (also called GRIP-
related protein), which lacks the GRIP2 N-terminus and 
PDZ7 [48]. ABP and GRIP are found at the PSD and also in 
intracellular punctate structures resembling endosomes.
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Several studies have implicated GRIP1/2 in the con-
trol of AMPAR trafficking, as well as synaptic plastic-
ity and social behavior. For example, genetic ablation of 
GRIP1/2 abolishes cerebellar LTD [50] and affected mice 
show increased sociability and impaired prepulse inhibi-
tion [51]. However, it is unclear how GRIP1/2 achieves 
this control. Some studies suggest that AMPAR delivery 
to dendrites and synapses requires GRIP1 interaction with 
kinesin heavy chain [52] and liprin-α, which in turn binds 
microtubule-based motor KIF1A [53, 54] and also the LAR 
family of tyrosine phosphatase receptors [55]. Liprin-α has 

been shown to be important for both postsynaptic and pre-
synaptic maturation [53]. Other studies indicate that GRIP1 
retains AMPARs in the intracellular compartment [56]. 
Others again indicate that GRIP1 regulates the endosomal 
recycling of AMPARs in that GRIP1 binding to neuron-
enriched endosomal protein 21  kDa (NEEP21) promotes 
the recycling of internalized AMPARs back to the plasma 
membrane [57, 58].

It has also been reported that GRIP1 binds KIF5, another 
microtubule-based motor protein important for vesicu-
lar transport along axons and dendrites: the KIF5–GRIP1 

(A)

(B)

Fig. 2   Schematic illustrating AMPAR and NMDAR structure, with 
interacting molecules, at nascent and maturing glutamatergic syn-
apses. a Nascent synapse. During synaptogenesis, spontaneous activ-
ity induces GluA4-containing AMPARs incorporation into synapses 
that mediate fast excitatory transmission. Interaction between the 
NTD of the GluA4 subunit and neuronal pentraxin (NP1) (secreted 
by the presynaptic neurons) controls synaptic recruitment of GluA4. 

However, AMPAR signaling is not stable and the receptor easily 
switches between labile and silent states. A developmental switch 
from GluN2B to GluN2A subunits in NMDARs, mediated by the 
PSD95 scaffold protein, results in increased AMPAR currents and 
leads to a mature synapse. b Mature synapse: here number, synaptic 
localization and subunit composition of AMPARs are regulated by 
various transmembrane and cytosol proteins
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complex interacts with GluA2, and appears to be involved 
in the transport of GluA2 to dendrites [52].

The interaction of GluA2 with PICK1 is important for 
GluA2 endocytosis [59]. Furthermore, the interactions of 
GRIP/ABP and PICK1 with GluA2 depend on the phos-
phorylation status of serine 880 (S880) and tyrosine 876 
(Y876) on the C-terminal of the GluA2 subunit: In par-
ticular, phosphorylation of S880 prevents the interaction 
of GRIP/ABP with GluA2, but not of PICK1 with GluA2 
[60, 61]. On the other hand, ABP binding can itself prevent 
S880 phosphorylation [62]. Phosphorylation of Y876 by 
Src tyrosine kinase also regulates the GRIP/ABP interac-
tion with GluA2, but not the PICK1 interaction [63]. GRIP, 
ABP/GRIP2, and PICK also play critical roles in LTD and 
are involved in regulating the recycling of internalized fol-
lowing NMDAR activation [64], in association with the 
memory performance-associated protein KIBRA, which 
also binds PICK1 and AMPAR [65].

Recently, PICK1 has been shown to interact with tet-
raspannin-7 (Tspan7), a protein involved in X-linked intel-
lectual disability, and this interaction has been shown to be 
important for the localization of AMPARs at the postsynap-
tic membrane, and for synapse maturation [66].

Interactions of with 4.1N, NSF, and AP2  
with the C-terminal domain

The GluA1 subunit forms a complex with 4.1N—a neuronal 
specific form of 4.1R, the red blood cell actin cytoskeleton-
associated protein—as a result of which AMPARs appear to 
be stabilized at the cell surface [67].

NSF is an ATPase known to play an important role in 
membrane fusion [68, 69, 70]. It has also been found that 
NSF interacts with the C-terminus of GluA2 and that this 
interaction is required for the insertion of GluA2-containing 
AMPARs into the membrane, and their stabilization there 
[68, 71, 72, 73, 74, 75]. Disruption of the NSF–GluA2 
interaction by specific peptides causes a rundown of EPSCs 
[68, 70, 71, 74], while a mutated GluA2 that does not inter-
act with NSF does not arrive at synapses in hippocampal 
slice cultures [76]. It has been shown that inhibition of NSF 
activity prevents LTP, while the amount of NSF in the PSD 
appears to be regulated dynamically [77].

AP2 is a clathrin adaptor complex involved in endo-
cytosis. It interacts with GluA2 at a binding site in the 
C-terminal region overlapping (but not identical to) the 
NSF binding site [71, 78] and this interaction seems to be 
important for clathrin-mediated endocytosis during NMDA 
receptor-mediated LTD [71]. One study that used a pep-
tide to block the AP2–GluA2 interaction found increased 
AMPAR-mediated transmission [78]; however, an earlier 
study that used another peptide to block this interaction had 
no effect on basal transmission but selectively prevented 

LTD [71]. Further study is required to clarify the role of 
AP2 in AMPAR trafficking, although it does seem clear that 
defective AP2–GluA2 interaction interferes with LTD.

AMPA auxiliary proteins

The AMPA auxiliary proteins are another group of mol-
ecules important for AMPAR targeting to the postsynaptic 
membrane. They include the transmembrane AMPAR regu-
latory proteins (TARPs), cornichon-like proteins, neuropi-
lin, and tolloid-like proteins [79, 80, 81, 82, 83, 84].

TARPs regulate AMPAR trafficking and channel kinetics 
and are classified into six isoforms—type 1a (γ-2/stargazin 
and γ-3), type 1b (γ-4 and γ-8), and type 2 (γ-5 and γ-7)—
according to how they control AMPAR trafficking and 
channel properties [85, 86]. They stabilize AMPARs at the 
postsynaptic membrane by direct interaction with scaffold-
ing protein PSD95 and other MAGUKs. TARPs also slow 
deactivation and desensitization, thereby increasing AMPAR 
conductance, and influencing AMPAR affinity for pharma-
cological agents [85, 87, 88, 89, 90]. Synaptic TARP phos-
phorylation is activity regulated and in turn phosphorylation 
influences stargazin binding to PSD-95 [91, 92, 93]. CaMKII-
dependent phosphorylation of stargazin retains AMPARs at 
postsynaptic sites by reducing AMPAR diffusion [94].

Interaction of AMPARs with the cornichon-like proteins 
CNIH2 and CNIH3 was recently reported by Schwenk et al.  
[95], who showed that this interaction is involved in the 
regulation of AMPAR expression in the postsynaptic mem-
brane, and also influences AMPAR channel properties. 
CNIH2 and CNIH3 bind AMPARs which in turn complex 
with TARPγ4 in the hippocampus [96]. In this complex,  
the cornichon-like proteins control AMPAR trafficking to 
the postsynaptic membrane, whereas TARPγ4 stabilizes the 
CNIH2/3–AMPAR interaction in the membrane [97].

AMPAR trafficking at nascent versus mature synapses

As noted above, the subunit composition, channel properties, 
and membrane protein interactions of glutamate receptors 
change during the transition from the nascent to the mature 
synapse [98, 99]. Some of these changes are summarized in 
Fig. 2. It was unclear for some time whether newborn syn-
apses express AMPARs, and whether AMPAR recruitment 
occurs at the same time as NMDAR recruitment, or comes 
later. However, evidence now indicates that AMPARs are 
present at the very beginning of synapse formation. In partic-
ular, it has been shown that surface AMPARs are expressed 
by neuronal progenitors and are also functional [100, 101, 
102, 103]. It has also been shown in rodents that in the first 
postnatal week, spontaneous activity induces the delivery of 
GluA4-containing AMPARs to the postsynaptic membranes 
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of hippocampal neurons, and that these AMPARs mediate 
fast excitatory transmission there [104]. In mature synapses, 
GluA4-containing AMPARs are substituted by those con-
taining GluA2, enabling long-term maintenance of synap-
tic strength [104]. These recent findings are consistent with 
the model proposed by Groc et al. [105], which posits that 
AMPARs are present in the nascent synapse both in a labile 
state, which is highly sensitive to synaptic activity, and also 
in a silent state, insensitive to such activity.

Not only does AMPAR subunit composition vary during 
synapse maturation but the mechanism by which AMPARs 
are recruited to the synapse also changes. Thus, AMPARs 
are delivered to mature postsynaptic membranes by a mech-
anism requiring NMDAR activation; while at nascent syn-
apses, AMPARs are recruited independently of NMDAR 
signaling [105]. Furthermore, in mature synapses, NMDAR 
activation inhibits AMPAR signaling by regulating both 
subunit composition and membrane stabilization (reviewed 
in [3, 106]). NMDAR composition also changes during 
development. NMDARs are formed by the association of 
GluN1 and GluN2 subunits (GluN2A–D), and in nascent 
synapses, GluN1 and GluN2B are mainly present. During 
maturation, there is a switch from GluN2B to GluN2A sub-
units [107], which is fundamental for determining mature 
NMDAR kinetics and signaling pathways. GluN2B-con-
taining NMDARs down-regulate AMPARs at synapses via 
negative regulation of TARP expression, as shown by stud-
ies in which GluN2B was genetically ablated [3].

In nascent synapses, NMDAR activation also inhibits the 
transcription and translation of AMPAR GluA1 and GluA2 
subunits and promotes the degradation of the AMPAR-bind-
ing partners GRIP1 and PSD95, thereby preventing AMPAR 
stabilization in the synapse (reviewed in [106]). This mecha-
nism probably accounts for the low AMPAR/NMDAR ratio 
in nascent synapses, although this ratio increases progres-
sively during synapse maturation. In fact, a key aspect of 
synapse maturation is the change in the relative contribution 
of AMPARs and NMDARs to synaptic currents [108].

Other proteins that are involved in the transition from imma-
ture to mature synapses include postsynaptic scaffolding pro-
teins, particularly MAGUKs, SAP102, and PSD95 [109, 110, 
111]. Whereas SAP102 regulates AMPA and NMDA receptor 
trafficking during synaptogenesis, PSD95 plays a central role 
in their trafficking at mature synapses [43, 44, 45, 112]. Dur-
ing synapse maturation, PSD95 regulates the developmental 
switch between GluN2B and GluN2A NMDAR subunits and 
promotes the increase in AMPAR transmission [113].

AMPAR trafficking in Hebbian plasticity

As noted, Hebbian plasticity is a mechanism giving rise to 
long-lasting modifications in synaptic strength, including 

LTP and LTD [4]. The mechanism may be considered to 
start by presynaptic depolarization resulting in sufficient 
glutamate to activate the NMDA receptor, which, as a result, 
becomes permeable to Ca2+ so that the intracellular con-
centration of Ca2+ increases. A strong but brief increase in 
postsynaptic Ca2+ promotes LTP, whereas sustained low-
level Ca2+ elevation induces LTD [114, 115, 116, 117, 
118]. Intracellular Ca2+ exerts it effects via several sign-
aling pathways including those involving protein kinases, 
for example Ca2+-calmodulin-dependent protein kinases I 
and II (CaMKI and CaMKII), cAMP-dependent PKA, and 
protein kinase C (PKC); and those involving protein phos-
phatases such as protein phosphatases 1 (PP1), 2A (PP2A), 
and 2B (PP2B). It is these signaling pathways that effect 
the changes contributing to LTP and LTD. Thus, they regu-
late AMPAR trafficking to and from the postsynaptic mem-
brane [114], they influence AMPAR subunit composition 
at the membrane over the longer term (reviewed in [119]); 
and they effect short-term post-translational modifications 
(phosphorylation and dephosphorylation) of pre-existing 
AMPARs to change channel permeability [120] and modu-
late interactions between AMPAR subunits and other pro-
teins (to in turn affect AMPAR trafficking and stabilization) 
[17]. Figure 3 summarizes the principal AMPAR trafficking 
events, to and from the postsynaptic membrane, that occur 
during LTP and LTD.

AMPAR trafficking in LTP

LTP is characterized by long-lasting potentiation of 
AMPAR-mediated EPSCs [121]. Current increase is medi-
ated by post-translational modifications to AMPARs in the 
early phase of LTP, and by the production of new AMPARs 
in the late phase [121, 122, 123].

In the initial phase of LTP, GluA1-containing AMPARs 
are recruited to the synapse [76, 124, 125] (Fig. 3).

According to the widely accepted model, GluA1–GluA2 
receptors are excluded from synapses unless an LTP stimu-
lus is provided, whereas GluA2–GluA3 receptors traffic 
to the synapse constitutively. This difference in trafficking 
behavior is thought to be mediated by the C-tails of individ-
ual subunit proteins [126]. Evidence in favor of this model 
is that LTP is impaired in GluA1-KO mice [127] and that 
LTP is normal in GluA2–GluA3 double KO mice [126]. 
Furthermore, impairment depends on age, so that GluA1-
KO mice show LTP when young, but by postnatal day 42, 
LTP has declined to very low levels [128]. The occurrence 
of LTP in young GluA1-KO animals indicates that a GluA1-
independent form of LTP can occur when GluA1-containing 
AMPARs are not available [128]. This is further supported 
by the recent finding that LTP can occur “normally” in neu-
rons in which the genes for GluA1, GluA2, and GluA3 have 
been deleted [129].
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Conflicting results have been obtained regarding the 
role of GluA1 C-terminal tail interactions with PDZ-
domain proteins in LTP. When the GluA1 C-terminus frag-
ment was overexpressed [76] or the PDZ-binding motif of 
GluA1 mutated [130], GluA1 delivery to the synapse was 
impaired and LTP prevented in CA1 pyramidal neurons in 
slice culture [76, 130]. However, an in vivo study in knock-
in mice with truncated GluA1 found that LTP was induced 
in the absence of the GluA1 PDZ ligand motif [131]. These 

discrepant findings would appear to be model-dependent. 
The role of the GluA1 subunit in LTP was further investi-
gated by Selcher et al. [132] using a mouse strain lacking 
this subunit. Their data indicated that GluA1 was specifi-
cally recruited in LTP at both active (having both AMPAR- 
and NMDAR-mediated synaptic transmission) and silent 
synapses (lacking AMPAR-mediated transmission) [132]. 
By contrast, GluA1 loss did not impair LTD [132]. The 
situation is further complicated by the recent finding of 

Fig. 3   Schematic illustration of known molecular players and 
mechanisms involved in long-term depression (left) and long-term 
potentiation (right). Long-term depression (LTD) is characterized by 
endocytosis of GluA2-containing AMPARs from synapses and con-
sequent weakening of synaptic strength. LTD is induced by sustained 
low-level postsynaptic calcium influx as a result of low-frequency 
glutamate stimulation. The slow rise in intracellular calcium selec-
tively activates phosphatases and kinases of intracellular signaling 
pathways that effect changes contributing to LTD. Thus, PKC is acti-
vated to phosphorylate Ser880 on GluA2, which in turn decreases 
GluA2 affinity for GRIP-anchoring proteins, and increases GluA2 
affinity for PICK1. PICK1-binding enhances AMPAR endocytosis, 
which occurs in clathrin-positive zones adjacent to the post synaptic 
density (PSD). By contrast, Tyr876 dephosphorylation allows GluA2 

binding to BRAG2 leading to the Arf6 activation crucial for AMPAR 
internalization. Long-term potentiation is characterized by a marked 
increase in AMPARs at the synapse with consequent increase in syn-
aptic strength. LTP is induced by high presynaptic glutamate levels 
which activate postsynaptic NMDARs, leading to a strong calcium 
influx, followed by further calcium influx though CP-AMPARs. The 
strong calcium influx activates kinases (PKC, PKA, and CAMKII) 
involved in GluA1 phosphorylation. GluA1 phosphorylation induces 
AMPAR exocytosis in extrasynaptic regions. Another consequence of 
the initiation of LTP is that recycling endosomes deliver AMPARs to 
the membrane at domains enriched in Stx4, which mediates fusion of 
endosome with the membrane. Finally, AMPARs diffuse laterally to 
the synapse and are anchored there by scaffold proteins
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Granger et al. [129] that the cytoplasmic tail of GluA1 is 
not required for AMPAR trafficking or, therefore LTP. In 
their experimental model—which deleted genes for GluA1, 
GluA2, and GluA3 and re-inserted them one at a time, often 
with C-tail mutations—they found that AMPARs made of 
any single subunit could efficiently mediate LTP, and that 
even kainate could do so. The only prerequisite for LTP in 
their system seemed to be the presence of a large reserve 
pool of glutamate receptors that could move to synapses. Of 
course their system may be too artificial: KO of the two or 
three principal AMPAR subunits may fundamentally alter 
the expression of the proteins that normally orchestrate 
AMPAR trafficking. Nevertheless, Granger and colleagues’ 
data do show that synapses can display remarkable adapt-
ability, and should stimulate further studies to elucidate how 
AMPAR-mediated LTP is controlled.

During the initiation of LTP, NMDARs are activated to 
enable the calcium influx [133] that is critical for the activa-
tion of kinases—notably CaMKII, PKC and PKA—that cat-
alyze the phosphorylation of GluA1 [114, 134], 135, 136, 
137]. In turn, the phosphorylation state of the GluA1 subu-
nit influences AMPAR insertion into the postsynaptic mem-
brane. Four serine residues (Ser831, Ser845, Ser818, and 
Ser816) and one threonine residue (Thr840) on the GluA1 
subunit can be phosphorylated [135, 136, 138, 139]. Ini-
tially, only Ser831 (phosphorylated by CaMKII and PKC) 
and Ser845 (phosphorylated by PKA) were thought to be 
involved in LTP since phosphorylation at these sites is asso-
ciated with AMPAR insertion at the postsynaptic membrane 
[140, 141]. However, recent work has shown that Ser818 
and Ser816 are also phosphorylated by PKC and that this 
phosphorylation also contributes to AMPAR insertion at the 
postsynaptic membrane during LTP [138]. Phosphorylation 
of these residues enhances the binding of GluA1 with pro-
tein 4.1N; by contrast the palmitoylation on cys-811 neg-
atively regulates this interaction [142]. It was known that 
GluA1-4.1N binding regulates GluA1 surface expression 
[67], however, Lin et al. [142] reported that 4.1N is required 
for activity-dependent GluA1 insertion to extrasynaptic 
surface pools [142]. Extrasynaptic pools of AMPARs prob-
ably serve as a source of AMPARs for delivery to synapses 
during LTP, and replenishing these extrasynaptic AMPAR 
pools seems important for LTP maintenance. In fact, acute 
knockdown of 4.1N impairs LTP maintenance without 
affecting the initial phase of LTP [142]. Conversely, phos-
phorylation of Thr840 is associated with AMPAR removal 
and LTD [135, 143].

Recently, another protein kinase, the atypical PKC iso-
form M zeta (PKMξ), has been shown to be involved in LTP 
[144]. PKMξ increases AMPARs levels at the postsynaptic 
membrane via up-regulation of AMPAR trafficking that is 
dependent on the presence of GluA2 and also the N-eth-
ylmaleimide-sensitive factor (NFS) [145]. Inhibition of 

PKMξ prevents the maintenance of LTP but has no effect on 
its induction [144, 146].

Findings on the role of calcium permeable (CP-) 
AMPARs (lacking GluA2) in LTP are conflicting [147, 148, 
149, 150, 151]. Plant et al. [147] reported that LTP in CA1 
hippocampal pyramidal neurons causes rapid and transient 
incorporation of GluA2-lacking receptors, which are subse-
quently replaced by GluA2-containing AMPARs. In agree-
ment with these findings, Guire et al. [151] reported that 
the synaptic incorporation of CP-AMPARs is regulated by 
CaM-Kinase I; furthermore, this recruitment contributes to 
the actin-dependent structural plasticity induced by LTP 
[148]. Fortin et al. [148] also found that spine enlargement 
induced by GluA1 overexpression is associated with synap-
tic recruitment of CP AMPARs and increased mEPSCs; and 
also found that these events are blocked by IEM-1460—an 
agonist selective for CP-AMPARs—thus indicating that 
CP-AMPARs are involved in these events. However, Gray et 
al. [150] found that IEM-1460 blockage of GluA2-lacking 
AMPARs had no effect on LTP, indicating that LTP is unre-
lated to the insertion of GluA2-lacking AMPA receptors at 
the synapse. The data of Gray et al. [150] are also consist-
ent with a study reporting that GluA2-lacking AMPA recep-
tors are not inserted into synapses following the induction 
of LTP in hippocampal slices from young animals [149], 
suggesting the role of CP-AMPARs in LTP could be age-
dependent. Clearly the role of GluA2-lacking AMPA recep-
tors in LTP still remains to be clarified.

The mechanisms and routes by which AMPARs reach the 
synapse have not been completely elucidated. Correia et al. 
[152] investigated the short-range translocation of GluA1-
containing AMPARs from the dendritic shaft to the spine. 
Their findings indicate that AMPAR-containing phosphoryl-
ated GluA1 is bound, via the adaptor protein Rab11, to the 
motor protein myosin Va, which seems to mediate AMPAR 
entry to the spine. Subsequent AMPAR delivery to the syn-
apse occurs by two mechanisms: lateral diffusion within the 
spine membrane to the postsynaptic membrane [1, 153, 154, 
155, 156] and exocytosis from recycling endosomes near 
[157, 158, 159] or at the synapse [160].

According to the three-step model of Choquet and col-
leagues, AMPARs of the intracellular pool are first inserted 
into the extra/perisynaptic surface, they then diffuse later-
ally to the postsynaptic membrane [1, 153, 154, 155, 156], 
and are retained there by interactions with scaffold proteins 
[161]. This model currently appears as the most plausible 
one accounting for AMPAR recruitment during LTP; how-
ever the order and importance of these steps, and in par-
ticular whether lateral movement of AMPARs precedes or 
follows membrane insertion, remain controversial. Thus, 
the presence of a pre-existing population of AMPARs at 
extrasynaptic membrane sites [1, 162] constitutes indirect 
evidence for a “trapping first-exocytosis second” model in 
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which recruitment of pre-existing extrasynaptic AMPARs 
to the postsynaptic membrane occurs first, and this fol-
lowed by membrane insertion of newly recruited receptors 
to replenish those in extrasynaptic membrane pool [1, 162]. 
Furthermore, AMPAR exocytosis occurs within minutes of 
NMDAR activation, a relatively slow time frame [153, 159] 
in comparison to the instantaneous onset of LTP that occurs 
after such activation—supporting the idea that lateral move-
ment of AMPARs is the initial step in LTP [163].

That exocytosis of recycled endosomes is important  
during the LTP is supported by the finding that the dis-
placement of postsynaptic endocytic zones (Ezs) completely 
prevents LTP [164]. Direct evidence for activity-regulated 
AMPAR exocytosis has been obtained using high-resolution 
live cell imaging [157]. Exocytosis of AMPARs occurs in 
specific domains lateral to the PSD, which are enriched 
for the SNARE protein syntaxin-4 (Stx4). Stx4 appears to 
define a specific domain required for AMPAR exocytosis 
during synaptic potentiation, since disruption of Stx4 by 
a dominant-negative approach inhibited activity-induced 
AMPAR exocytosis and impaired LTP at hippocampal  
synapses [157]. To date, the precise location of activity-
driven postsynaptic exocytosis remains controversial [141, 
153, 154, 157, 158, 159, 160].

Complexins have recently emerged as important regu-
lators of calcium-dependent AMPAR exocytosis in LTP 
[165]. Complexins are small synaptic proteins involved in 
neurotransmitter release [166] by promoting SNARE com-
plex formation [167] and activation [168, 169]. Mice lack-
ing complexin-2 show impaired LTP [170, 171]. Ahmad et 
al. [165] recently showed that these SNARE complex-bind-
ing proteins are required for postsynaptic exocytosis, which 
specifically occurs during LTP, although complexin1–2 was 
not shown to be required for basal exocytosis.

AMPAR trafficking in LTD

LTD is characterized by the loss of synaptic AMPARs trig-
gered by activation of NMDAR or metabotropic glutamate 
receptors [114]. GluA2 appears to be a crucial mediator of 
AMPAR removal from the synapse in LTD [61, 124, 172, 
173, 174]. Thus, loss of GluA2-containing AMPARs from 
the postsynaptic membrane has been observed under the 
confocal microscope in cultured neurons during LTD using 
GluA2 tagged with pHluorin, a pH-sensitive variant of GFP. 
Immediately after the addition of NMDA to initiate LTD, 
rapid endocytosis of extrasynaptic GluA2 was observed fol-
lowed, after some delay, by removal of AMPARs from the 
postsynaptic membrane [175]. Other data demonstrate that 
AMPAR endocytosis is clathrin-mediated [176] that syn-
aptic AMPARs are internalized at sites lateral to the PSD 
[71]; and that synaptic AMPARs diffuse laterally to endo-
cytic sites prior to internalization [177]. GluA2 is linked 

to clathrin via the clathrin adaptor protein AP2, which pro-
motes assembly of the clathrin coat [71, 178]. AP2 binds the 
GluA2 region that overlaps with the binding site for NSF. In 
fact, NSF-interfering peptides alter GluA2 binding to AP2 
[71], while NSF has been shown to stabilize AMPARs at the 
postsynaptic membrane by blocking endocytosis [75, 179].  
During NMDA-induced LTD, loss of NSF affinity for 
GluA2 allowed binding with AP2, in turn resulting in clath-
rin-dependent endocytosis. Peptides that specifically block 
the interaction between AP2 and GluA2 impair LTD without  
affecting the basal synaptic transmission [71].

Several proteins interacting with GluA2 are involved in 
the regulation of AMPAR trafficking in LTD, reviewed in 
[180]. The roles of GRIP1/2 [47] and PICK1 [181, 182] 
are best understood. GRIP1/2 stabilizes GluA2-containing 
AMPARs at the postsynaptic membranes surface and pro-
motes their recycling after internalization. PICK1 regulates 
the surface expression of GluA2 by promoting AMPAR 
internalization in hippocampal neurons in response to Ca2+ 
influx via NMDARs during LTD [59, 183]. PICK1 also 
inhibits GluA2 recycling by promoting the retention of 
GluA2 in the intracellular compartment after internalization 
[64, 118, 172, 184]. Disruption of the GluA2–PICK1 inter-
action has been shown to block LTD [59, 172, 173, 185, 
186].

The affinity of GluA2 for GRIP1/2 or PICK1 is regu-
lated by the phosphorylation status of Ser880 [59, 61, 187]: 
Ser880 phosphorylation by PKC is important for AMPAR 
removal during LTD in hippocampus and cerebellum 
[187], as it induces GluA2 detachment from GRIP1/2 and 
increases GluA2 affinity for PICK1 [60, 61, 172]. PICK1 
also regulates AMPAR internalization via its inhibition of 
Arp2/3-mediated actin polymerization [188]. Inhibition of 
actin polymerization favors spine shrinkage and AMPAR 
endocytosis, with important consequences for both LTD and 
LTP [174, 189, 190, 191].

Tyr876 dephosphorylation is also important for GluA2 
internalization during LTD. Tyr876 dephosphorylation, in 
concert with BRAG2 protein binding to the GluA2 C-ter-
minus, induces BRAG2-mediated Arf6 activation, a process 
critical for targeted receptor endocytosis [192].

A recent study has documented a direct interaction 
between KIBRA and PICK1 [65]. The KIBRA gene is 
expressed in memory-related brain areas and is involved 
in human memory performance [193]. A single-nucleotide 
polymorphism (T instead of C) in the ninth intron has been 
associated with enhanced human performance in episodic 
memory tasks [193]; the T allele is also protective against 
Alzheimer’s disease [194]. Although KIBRA function 
in the brain has not been fully elucidated, its binding to 
PICK1, and evidence of its interaction with GluA1/2 subu-
nits, GRIP1 and NSF [65], suggest KIBRA involvement in 
AMPAR trafficking. In addition, KIBRA knockdown in rat 
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hippocampal neurons was shown to accelerate the rate of 
AMPAR activity-dependent recycling, which was similar 
to that observed in PICK1 KO neurons [64]; while KIBRA 
KO mice showed strongly impaired LTD and LTP, indicat-
ing that KIBRA has a key role in AMPAR trafficking during 
LTP and LTD [65].

The synaptic scaffolding molecule S-SCAM has also 
been recently shown to be involved in LTD, and in particular 
to be essential for maintaining GluA2 at the synapse [195]. 
S-SCAM overexpression in hippocampal neurons increases 
AMPAR expression at the postsynaptic membrane, whereas 
S-SCAM knockdown reduces AMPAR expression there 
[195]. S-SCAM also plays a key role in activity-dependent 
AMPAR trafficking, since NMDA-induced AMPAR inter-
nalization was blocked in neurons overexpressing S-SCAM; 
while S-SCAM knockdown reduced the number of excita-
tory synapses and weakened synaptic transmission [195].

AMPAR trafficking in homeostatic synaptic plasticity

The positive feedback mechanisms that characterize Heb-
bian plasticity, and give rise to LTP and LTD, have the 
potential to trigger excessive excitation or to completely 
silence activity. There must therefore be a mechanism 
capable of maintaining activity within specific physiologi-
cal ranges, so as to maintain the stability of the neuronal 
network and the integrity of brain function [196]. The iden-
tification of homeostatic plasticity at synapses provided a 
previously unknown control mechanism to prevent destabi-
lization possibly arising from positive feedback [197, 198]. 
Homeostatic synaptic plasticity is a negative feedback 
mechanism that counters long-term changes in neuronal 
activity, restoring them to a physiological set point [199]. 
The compensation is bidirectional: a sustained increase 
in activity will be compensated for by activity decrease, 
whereas a chronic decrease will be adjusted in the oppos-
ing direction [199, 200]. Homeostatic synaptic plasticity is 
mediated principally by AMPAR trafficking and in particu-
lar by the internalization of AMPARs when the synapse is 
over-active, and AMPAR exocytosis when the synapse is 
under-active [200, 201].

Knowledge of homeostatic synaptic plasticity is expand-
ing rapidly, and the emerging picture is complex. Most of 
the data reviewed below have been obtained from cultured 
neocortical neurons—a model able to reveal molecular 
mechanisms but not those pertaining to in vivo connectiv-
ity. Nonetheless, studies in which in visual cortex neuronal 
activity was modulated in vivo [201, 202, 203] indicate 
that homeostatic synaptic plasticity is an important physi-
ological phenomenon. Exactly when homeostatic synaptic 
plasticity takes place remains controversial. While most 
studies had been performed on young animals, homeostatic 

synaptic plasticity has also been observed in adults, and 
although brain area-specific differences have been identi-
fied, they need to be better elucidated [203].

Global versus synapse-specific regulation of AMPAR 
trafficking in homeostatic plasticity

Homeostatic synaptic plasticity was first described as a 
mechanism acting on all the synapses of a given neuron, 
proportionally scaling their strength either up or down 
(hence the term “synaptic scaling”) [197, 204, 205]. The 
classic methods of silencing or hyperactivating an entire 
network of cultured neurons consist of bath application 
of, respectively, the sodium channel blocker tetradotoxin 
(TTX), or the GABA (A) receptor antagonist bicuculline. 
These treatments result in global homeostatic alterations in 
synaptic strength, consisting of AMPAR current up-scaling 
or down-scaling, respectively [199, 200, 201].

More recently, local mechanisms of homeostatic plas-
ticity have been described [206, 207, 208]. To assess the 
synapse specificity of homeostatic plasticity, approaches 
that selectively inhibit or enhance one or a few synapses 
are used. Selective synaptic inhibition can be achieved by 
transfecting a few neurons in culture with the potassium 
channel Kir2.1 to hyperpolarize the neuron and reduce its 
firing rate [206, 207]; while selective synapse enhancement 
can be achieved by transfecting neurons with the light-gated 
glutamate receptor LiGluR to enhance presynaptic ter-
minal activity on demand by light stimulation [208]. The 
engineered pre-synapse can be visualized by concomitant 
expression of YFP-synapsin, which makes it possible to 
identify post-synapses of interest.

Using these techniques, it has been shown that single 
synapses sense their own activity levels and compensate 
independently of neighboring synapses. Thus, decreases 
in presynaptic activity are compensated for by recruitment 
of AMPARs and GRIP1 to the postsynaptic structure, via 
a mechanism dependent on phosphatidylinositol 3 kinase 
(PI3K) and the presence of CP-AMPARs (lacking GluA2) 
[206]. Recruitment of the latter receptors is early immedi-
ate gene (Arc/Arg3.1)-dependent since recruitment (and 
compensation) is not observed in Arc/Arg3.1 KO mice. It 
had previously been shown that Arc/Arg3.1 is important for 
Hebbian plasticity and global homeostatic scaling [207].

Similarly, enhanced presynaptic input has been shown to 
be counterbalanced by reduced AMPAR abundance at the 
postsynaptic membrane: initially AMPAR is internalized 
and subsequently undergoes polyubiquitination through 
Nedd4 and local proteosomal degradation [208]. This mech-
anism requires NMDAR and calcium signaling but, interest-
ingly, does not rely on classic trafficking pathways such as 
those mediated by GluN2B NMDAR signaling, calcineu-
rin or CamKII, that are known to be involved in Hebbian 
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plasticity [208]. Presumably, these global and local control 
systems cooperate to ensure neuronal stability.

GluA1 and GluA2 regulation at synapses in homeostatic 
plasticity

The importance of CP-AMPARs in homeostatic plasticity 
has been demonstrated only recently [209, 210, 211, 212]. 
Several groups have reported an increase in CP-AMPARs 
at the postsynaptic membrane following activity deprivation 
[207, 213, 214, 215, 216, 217]. Activity deprivation pro-
motes local translation of GluA1 mRNA in the dendrites 
[215], which is dependent on retinoic acid (RA) signaling. 
In fact, retinoic acid receptor (RAR) alpha binds 5′UTR 
mRNA, blocking its translation, while RA is able to remove 
this block [217, 218, 219]. The resulting increase in GluA1 
synthesis favors the assembly of CP-AMPARs that are then 
transported to the membrane by a mechanism dependent on 
CamKIIβ and GluA1 phosphorylation at S845 [202, 213, 
220].

Accumulation of CP-AMPARs at the synapse increases 
synaptic strength by effects at the presynapse as well as the 
postsynapse. Postsynaptic calcium entry promotes neuro-
trophin brain-derived neurotrophic factor (BDNF) release, 
which is responsible for retrograde signaling that enhances 
the presynaptic release of neurotransmitter by increasing 
vesicle pool size and turnover rate [220, 221]. These effects 
lead to a coordinated enhancement of synaptic strength 
[220, 221].

Various groups have reported that activity deprivation 
does not increase CP-AMPARs, but increases both GluA1 
and GluA2, and that homeostatic plasticity depends on 
GluA2. Thus Gainey et al. [201] reported that TTX treat-
ment caused an increase in AMPARs at synapses in visual 
cortical neurons both in culture and in vivo, and that this 
effect was blocked by the GluA2 C-terminal tail or GluA2 
shRNA; while interference of GluA1 had no effect, sug-
gesting that GluA2 was specifically required for AMPAR 
delivery to the postsynaptic membrane in homeostatic plas-
ticity [201]. Furthermore, following activity deprivation, the 
GluA2/3-interacting protein PICK1 is downregulated and 
GluA2-containing AMPARs are released from the intracel-
lular pool and can reach the surface [222]. When PICK1 
was knocked down, it abolished the synaptic increase in 
AMPAR associated with activity deprivation, highlighting  
the importance of GluA2 regulation in homeostatic  
plasticity [222].

The findings reviewed above therefore suggest the exist-
ence of both GluA1- and GluA2-dependent mechanisms in 
homeostatic synaptic plasticity. Both mechanisms have also 
been reported in in vivo animal experiments: with synaptic 
CP-AMPAR accumulation reported following visual depri-
vation [202], and increases in GluA2-containing receptors 

reported at the synapse following intraocular TTX injection 
[201]. Future studies may be expected to clarify the roles 
of CP AMPARs and GluA2-containing AMPARs in homeo-
static plasticity.

Molecules regulating synaptic accumulation of AMPARs 
in homeostatic plasticity

Several molecules are known to be involved in regulating 
AMPAR trafficking and synaptic accumulation in homeo-
static plasticity. Recently described molecules include solu-
ble factors [BDNF, tumor necrosis factor alpha (TNFα) and 
RA]; cell-adhesion molecules (integrin β3, N-cadherin); 
PSD scaffolding proteins (PICK1, MAGUKs); intracellular 
signaling molecules (CamKs, PLK2, PI3K-Akt); proteins 
related to activity-induced gene expression (Arc/Arg3.1); a 
protein involved in SUMOylation (SENP1) and the ubiqui-
tin proteasome system (UPS). The following sections sum-
marize the rapidly emerging roles of these molecules.

Soluble released factors

BDNF was the first soluble molecule shown to have a role in 
homeostatic plasticity [197, 223]. In particular, Rutherford 
et al. [197] showed that low levels of BDNF trigger syn-
aptic up-scaling in cultured cortical pyramidal neurons. In 
fact, scavenging endogenous BDNF with a soluble form of 
its receptor (TrkB-IgG) mimicked activity deprivation and 
induced up-scaling of excitatory synapses; while exogenous 
BDNF blocked the synaptic up-scaling that follows chronic 
activity blockade with TTX.

BDNF is also important for the pre-synaptic enhance-
ment that follows chronic activity deprivation. Treatment 
of cultured hippocampal neurons with the AMPAR blocker 
NBQX causes GluA1 accumulation at the synapse, which 
creates the conditions for retrograde signaling once the block 
is removed. Factors essential for this signaling include cal-
cium (which enters through GluA1 homotetramers), BDNF, 
and NO [221]. AMPAR blockade triggers BDNF synthesis, 
which drives presynaptic scaling via its presynaptic receptor 
TrkB. TrkB signaling, together with calcium influx, which 
enters through P/N/Q presynaptic channels, accelerate syn-
aptic vesicle turnover [224].

TNF-α is a well-known regulator of AMPAR traffick-
ing [225, 226, 227, 228]. Moreover, TNF-α released from 
glial cells has been shown to be essential for the up-scaling 
reaction to TTX—a process that does not occur in TNF-α 
KO mice [229]. The mechanism by which TNF-α exerts 
these effects is unclear. β3-integrin could be involved, 
since acute treatment with TNF-α increases surface levels 
of β3-integrin: this molecule is known to be required for 
synaptic scaling [230], and its surface expression correlates 
with the quantity of AMPAR at the post-synaptic membrane 
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[230]. Steinmetz and Turrigiano [231] recently proposed 
that TNF-α’s role in synaptic scaling is not instructive but 
permissive: it would maintain synapses in a plastic state that 
allows synaptic compensation to occur. In support of their 
hypothesis, it has been found that chronic TNF-α signaling 
blockade alters PSD composition, increasing SAP102 and 
decreasing PSD-95 expression [231] so that they resemble 
immature synapses [101], which would in turn have conse-
quences for AMPAR distribution in the synapse.

RA has been identified as a regulator of dendritic pro-
tein synthesis in homeostatic plasticity. Following activity 
blockade with TTX or (2R)-amino-5-phosphonovaleric acid 
(APV), RA synthesis is enhanced both in cultured hippocam-
pal neurons and brain slices [217]. In turn, RA enhances the 
local synthesis of GluA1 (but not GluA2), thus favoring its 
insertion into the membrane. RA acts through its receptor 
RARalpha [217] and the fragile X-mental retardation pro-
tein FMRP acts downstream of the RA pathway and is nec-
essary for GluA1 synthesis, suggesting that deregulation of 
homeostatic plasticity might contribute to the pathogenesis 
of fragile X syndrome [232].

Cell adhesion molecules (CAMS)

CAMs are involved in synapse formation and maturation, as 
well as Hebbian plasticity [233, 234]; their roles in homeo-
static synaptic plasticity are emerging rapidly. Integrins are 
transmembrane adhesion molecules that function as recep-
tors for proteins of the extracellular matrix [235]. Integrin 
β3 directly binds the C-terminal tail of GluA2 [236], pro-
viding a direct link with AMPAR, and has been shown to 
be specifically required for AMPAR up-scaling in cultured 
hippocampal neurons following TTX-induced activity dep-
rivation and TNF-α release [230]. The adhesion molecule 
N-cadherin also interacts with GluA2 [34]. Through its 
intracellular binding partner β-catenin, N-cadherin regu-
lates AMPAR trafficking [237]. Interestingly, absence of 
β-catenin from cultured hippocampal neurons, prevents the 
bidirectional scaling triggered by chronic activity modifica-
tions (induced by TTX or bicuculline) [238, 239].

PSD scaffolding proteins

Scaffolding proteins are crucial for the structural organization 
of the PSD. They are also involved in the trafficking of recep-
tors to the postsynaptic membrane and their stabilization there 
[240]. PICK1 and MAGUK scaffolding proteins have recently 
been shown to be crucially involved in homeostatic plastic-
ity [222, 241]. Anggono et al. [222] showed that PICK1 is 
specifically required for inactivity-induced (TTX treatment) 
AMPAR up-scaling but not for hyperactivity-induced (bicu-
cullin treatment) down-scaling. PICK1 is down-regulated 
during synaptic up-scaling, enabling GluA2/3 recruitment 

from the intracellular pool to the membrane. Furthermore, 
in PICK1 KO neurons, AMPAR composition and trafficking 
are impaired and the regulatory mechanisms responsible for 
homeostatic plasticity are compromised.

Sun et al. [241] recently explored the role of the MAGUK 
scaffolding proteins PSD93 and PSD95 in homeostatic 
plasticity in neocortical pyramidal neurons. These proteins 
were found to be essential for assembly of the protein–pro-
tein association network, which is required for homeostatic 
adjustments of AMPAR abundance in the synapse. PSD-95 
was found necessary for down-scaling, whereas PSD-95 and 
PSD-93 were both involved in synaptic up-scaling [241].

Intracellular signaling molecules

Calcium/calmodulin-dependent protein kinases (CamKs) 
are involved in plasticity including homeostatic plastic-
ity [204, 205, 213, 220] through their roles in intracellular 
calcium signaling [242]. In cultured hippocampal neurons, 
the α and β isoforms of CamKII are regulated differently 
by activity: sustained activity shifts the balance in favor of 
the α isoform, whereas activity deprivation increases the β 
and decreases the α isoform [213]. In chronic activity dep-
rivation, CamKIIβ seems to drive GluA1 up-scaling [220]. 
CamKIV is involved bidirectionally in homeostatic plastic-
ity, having been shown to be necessary both for AMPAR  
up-scaling following activity deprivation [205] and for 
down-scaling following hyperactivation [204].

The signaling pathway governed by PI3K and Akt has 
also been shown to be involved in both Hebbian plasticity 
[243] and homeostatic plasticity [206]. PI3K–Akt regulates 
AMPAR trafficking [244] and is involved in hippocam-
pal synaptogenesis [245]. PI3K signaling is required for 
AMPAR accumulation at chronically inhibited single syn-
apses [206]. In presenilin-1-KO neurons—a model of Alz-
heimer’s disease—the PI3K–Akt cascade is impaired and 
homeostatic synaptic up-scaling is prevented, suggesting 
that PI3K–Akt-dependent homeostatic plasticity might be 
involved in the etiology of Alzheimer’s disease [246].

Polo-like kinase 2 (PLK2) is an activity-inducible ser-
ine threonine kinase [247] that was recently shown to favor 
intracellular retention of AMPAR following hyperactivity. 
PLK2 directly binds NSF and causes its dissociation from 
GluA2, thereby favoring the binding of GluA2 to PICK1 
and GRIP, and subsequent receptor internalization. PLK2 
therefore seems to function as a hyperactivity sensor and 
contributes to homeostasis by redistributing AMPARs 
among its adapter proteins NSF, PICK1, and GRIP1 [248].

Activity-induced gene expression and protein degradation

The activity-induced immediate early gene product 
Arc/Arg3.1 (Arc) has a well-established role in homeostatic 



4423AMPAR trafficking in synapse maturation and plasticity

1 3

plasticity [207, 249, 250, 251]. Activity regulates Arc, 
which in turn modulates AMPAR endocytosis through its 
interaction with the AMPAR endocytic machinery, con-
sisting of endophilin-3 and dynamin-2. In particular, sus-
tained activity correlates with high Arc levels and enhanced 
AMPAR internalization, while activity deprivation is asso-
ciated with low Arc levels and reduced receptor internaliza-
tion [249, 250, 251]. Craig et al. [252] recently showed that 
post-translational SUMOylation has a role in homeostatic 
plasticity. In particular, chronic synaptic inactivity reduces 
levels of the enzyme SENP1, responsible for deSUMOyla-
tion, thus favoring protein SUMOylation by the enzyme 
SUMO1. Since Arc1 is one of the substrates of SUMO1, 
and its SUMOylation is required for synaptic up-scaling, 
these findings implicate post-translational modifications of 
Arc in the regulation of synaptic scaling.

The degradation of soluble proteins by the UPS also 
contributes to homeostatic synaptic plasticity. Proteasome 
function changes according to neuronal activity: action 
potential blockade suppresses proteasome function, while 
hyperactivity increases proteasome activity. The inhibition 
of proteasome activity is enough to induce AMPAR current 
up-scaling and to increase GluA1 and GluA2 subunits at the 
synapse [224]. Furthermore, down-regulation of AMPARs 
as a result of sustained activity has been shown to depend on 
a local increase in the ubiquitin ligase Nedd4, followed by 
polyubiquitination and subsequent proteosomal degradation 
of AMPARs [208].

Conclusions

AMPAR trafficking to and from the synapse has been one 
of the most fascinating and intriguing areas of neuroscience 
over the past 20 years, as it underlies LTP and LTD—pro-
cesses that underlie at least some aspects of memory and 
learning. Much progress has been made in identifying the 
proteins involved in AMPAR insertion into and removal 
from the synapse; many of the molecular mechanisms con-
tributing to these events are also clear. However, it is still 
not clear how the receptors diffuse laterally to and from the 
synapses, nor is it clear how they are directed to and from 
the complex of proteins present in the PSD.

We also have to remember that most of the informa-
tion contributing to this progress has come from cultured 
neocortical neurons from rodents, genetically or otherwise 
manipulated to KO or overexpress proteins of interest. That 
such studies cannot provide all the answers are illustrated 
by the wealth of conflicting results that have been obtained, 
and most graphically by the recent paper of Granger et al. 
which, at first sight, seems to have overturned a consensus 
on the role of AMPAR subunits and their C-terminal tails in 
LTP that took a wealth of data and 10 years to establish. It 

would seem that the way forward is to develop new in vivo 
methods to resolve these contradictions and stimulate fur-
ther progress in this exciting area of neuroscience.
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