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Ageing and calorie restriction

Ageing is a process characterized by the progressive dete-
rioration of biological functions and the development of dis-
eases (such as hypertension, obesity, cardiovascular disease, 
and cancer) induced by environmental insults and genetic 
factors [1]. Life expectancy in the Western world has sig-
nificantly increased in the last century, but simultaneously 
the need is emerging for interventions aimed at preventing 
or reducing the incidence of ageing-related diseases. To this 
end, scientific research in the coming decades will have as 
the primary goal to unravel the fundamental mechanisms 
underlying the time-dependent decline of health and to pro-
vide new strategies to arrest or delay them.

One of the most reliable and experimentally validated 
models for delayed ageing in mammals is represented by 
calorie restriction (CR): solid experimental evidence dem-
onstrates that reducing the calorie intake of an organism 
by 20–40 % (maintaining an adequate intake of vitamins 
and essential elements) has the effect of extending maxi-
mal lifespan and ameliorating “healthspan” (i.e., the period 
of life free of chronic diseases). Since the pioneer studies 
conducted in the middle 1930s by McCay and coworkers 
[2] showing that calorie restriction was able to prolong 
the lifespan of rats, numerous studies have confirmed this 
observation in different organisms throughout the phyloge-
netic scale [3, 4]. The mechanism by which caloric restric-
tion operates in delaying ageing appears to be manifold: CR 
increases cell ability to repair DNA damage and induces 
anti-stress proteins [5], improves the efficiency of glucose 
metabolism [6], slows the age-related decline of the immune 
system [7]; above all, however, reduction of oxidative stress 
and modulation of the neuroendocrine system are believed 
to play a key role in the beneficial effects of dietary restric-
tion [8, 9]. Indeed, calorie-restricted animals have reduced 
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levels of circulating inflammatory cytokines [10], and  
display metabolic and hormonal adaptations (increased 
insulin sensitivity, reduced glucose and insulin in the blood, 
and elevated levels of cortisol) [11–13] having the overall 
effect of reducing the risk of several age-related diseases.

Different levels of brain response to CR

The “hormesis hypothesis” posits that calorie restriction cre-
ates a physiological stress of moderate intensity that would 
fortify the organism against insults of greater intensity [14] 
by activating signals of longevity and survival [15].

This fundamental, cell-autonomous mechanism affects 
nearly all cells and tissues of the body, and likely par-
ticipates in the beneficial CR action on a wide range of 
chronic diseases, including diabetes, cancer, cardiovascu-
lar, autoimmune, and neurodegenerative diseases in rodents 
[16–19].

Some tissues, additionally, are also able to sense the met-
abolic status, change their biological function, and orches-
trate the adaptation of the whole organism through the 
release of hormones, neurotransmitters, and cytokines (cell 
non-autonomous or humoral mechanism): this is in fact the 
case of the brain, which integrates signals in the hypothala-
mus and processes information regarding the availability of 
nutrients and energy stores in order to adapt behavioral and 
metabolic responses of the whole body [20].

Schematically, brain response to calorie restriction 
appears to occur at three distinct but highly integrated lev-
els: (a) detection of nutrient availability and activation of 
the feeding and neuroendocrine response; (b) behavioral 
changes and improved higher-order (memory, learning) 
functions; (c) increased resistance to brain damage and to 
senescence-associated pathology.

Brain as a nutrient sensor and regulator of metabolism

Peripheral organs cross-talk with the central nervous sys-
tem in order to maintain metabolic homeostasis: hormones 
and nutrients come into contact with the hypothalamus (in 
particular with specialized fuel-sensing neurons in the arcu-
ate nucleus) through a characteristic discontinuity of the 
blood–brain barrier [21], and emerging evidence shows that 
specialized neurons sensitive to nutrients can detect changes 
in glucose and lipids in the blood.

Fluctuations in blood glucose modify the electrical activ-
ity of various populations of hypothalamic neurons [22]: 
some neurons are activated by high concentrations of glu-
cose, while others are inhibited; in both cases changes in 
electric potentials are translated into chemical signals that 
control the feeding behavior [23]. Nutrient-sensitive cells 
of the arcuate nucleus (ARC), the most studied and best 

characterized, belong to two functionally opposite popula-
tions: neurons expressing the peptide Agouti/neuropeptide Y 
(NPY and AgRP) and cells expressing proopiomelanocortin 
(POMC) and cocaine and amphetamine-related transcript 
(CART). The latter have anorexigenic action, reducing food 
intake and increasing energy expense [24, 25], and are acti-
vated by high concentrations of glucose; AgRP and NPY 
neurons, instead, are stimulated by hypoglycemia and have 
orexigenic action [26]. Accordingly, the infusion of glu-
cose in the rodent hypothalamus induces satiety and loss of 
weight [27] while its deprivation, experimentally obtained 
by administration of 2-deoxy-glucose (a chemical analogue 
that blocks glucose metabolism), elicits food intake [28, 
29]: importantly, several brainstem areas characterized by 
adult neurogenesis, such as the nucleus of the solitary tract 
(NTS) and dorsal motor nucleus of the vagus (DNMV), are 
extremely sensitive to minor changes of glycemia and can 
regulate food seeking through axonal projections to hypo-
thalamic neurons [30].

As the efferent branch of this circuitry, the brain com-
municates through sympathetic neurons with peripheral 
organs such as brown adipose tissue and liver in order to 
maintain glucose homeostasis: in particular, sympathetic 
outflow directly activates thermogenesis in brown fat [31] 
and blocks hepatic gluconeogenesis [32].

Importantly, glucose is not the only nutrient monitored 
by the brain, and recent evidence shows that fatty acids 
also inform the hypothalamus of the metabolic state of the 
organism and regulate through lipids-sensitive neurons, 
food intake, hepatic synthesis of glucose, and insulin secre-
tion [33]. Of note, glucose and lipid sensing are highly inte-
grated in the central nervous system: in fact, hyperglycemia 
leads to an increase in intracellular malonyl-CoA, which 
inhibits the beta-oxidation of fats and in parallel promotes 
glucose oxidation [34]; conversely, a reduction of blood glu-
cose results in the inhibition of the synthesis of malonyl-
CoA and induction of fatty acid beta-oxidation [35]. The 
latter effect is largely mediated by the AMP-activated serine 
threonine kinase AMPK, an evolutionarily conserved nutri-
ent sensor that monitors cellular energy status as reported by 
the ratio between AMP and ATP. AMPK phosphorylates and 
inhibits Acetyl-CoA carboxylase (ACC), thus reducing the 
biosynthesis of malonyl-CoA [35], in the context of a gen-
eral metabolic cell reprogramming whereby catabolic reac-
tions are favored at expenses of anabolic processes, to cope 
with nutrient shortage. In the hypothalamus in particular, 
AMPK sensitivity to energy fluctuations qualify this mol-
ecule as a global nutrient detector and key central regulator 
of the feeding behavior.

As a further layer of complexity, nutrient sensing by the 
hypothalamic neurons AgRP/NPY and POMC is also mod-
ulated by hormones such as insulin and leptin [36]. Central 
infusion of insulin in mice reduces appetite [37] and body 
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weight [38] and inhibits hepatic gluconeogenesis [39]; this 
action is mediated by the activation of PI3 kinase (PI3 K) 
and the regulation of an ATP-sensitive potassium channel 
(K ATP), which translates nutrient signals into neuronal 
excitability [40].

Similarly, leptin (an adipokine produced by fat cells) 
acts as anorexigenic by modulating in the hypothalamus the 
activity of AMPK [41, 42].

Thus, AMPK seems to represent a point of convergence 
for both nutritional and hormonal signals that modulates 
the excitability of hypothalamic neurons. Although exper-
iments conducted on murine models lacking AMPK only 
in AgRP and POMC cells have highlighted a more impor-
tant role of for this enzyme in glucose sensing than in 
insulin/leptin signaling in the hypothalamus [43], current  
literature overall identifies this enzyme as a main nutri-
ent sensor in neuronal cells, and by extension as a key  
molecular player in brain response to dietary restriction 
[44]. This idea is further supported by the functional link-
age of AMPK with the nutrient-sensitive cascade triggered 
by the mammalian target of rapamycin (mTOR), another 
evolutionary conserved pathway that integrates inputs 
from nutrients (amino acids) and growth factors (insulin) 
to promote protein synthesis and cell growth/prolifera-
tion, and is inhibited by AMPK under nutrient shortage. 
In particular, recent data have revealed an important role 
of mTOR signal in the control of feeding behavior in the 
hypothalamus, as well as in promoting protein synthesis 
required for the “long-term potentiation” and memory for-
mation in the hippocampus [45]. Thus, the AMPK-mTOR 
axis may be central not only to neuronal nutrient sensing 
in the hypothalamus but also for higher levels of brain 
adaptation to nutrient availability.

Similarly, another nutrient sensor and longevity determi-
nant, the NAD+-dependent protein deacetylase Sirt1, has 
been shown to participate in the hypothalamic control of 
energy balance and feeding behavior. This enzyme, initially 
identified as the closest mammalian homolog of the yeast 
Sir2 longevity gene, regulates at gene transcription level 
cell response to metabolic and environmental stress, and is 
believed to mediate at least some of the beneficial effects 
of calorie restriction on age-related diseases in rodents 
and humans [46]. Consistent with its role as a detector of 
nutrient shortage, Sirt1 deacetylase activity is induced by 
an elevation of the intracellular NAD+/NADH ratio and by 
a reductive-to-oxidative shift in the intracellular redox bal-
ance as determined by limited nutrient availability. Accord-
ingly, Sirt1 releases orexigenic signals in AgRP neurons, 
and its inhibition in this cell population leads to reduced 
appetite, negative energy balance and weight loss in mice 
[47]. On the other hand, Sirt1 genetic ablation from anorexi-
genic POMC neurons [48] or SF-1 (Steroidogenic Factor 1)  
neurons [49] impairs sympathetic outflow and adaptive 

energy expenditure without major effects on food intake, 
and exacerbates obesity and leptin resistance in mice fed a 
high-calorie (HC) diet. This partially conflicting evidence 
fully underscores the complexity of Sirt1 roles in hypotha-
lamic circuitries regulating body metabolism. Importantly, 
as it is a recurrent theme in brain nutrient sensing, Sirt1’s 
neural roles are not limited to the regulation of feeding and 
energy balance, but also connect nutrient detection with 
higher-order functions including endocrine and behavioral 
response to CR [50], neuroprotection, and neural plasticity 
[51].

Not just hunger: behavioral and cognitive responses to 
nutrient restriction

Beside their important effect on appetite, nutrient restric-
tion and the ensuing hormonal modifications are associ-
ated in several experimental models with cognitive and 
behavioral changes [52]. Rodents subjected to a calorie-
restricted regimen display locomotor hyperactivity [53] 
and reduced mood alterations such as anxiety or depres-
sion [54], changes that are at least in part mediated by the 
action of caloric restriction on the hypothalamic orexigenic 
system [55], and that likely reflect increased awakeness and 
motivation related to food-seeking. Additionally, there is 
extensive evidence demonstrating that in rodents a reduced 
dietary regimen improves memory and learning [56, 57], in 
particular in murine models of neurodegenerative diseases 
[58, 59] or brain injury [60]. Interestingly, some of these 
effects may be sex-specific [61], and occur independently 
of CR action on the ARC neurons [62]. On the other hand, 
many data correlate with an increase in synaptic function in 
the hippocampus of animals subjected to a restricted diet: 
dietary restriction modulates the expression and distribu-
tion of NMDA and AMPA receptor subunits [63, 64] and 
prevents the age-dependent decline of synaptic plasticity 
[65].

Cognitive improvement by food restriction also seems 
to occur in human beings, based on the results of the 
CALERIE (Comprehensive Assessment of the Long-term 
Effect of Reducing Intake of Energy) study, performed on 
non-obese healthy subjects. These studies have revealed 
that also in humans a 20–30 % caloric restriction for at least 
6 months increases specific markers of longevity (body  
temperature, concentration of glucose, insulin and lipopro-
teins in the blood), improves physical performances and, 
most relevant to our topic, reduces symptoms associated 
with eating or mood disorders including depression [66]. On 
the other hand, the effect of calorie restriction on cognitive 
performances in humans is still controversial [67, 68], prob-
ably due to differences in experimental group composition, 
dietary regimen, and cognitive assessment throughout the 
different studies.
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Increased resistance to brain damage  
and senescence-associated pathology

Despite the existence of areas delegated to adult neurogen-
esis, the brain is mainly populated by terminally differen-
tiated neurons, permanent cells that accumulate oxidative 
damage to a greater extent than the other organs [69].

DNA [70] and protein [71] damage occurs during ageing 
in a fashion that is amplified and/or anticipated in neurode-
generative diseases such as Alzheimer’s, Huntington’s, and 
Parkinson’s[72–74]. In addition, a depletion of neurotrophic 
factors is involved in the deterioration of cognitive functions 
observed in physiological and especially in pathological 
ageing [75].

Experimental evidence demonstrates that calorie restric-
tion has significant effects on brain resistance to chronic, 
age-related injury. The beneficial effects of a dietary regi-
men are, at least in part, the result of a stress response that 
stimulates the expression of molecules offering resistance 
to oxidative and metabolic damage (see below, “cellular and 
molecular mechanisms”) [76]. Documented neuroprotec-
tive actions exerted by CR and relevant to brain ageing [77] 
include the reduced formation of Aß oligomers and plaques 
in murine models of Alzheimer’s disease [78], the attenua-
tion of age-associated neuroinflammation [79], and the sup-
pression of oxidative markers (lipid peroxidation, protein 
carbonyls, and nitrotyrosine) of neuronal senescence [80].

Moreover, besides the positive effects on chronic brain 
damage, dietary restriction also seems to improve neuronal 
survival and recovery in the context of acute damaging 
events, like seizures and ischemic stroke [81]; importantly, 
these events trigger pathogenic responses (excitotoxicity, 
mitochondrial and ER damage, oxidative stress and inflam-
mation) that largely overlap, although with a different 
kinetic, those operating in brain ageing, thus suggesting a 
common mechanism of protection by CR from acute and 
chronic neuronal insults [82].

Cognitive enhancement and neuroprotection by CR: 
cellular and molecular mechanisms

While the molecular mechanisms involved in the improve-
ment of cognitive functions by caloric restriction are still 
largely elusive, most researchers agree on the role of 
improved neurogenesis, increased synaptic plasticity, and 
activation of stress-resistance signaling pathways as key 
cellular events at the base of the enhancement of the brain 
health by a calorie-restricted diet [83] (Fig. 1).

CR and neurogenesis

The central nervous system contains neural precursor cells 
(NPCs) [84] that can proliferate and differentiate into new 

Fig. 1  How calorie restriction prevents brain ageing. Improved neu-
rogenesis, increased synaptic plasticity, and neuroprotection are the 
basis for the enhancement of brain health by a calorie-restricted diet. 
A nutrient-restricted regimen induces a mild stress able to modu-
late the expression of key molecules for both neuron activity as 
well as for the resistance to stronger stress that can induce nervous  

system damage. Moreover, dietary restriction preserves the neural 
stem cells pool, that contributes to formation of new neural circuits 
during memory consolidation, and attenuates age-dependent func-
tional decline and neurodegeneration. Calorie restriction, through 
these cellular mechanisms, extends mindspan and prevents neurode-
generative diseases
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neurons and glial cells in adulthood: these newly formed 
elements are believed to be very important in learning and 
memory consolidation [85], as well as in tissue repair after 
a cerebral damage [86]. Importantly, animals fed a restricted 
diet exhibit increased neurogenesis in the dentate gyrus of 
the hippocampus in young age [87] and an attenuation of 
the age-related reduction of the stem cell pool [86]. Growth  
factors induced by caloric restriction [88], such as BDNF 
[89], may at least partly explain the trophic action of nutrient  
deprivation on the stem cell compartment in the central nerv-
ous system; in addition, the reduced availability of nutrients 
as monitored by a number of nutrient-sensitive cascades 
may directly exert beneficial effects on neuronal stem cell 
capacity to self-renew and differentiate.

Metabolic regulation of stem cell functions is an emerging  
theme in cell biology, at the crossroad of nutrition, ageing 
research, and cancer [90]. In particular, deregulated signal-
ing through the mTOR/S6 kinase cascade, as induced by 
either genetic defects or excess nutrients, appears to promote 
mitogenic stimulation and rapid exhaustion of stem cells  
as diverse as hemopoietic stem cells (HSCs) [91–93] and 
epidermal stem cells [94, 95], leading to premature tis-
sue ageing. Conversely, a blockade of this cascade by the 
specific inhibitor Rapamycin, or detoxification of harmful  
reactive oxygen species generated in mitochondria as a  
consequence of Tor-driven hypermetabolism, delays stem 
cell senescence and extends tissue regenerative capacity, 
anticipating a similar beneficial effect also from nutrient 
restriction. Accordingly, calorie restriction has been found 
to increase, through non-cell autonomous mechanisms 
involving soluble factors secreted by ancillary Paneth’s 
cells, the number and function of intestinal stem cells 
(ISC), as well as intestine regeneration following a severe  
inflammatory insult [96].

Neuronal stem cells may as well be subdued to nutrient 
and Tor-dependent metabolic regulation; by analyzing mice 
genetically deficient of the tuberous sclerosis complex pro-
tein Tsc1 (an mTOR inhibitor), Magri and colleagues have 
in fact observed that sustained activation of the mTOR path-
way in embryonic neural stem cells leads to reduced self-
renewal and earlier neuronal and astroglial differentiation of 
mutant NSC, resulting in impaired brain development [97].

The FoxO family of transcription factors, another class 
of nutrient- and insulin-regulated molecules involved in 
longevity determination and resistance to oxidative stress 
in model organisms [98], also appears to contribute to 
metabolic modulation of neural stem cell function. Simi-
lar to Tor-hyperstimulated NSC, in fact, FoxO3-deficient 
progenitor cells undergo unchecked proliferation and rapid 
and premature exhaustion both in vivo and in vitro [99]. 
FoxOs are fasting-responsive factors and are inhibited by 
insulin under nutrient replenishment; thus, absence of 
FoxOs mimics insulin signaling and accelerates stem cell 

senescence. Collectively, the above evidence suggests that 
calorie restriction, by reducing plasma insulin and restrain-
ing insulin and nutrient-activated signaling cascades in neu-
ronal stem/progenitor cells, may preserve their number and 
functional capacity against metabolic attrition, thus delay-
ing brain ageing [100].

In line with this view is also evidence linking stem cell 
renewal and differentiation in the SNC with the NAD+-
dependent protein deacetylase and longevity factor Sirt1 
[46]. As an epigenetic regulator, Sirt1 has been shown to 
promote neural progenitor cell (NPC) differentiation into 
neurons through the transcriptional repression of the Hes-1 
gene, thus promoting neurogenesis under basal (unstressed) 
conditions [101]. Interestingly, Sirt1 seems to instead  
sustain glial differentiation of NPC under conditions of  
oxidative stress [102], indicating a context-dependent effect 
of the deacetylase on neural progenitor fate.

Together, this and the above evidence support the idea 
that nutrient-dependent metabolic control of stem cell fate 
may actively contribute to the complex brain changes related 
to feeding, both under healthy (calorie restriction) and path-
ologic (overnutrition/dysmetabolism) regimens (Fig. 2).

CR and cell protective responses

Mitochondrial biogenesis

Effects of calorie restriction on mitochondrial biogene-
sis and activity in the brain as well as in other organs has 
recently come under the spotlight as a general cell protective 
and anti-ageing mechanism [103]. During ageing, a dete-
rioration of mitochondrial activity occurs, with increased 
formation of damaging free radical species [104] and altera-
tions of mitochondrial respiratory chain being a common 
finding in several experimental models of neurodegenerative 
diseases [105]. Dysfunctional mitochondria and increased 
ROS burden may also link ageing to neuroinflammation, 
another hallmark of brain senescence that is ameliorated by 
CR [106].

A major mechanism for CR-dependent effects on mito-
chondria number and health has been identified in the 
induction of the transcription factor PGC-1 (coactivator 
of PPARγ) [107], a master controller of cellular respira-
tory function. Upregulation of neuronal PGC-1 by dietary 
restriction may have nitric oxide as an intermediate [108] 
and occurs through a humoral mechanism, since treatment 
of cultured neurons with serum of calorie restriction ani-
mals induces the expression of nitric oxide synthetases 
(eNOS and nNOS) and increases mitochondrial mass and 
cell survival in a fashion that can be recapitulated by the cell 
exposure to NO donors [109].

Importantly, PGC-1 is deacetylated and activated in sev-
eral organs by the nutrient-sensitive deacetylase Sirt1 [110], 
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a molecule endowed of well-established neuroprotective 
activities (see below); moreover, PGC-1 deletion in mice 
causes striatal degeneration [111] while its overexpression 
inhibits oxidative stress [112] and reduces the neurodegen-
erative changes in a model of Huntington disease [113].

Neurotrophins

As an additional neuroprotective mechanism, restricted 
dietary regimens (caloric restriction or intermittent fasting) 
also promote the synthesis of neurotrophins. Neurotrophins 
are neuronal trophic factors that enhance neuronal survival 
and stress resistance [114] and whose critical decrease 
during ageing and in age-related brain disorders has been 
largely established [115]. It is in fact conceivable that some 
of the described neuroprotective effects of CR [116] reflect, 
at least in part, a preserved and heightened action of these 
neuroprotective factors.

Sirt1

Converging lines of evidence also point to Sirtuin 1 as a key 
determinant of brain health and extended youthfulness in  

response to CR [117]: in fact, Sirt1 overexpression prevents  
the accumulation of beta amyloid in neurons [118, 119] 
and its pharmacological activation by the administration of  
resveratrol reduced neurodegeneration in murine models 
of Alzheimer’s disease and lateral amyotrophic sclerosis 
[120, 121]. Additionally, SIRT1 plays a neuroprotective 
role in models of Huntington’s and Parkinson disease 
[122–124].

SIRT1 operates in the cell by modulating the activity of 
several transcription factors, like FOXO1, TORC/CREB, 
NF-κB, and PGC-1 alpha, which in turn regulate cell 
metabolism stress resistance and inflammation [50, 110, 
121–125]. Since these factors are also sensitive to neurotro-
phins and, at least in part, intrinsically responsive to nutri-
ents and regulated by calorie restriction, Sirt1 appears to lay 
at the hub of the complex molecular network deputed to cell 
genetic reprogramming and stress adaptation induced by 
the reduction of nutrient availability. Accordingly, Sirt1 has 
been found necessary for brain response to CR, and mice 
lacking sirtuin 1 in the brain subjected to a restricted calorie 
regimen do not show the improvement in insulin sensitivity 
and the increase in locomotor activity observed in control 
animals [50].

Fig. 2  Metabolic regulation of stem cell fate by nutrients and insulin. 
Restricted nutrient availability, as under calorie restriction, reduces 
insulin and mTOR signaling and promotes “fasting-mode” responses 
by activating FoxO (by nuclear translocation) Sirt1 (by increasing 
the NAD+/NADH ratio) and CREB (by promoting its phosphoryla-
tion and association with Sirt1); this results in stem cell quiescence 
state with low oxidative burden and extended self-renewal. Con-
versely, chronic activation of the “feeding response” as in obesity and  

diabetes (high insulin and mTOR signaling, inhibition of FoxO, 
inactivation of Sirt1 and CREB) drives stem cells from quiescence 
to cycling, increases oxidative burden, and promotes stem cell pro-
liferation and maturation at the expense of self-renewal, leading to 
premature exhaustion and tissue ageing. The scheme refers to a gen-
eral stem cell model that also applies to neural stem cells. The possi-
ble involvement of CREB and Sirt1 in NSC self-renewal is still to be 
fully validated and is presented here as largely hypothetical
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mTOR/autophagy

Important evidence identifies (in signaling through the 
mTOR cascade) another main nutrient-regulated pathway 
involved in neurodegeneration and targeted by CR. Recent 
data link increased mTOR signaling to the accumulation 
of Abeta and Tau protein in neurons and to a worsening of 
Alzheimer’s pathology; in a possible model, mTOR may 
exacerbate protein misfolding and aggregation through 
both induction of endoplasmic reticulum (ER) overload and 
stress, and inhibition of autophagy [126], a self-eating cell 
process whereby cytosolic protein aggregates and damaged 
organelles are engulfed in double-membrane vacuoles and 
targeted to lysosomal degradation [127]; moreover, these 
detrimental effects on proteostasis would add to the above-
mentioned mTOR-dependent impairment of NPC-driven 
neurogenesis. Accordingly, mTOR blockade by the specific 
inhibitor Rapamycin attenuates cognitive deficits in mouse 
models of AD disease [128]. Interestingly, rapamycin has 
been shown to mimic several other beneficial effects of 
calorie restriction in mice, including remarkably extended 
longevity [129]. In this regard, great expectations for the 
treatment of neurodegenerative diseases are pinned in the 
development of drug mimetics of caloric restriction: for 
instance animals treated with 2-deoxy-glucose (not metabo-
lizable analog of glucose) show increased resistance to neu-
ronal damage in experimental models of Alzheimer’s and 
Parkinson disease [130, 131].

Along similar lines, much attention has been paid in 
recent years to resveratrol and other sirtuin activators: these 
drugs have been to reduce beta amyloid neurotoxicity [132] 
at least in part by inducing mitochondrial biogenesis and 
activating AMPK [133], but some of the effects do not seem 
to involve sirtuins and a complete understanding of the 
mechanisms underlying their activity has yet to be reached 
[134].

CR and synaptic plasticity

The earliest and more debilitating sign of age-related neu-
rodegenerative diseases is the diminished ability to retain 
new information: synaptic plasticity is the mechanism that 
underlies memory formation and it requires a proper syn-
aptic transmission and adequate synaptogenesis (in addi-
tion to the above-mentioned hippocampal neurogenesis) 
[135].

In particular, the hippocampus is one of the most impor-
tant brain areas involved in learning and novelty acquisition 
[136].

Ageing alters the expression of genes involved in synaptic 
transmission (such as the receptor of neurotrophins Trk-B,  
NR1 subunit of NMDA receptor, BDNF) while the caloric 
restriction counteracts this effect [137].

In addition, a restricted-calorie regimen induces the 
expression of BDNF and NR2B subunits of NMDA glu-
tamate receptor [63] and prevents their time-dependent 
decline in the hippocampus [138, 139]: these actions pro-
mote synaptic plasticity and an improvement of cognitive 
function assessed by hippocampus dependent memory 
tasks. In addition, NMDA receptors are required for the acti-
vation of the hypothalamic AgRP neurons by fasting [140]: 
synaptogenesis induced by caloric restriction in these cells 
together with glutamatergic receptors are therefore essential 
for the hypothalamic response to fasting.

Of note, mitochondria play a key role in neuronal synap-
tic plasticity [141]: several studies have in fact shown that 
a tetanic stimulation triggers mitochondria to the synapse 
[142] and that the damage of these organelles impairs pro-
cesses such learning and memory consolidation [143].

Interestingly, also nitric oxide has been involved in syn-
apse formation in the hippocampus [144], and this gaseous 
mediator is increased in the brain by calorie restriction and 
promotes mitochondrial biogenesis.

Thus, maintenance of synaptic plasticity and resistance 
to neurodegeneration may both occur as a beneficial con-
sequence of CR-dependent and NO-mediated increase in 
cell respiratory capacity and mitochondrial number and 
function; consistent with this idea, mice deficient of Sirt1 
in the hippocampus display deficits in synaptic plasticity 
and memory [51], in parallel with impaired upregulation of 
nNOS [125].

CREB, a new player in the hungry brain

CREB in central nutrient sensing

The CREB (cAMP-responsive element binding) protein, 
an ubiquitous transcription factor exquisitely sensitive to 
cAMP and Ca+2 signals triggered by an array of hormones 
and growth factors [145, 146], has been extensively investi-
gated both as a regulator of fasting-induced metabolic gene 
programs in liver and other peripheral tissues [147, 148], 
as well as a key neuroprotective factor involved in neu-
ronal differentiation, survival, and plasticity in response to 
neurotrophic peptides [149]. In recent years, a role for this 
molecule as a nutrient and metabolic sensor in the hypotha-
lamic areas deputed to the central regulation of appetite and 
energy expenditure [150] has also been revealed; in particu-
lar, CREB phosphorylation and increased transcriptional 
activity has been observed during fasting in neurons of the 
arcuate nucleus (ARC) that release the orexigenic peptide 
NPY [151]; accordingly, CREB activity was blocked by 
leptin [152], a fat-derived hormone that acts centrally by 
signaling satiety and increased energy expenditure. Simi-
larly, VGF, an established CREB target gene, was induced 
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during fasting [151] and repressed by leptin in the same 
hypothalamic area [152]; of note, VGF has a primary role in 
regulating feeding behavior and energy balance [153], and 
VGF genetic ablation prevents obesity in mice [154]. These 
observations suggest that CREB, while coordinating the 
metabolic adaptation to fasting (gluconeogenesis, lipolysis) 
in the periphery [155], may also participate in the central 
feeding response to starvation through the up-regulation of 
orexigenic neuropeptides.

In partial contradiction with this view, Altareyos and 
Montminy reported that the CREB co-factor Crtc1/TORC1 
is phosphorylated and excluded from the nucleus (thus 
failing to co-activate CREB) in the hypothalamic arcuate 
nucleus of fasting mice, while it becomes dephosphorylated 
and promotes CREB-dependent transcription of the ano-
rexigenic factors CART (cocaine and amphetamine-related 
transcript) and KISS1 in response to leptin [156]. Impor-
tantly, Crtc1 −/− mice are hyperphagic and obese, display 
low energy expenditure, and are infertile, confirming the 
relevance of the Crtc1/CREB axis to the maintenance of 
normal energy balance.

The bulk of the above information suggests that CREB 
affects central nutrient sensing and metabolic adaptation 
in response to fasting and feeding stimuli are complex and 
multifaceted likely depending on the hypothalamic neuronal 
population involved, the transcriptional co-activators CREB 
engages with, and the normal or pathologic (obesity/hyper
insulinemia/hyperleptinemia) context in which these feed-
ing circuitries operate. Further research aimed at evaluating 
these diverse possibilities is therefore warranted.

CREB, CR, and higher brain functions

The direct involvement in central nutrient sensing combined 
with the established role in the development and mainte-
nance of neuronal function and plasticity [157, 158], and in 
the pathogenesis of age-related neurodegenerative diseases 
[159], identify in CREB a key molecular player in brain 
response to calorie restriction. Accordingly, initial studies 
on Drosophila showed that mutant flies lacking the CREB 
co-activator TORC are exaggeratedly sensitive to starvation, 
and that starvation tolerance can be restored in those mutants 
by rescuing TORC expression exclusively in neuronal cells 
[160]. Moreover, in C. Elegans, a mutation phenocopying 
dietary restriction prevents the age-dependent decline of 
CRH-1, the worm’s homolog of CREB, and to preserve in 
parallel cognitive function (long-term memory) [161]. Sur-
prisingly, however, worms lacking TORC or CRH-1 are 
long-lived, and dietary restriction extends lifespan through 
the AMPK-dependent phosphorylation of TORC and down-
regulation of TORC/CRH-1 activity [162]. A finding also 
at odds with the fact that insulin, whose signaling activity 
has an established negative effect on worm lifespan [163], 

also inhibits CREB activity and CREB-dependent stress 
responses [160]. While the above incongruences may be 
due to differences in experimental manipulations or reflect 
the complexity of the phenotypes under analysis as well as 
the peculiarity of the C. elegans model system, these find-
ings are overall suggestive of an intriguing linkage between 
CREB signaling and dietary restriction effects on longevity 
and neuronal functions in model organisms.

We have taken advantage of the conditional CREB KO 
mouse strain to investigate the role of brain CREB in mam-
malian response to calorie restriction [125]. In this model, 
CREB1 gene inactivation occurs at adult age in neuronal 
cells of most of the forebrain areas, as well as in some lower 
areas including the hypothalamus.

Brain CREB KO (BCKO) mice, although phenotypi-
cally normal, failed to display the cognitive and behavio-
ral improvement observed in control animals subdued to a 
5-week calorie-restriction regimen. This remarkable finding 
was paralleled by electrophysiological evidence of no LTP 
enhancement in mutant mice, and by impaired hippocampal 
up-regulation of neuronal genes critical for stress resistance 
(PGC-1) and plasticity (nNOS); importantly, Sirt1, another 
longevity-related molecule involved in brain response to 
calorie restriction, was identified as a critical CREB target 
gene modulated by nutrients in cognitive (cortex, hippocam-
pus) brain areas. This study thus revealed an important role 
for CREB in the molecular cascade linking nutrient avail-
ability to brain metabolic adaptation and to changes in brain 
plasticity and high-order functions.

CREB, CR, and neuroprotection

Along similar lines of evidence, a role for CREB in the 
neuroprotective action of CR against age-associated neu-
rodegenerative disorders was demonstrated by Krainc 
and colleagues, who recently reported that Sirt1 mediates 
neuroprotection from mutant Huntingtin by activation 
of the TORC1 and CREB transcriptional pathway [164]. 
Importantly, this study also provided direct evidence that 
Sirt1 activates CREB by deacetylation of the co-activator 
TORC1, indicating a potential cell autonomous molecular 
switch for nutrient and metabolic sensing by brain CREB. 
It is however likely that this is not the only mechanism 
whereby brain CREB “senses” calorie restriction, and other 
potential signaling cascades, including those triggered by 
paracrine and humoral factors, are currently under active 
investigation.

Conclusions and perspectives

The involvement of several nutrient-sensitive molecules 
including CREB, Sirt1, AMPK, and mTOR in brain areas 
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and neuronal circuitries as diverse as those underlying feed-
ing behavior and learning/memory processes, suggest an 
integrated view for brain-centered control of organismal 
metabolism, whereby regulation of appetite and energy 
expenditure in the hypothalamus are tightly coupled with 
high-order cognitive and behavioral responses (alertness, 
increased physical activity) based in the forebrain and con-
ceivably related, in a finalistic perspective, to food seeking. 
On the other hand, hypothalamic centers also control (via 
neuroendocrine signals and autonomic nervous outflows) 
metabolic responses in the periphery, impinging on the same 
biochemical cascades that operate in the SNC. In the case 
of CREB, for instance, cell autonomous (Sirt1-mediated?) 
activation by restricted nutrients could simultaneously lead 
to increased appetite in the hypothalamus, enhanced cogni-
tion in the forebrain, and fasting adaptation (gluconeogene-
sis, lipolysis) in the peripheral organs, with neuroendocrine/
endocrine (GH, insulin, glucagon, leptin) as well as electri-
cal signals further coordinating, in a cell non-autonomous 
fashion, the three levels of response (Fig. 3). Thus, in gen-
eral terms, brain represents not only an important target but 
most likely also a major effector and regulator of the whole 
body adaptation and healthy response to CR.

It is also intriguing to notice that nutrient sensors like 
CREB, AMPK, and Sirt1 have also been linked to the regu-
lation of central and peripheral circadian rhythms [165], and 
that these oscillators are highly coordinated with each other 
and by nutrient availability [166, 167]. In this respect, it is 
known that calorie restriction switches circadian regulation 
from the light–dark to the fasting-feeding cycle likely by 

impinging on neurons of the hypothalamic suprachiasmatic 
nucleus where the hypothalamic biological clock resides; 
importantly, this central oscillator plays an important role in 
the process of memory consolidation [168], and alterations 
of the circuits that regulate circadian rhythms are involved 
in the pathogenesis of mood disorders [169]. It is therefore 
possible that brain and body response to calorie restriction 
reflect, at least in part, the global metabolic reprogramming 
of the central biological clock. Future research will tell 
whether this fascinating hypothesis holds, at least in part, 
true.

Finally, in a reductionistic perspective, calorie restric-
tion could simply be viewed as an experimental approach to 
investigate the feeding-brain connection. With this respect, 
it should be kept in mind that laboratory rodents fed ad 
libitum without possibility or need for physical activity, 
accumulate fat and become obese in adulthood, thus dra-
matically resembling a human “Westernized” lifestyle. Is 
experimental “calorie restriction” simply a sort of normali-
zation of an animal’s feeding behavior? If so, it is conceiv-
able that investigation on CR mechanisms will help us to 
understand and prevent human disorders (including brain 
ageing and Alzheimer’s disease) [170, 171] that are induced 
and/or accelerated by obesity and diabetes.

This perspective should further stimulate the already 
intense research in the field, by encouraging, for instance, 
the application of the CR experimental paradigm to mutant 
murine strains harboring brain specific mutations in nutrient-
sensitive pathways, in order to score for diet-related changes 
in brain functions. Optimism is however warranted, as we 

Fig. 3  Brain-centered control 
of organismal metabolism. 
Calorie restriction regulates 
nutrient-sensitive molecules 
including CREB, Sirt1, AMPK 
and mTOR in several tissues 
including brain (cell autono-
mous mechanism), thus promot-
ing central behavioral adapta-
tions (food seeking, appetite, 
alertness) and peripheral meta-
bolic modifications (gluconeo-
genesis, lipolysis). In parallel, 
brain integrates nutrient-related 
cues and coordinates, through 
neuroendocrine and autonomic 
signals, organismal response to 
fasting (non cell-autonomous 
mechanism)
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keep on learning more and more about the reasons why the 
way we eat changes the way we think, and vice versa.
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