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Abstract Centriolar satellites are small, microscopically

visible granules that cluster around centrosomes. These

structures, which contain numerous proteins directly

involved in centrosome maintenance, ciliogenesis, and

neurogenesis, have traditionally been viewed as vehicles

for protein trafficking towards the centrosome. However,

the recent identification of several new centriolar satellite

components suggests that this model offers only an

incomplete picture of their cellular functions. While the

mechanisms controlling centriolar satellite status and

function are not yet understood in detail, emerging evi-

dence points to these structures as important hubs for

dynamic, multi-faceted regulation in response to a variety

of cues. In this review, we summarize the current knowl-

edge of the roles of centriolar satellites in regulating

centrosome functions, ciliogenesis, and neurogenesis. We

also highlight newly discovered regulatory mechanisms

targeting centriolar satellites and their functional status,

and we discuss how defects in centriolar satellite compo-

nents are intimately linked to a wide spectrum of human

diseases.
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Introduction

Centriolar satellites (CS) are small, spherical granules with

a diameter of approximately 70–100 nm that cluster in the

vicinity of the centrosome (Fig. 1a, b). They can be visu-

alized as small, electron-dense entities by electron

microscopy and as small punctate structures by fluores-

cence microscopy [1–4]. These structures were first

observed during studies of the ultrastructure of the cen-

trosome using electron microscopy, but until the mid-1990s

they received little attention [1, 2, 5]. Indeed, to this day

these structures remain poorly studied.

The centrosome in mammalian cells is best known for its

capability to nucleate microtubules and its function as a

microtubule-organizing center (MTOC). However, it is now

firmly established that the function of the centrosome

extends far beyond its role as a MTOC. Thus, it acts as a

multifunctional platform for numerous signaling processes

and is functionally implicated in processes such as cell cycle

progression, cell polarity, migration, mitosis, and ciliogen-

esis (extensively reviewed in [6] and [7]). In contrast to CS,

the centrosome is an extensively studied cellular organelle

with a well-defined structure. It consists of a mother and

daughter centriole, which can be visualized by electron

microscopy as two perpendicularly organized tubulin-con-

taining and barrel-shaped entities of*200 9 500 nm with a

distinct ninefold radial symmetry. A cloud of fibrous mate-

rial, termed the pericentriolar matrix, surrounds the two

centrioles. The pericentriolar matrix consists of high con-

centrations of centrosomal proteins involved in the cellular

processes mentioned above. A range of proteins bind directly

to the centrioles and are, depending on their localization,

referred to as subdistal or distal appendages.

In addition to their striking enrichment around the

centrosome, early observations described CS as clustering
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Fig. 1 Structure and composition of centriolar satellites. a Immuno-

fluorescence staining of centriolar satellites in U2OS cells. CS are

visualized by PCM1 staining (green), c-tubulin (red) is used as a

marker for the centrosome. b Schematic representation of CS in

interphase cells. CS cluster around the centrosome and are, to a lesser

extent, distributed throughout the cytoplasm. CS are anchored to and

move across the microtubules through microtubule-associated motor

proteins such as dynein and kinesin. c Representation of known and

predicted protein–protein interactions among proteins localizing to or

interacting with CS. Proteins marked with an asterisk are, at least

partially, dependent on CS for their centrosomal localization, proteins

highlighted in red are important for the structural integrity or

subcellular localization of satellites in general. Network was created

using the STRING database (version 9.1) [101]. Interactions between

PCM1 and SSX2IP, CEP63, CEP90, CAMK2B, C2CD3, Par6a,

CCDC13, CCDC14, KIAA0753, and TALPID3 were added manually

based on the literature. d Schematic representation of the PCM1

protein showing known protein interaction regions, functional

domains, and potential mitotic phosphorylation sites
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in the vicinity of the basal body of ciliated cells [1–4]. This

basal body, which contains a differentiated form of the

centrosome, can be formed when cells exit the cell cycle

and the centrioles migrate to the apical side of the cell.

Once the basal body is correctly situated at the plasma

membrane, it is able to promote nucleation and mainte-

nance of axonemal microtubules from the mother centriole,

forming the ciliary backbone [8]. Although CS are

detectable in almost all mammalian cell types, their size,

molecular composition, abundance, and localization can

vary considerably [3]. They are only detectable in inter-

phase cells and undergo dissolution during mitosis [3].

While CS are concentrated around the centrosome, and

distributed to a lesser extent throughout the cytoplasm in

interphase cells, they coalesce at the centrosome upon

mitotic entry after which they gradually disappear. Upon

completion of cytokinesis they reassemble and regain their

original localization [3].

While dedicated studies of CS remain scarce, they are

generally thought to be microtubule-anchored protein

complexes that are transported towards the centrosome,

and which may play important regulatory roles in centro-

some biology [9]. PCM1, the first CS protein discovered,

has traditionally been viewed as a fundamental component,

and is often used as a marker to identify these structures

[1–4]. In agreement with this, PCM1 is required for CS

assembly, and depleting PCM1 from cells is a commonly

used means of perturbing their cellular functions. At the

molecular level, PCM1 is thought to function as a scaffold

for other proteins that reside within the satellites (Fig. 1c).

PCM1 contains 8 predicted coiled-coil motifs, most of

which are present in the N-terminus of the protein

(Fig. 1d). Moreover, based on the few available mapping

studies of PCM1-associated proteins, these coiled-coil

domains appear to mediate the majority of its protein–

protein interactions [10–13]. To date, approximately 30

proteins have been identified as bona fide CS components,

and with the notable exception of PCM1, all of these also

localize to the centrosome and/or have reported functions

at either the centrosome or the basal body. In particular, CS

have been shown to harbor many proteins essential for

ciliogenesis [10, 14], microtubule organization [4], mitotic

spindle pole maintenance [15, 16], centrosome duplication

[17, 18], dendritic patterning [19] and neuronal develop-

ment [11, 20].

Centriolar satellites as regulators of centrosomal

proteostasis

The centrosome is involved in a variety of processes and

signaling pathways that require timely recruitment and

exchange of proteins. CS harbor a range of proteins that are

also present at the centrosome, and a prevalent view of CS

function is that they ensure the stable supply of such factors

to centrosomes, thus regulating centrosomal proteostasis

[9]. CS may regulate protein composition of the centro-

some and basal body by either microtubule- and dynein/

dynactin-dependent active transport, or by sequestering

centrosomal proteins by retaining them at the satellites.

One of the earliest examples of dynein- and CS-medi-

ated transport is the centrosomal recruitment of ninein,

centrin, and pericentrin, three proteins involved in micro-

tubule anchorage at the centrosome [4, 21–23]. Ablation of

CS by knockdown of PCM1 leads to reduced concentra-

tions of these proteins at the centrosome and results in

failure to anchor microtubules and to establish a radial

microtubule network [4, 22, 23]. CS depend on an intact

microtubule network and require a direct interaction with

dynein/dynactin motor proteins for correct localization and

cargo delivery [2, 24–26]. This physical coupling between

the satellites and microtubule-associated motor proteins

can be mediated by several CS proteins such as BBS4,

Par6a, and CEP290 [24–26]. Hence, satellite transport can

be suppressed by depolymerization of microtubules (e.g. by

colcemide or vanadate treatment), inhibition of dynein

motor proteins, or ablation of dynactin, which mediates

contacts between dynein and CS components [4].

Similar to the case of ninein, centrin, and pericentrin,

additional components such as Nek2A and CaMKIIb
depend on CS-mediated transport for optimal enrichment at

the centrosome [19, 27]. However, there seems to be no

universal requirement of CS for targeting proteins to the

centrosome, as the centrosomal levels of several other

factors, such as OFD1 and CEP290, are largely unaffected

by PCM1 status [10, 26]. Moreover, disruption of CS has

been suggested to increase the centrosomal localization of

several proteins that are normally present at the satellites,

including CEP72 and CEP90 [15, 28, 29]. These proteins

instead appear to be recruited to centrosomes via mecha-

nisms other than satellite-mediated transport, such as

intrinsic centrosomal targeting domains (e.g. LisH or

coiled-coil domains). The notion that the presence of CS

reduces the concentration of the latter proteins at the cen-

trosome suggests that these structures can serve as

temporary storage sites, thereby enabling fine-tuning of the

protein composition at the centrosome. This aspect of CS

function may be important for ensuring centrosome protein

homeostasis in several settings. During mitotic entry, for

example, the duplicated centrosomes must be separated for

the spindle poles to form [7, 30–33]. Several CS proteins,

including CEP72, CEP90, CEP131 (also known as AZI1)

and the recently identified factors SSX2IP and CCDC13

have been implicated in centrosome and spindle pole

maintenance in mitosis [15, 16, 18, 34, 35]. An increased

influx of these proteins resulting from CS dissolution upon

mitotic entry might be required to ensure an adequate

Functions and regulation of centriolar satellites 13
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concentration of these proteins at the centrosome during

the chromosome segregation process [33]. Alternatively, it

has been proposed that CS may protect some of these

factors from degradation, serve as chaperones, or shield

them from engaging in unwanted protein–protein interac-

tions [36, 37].

Centriolar satellites in centrosome maintenance

and maturation

Several CS proteins play roles in centrosome duplication,

separation, and spindle pole assembly. These include

CEP72 and CEP90, which localize to satellites and have

been shown to interact with one or more CS components

[15, 29, 38]. CEP90 and CEP72 are required for maintain-

ing spindle pole stability and chromosome alignment during

metaphase through the recruitment of Kizuna and c-tubulin

[15, 28, 39]. Knockdown of CEP72 or CEP90 causes

spindle pole fragmentation, resulting in detrimental mono-

or multipolar spindles. Concurrently, the spindle checkpoint

is not activated as a direct effect of chromosome mis-

alignment and spindle pole fragmentation, which leads to an

increase of apoptotic cells or mitotic arrest [15, 28].

CEP131 and CCDC13 are two other CS factors required

for faithful chromosome segregation [34, 35]. Both pro-

teins physically interact with PCM1 and localize to

satellites as well as to the centrosome [34, 35]. Cells

depleted of CEP131 or CCDC13 display similar pheno-

types that include an increased frequency of multipolar

spindle poles and formation of micronuclei and chromatin

bridges [34]. In addition, cells that manage to complete

mitosis display elevated levels of DNA damage markers

such as phosphorylated H2AX (cH2AX), phospho-ATM

and phospho-Chk2, most likely reflecting post-mitotic

DNA damage resulting from chromosome missegregation

[34].

These observations highlight the involvement of CS

factors in mitotic centrosome function and faithful chro-

mosome segregation. However, CEP72, CEP90, Kizuna,

CEP131, and CCDC13 are not dependent on the satellites

for their centrosomal localization. In addition, a study of

mitotic catastrophe and cell death resulting from depletion

of a number of centrosomal proteins did not observe sig-

nificant detrimental consequences of PCM1 knockdown

[40]. Hence, while the precise role(s) of CS in spindle pole

maintenance is uncertain, the above observations raise the

possibility that CS proteins may have specific functions at

satellites in addition to their established roles at the

centrosome.

Centriolar satellites contain many proteins involved in

the recruitment of core centriolar factors and have been

implicated on a number of occasions in centrosome mat-

uration and duplication [18, 41, 42]. Nek2A is a cell cycle-

regulated kinase that facilitates entry into mitosis, centro-

some separation, and spindle pole formation [43]. A study

on the spatiotemporal dynamics of Nek2A localization

revealed a supporting role of CS in recruiting Nek2A and

its substrate C-Nap1 to the centrosome [27]. Another

example is the centrosome maturation factor C2CD3 that

localizes to CS in a PCM1-dependent manner. Lack of

centrosomal C2CD3 results in perturbed recruitment of

centriolar distal appendage proteins, manifesting as severe

defects during ciliogenesis [42].

Similar to DNA, the centrosome must be duplicated

once and only once during each cell cycle. Indeed, DNA

replication and centrosome duplication occur synchro-

nously and these processes are controlled by the same

cyclin-dependent kinases (CDKs) [44, 45]. Centriole

duplication is a hierarchical and tightly regulated process

that requires the timely recruitment of numerous specific

factors [31]. Interestingly, CEP63, one such factor required

for centriole duplication, has recently been identified as a

component of CS through immunofluorescence and prox-

imity interaction screens [46, 47]. While the centrosomal

targeting of CEP63 is dependent on its interaction with

CEP152, the factors CCDC14 and KIAA0753 also exert

control over this localization. Thus, CCDC14 limits the

availability of CEP63 to the centrosome, a process that is

antagonized by KIAA0753. Strikingly, both CCDC14 and

KIAA0753 also localize to CS, suggesting that in this

setting the satellites might function as temporary storage

containers, as described previously [15, 47]. Further sup-

porting the alleged roles of CS in centrosome biogenesis

and maintenance, disruption of CS integrity, for example

by PCM1 knock down, can lead to a marked increase in

fragmentation or even loss of centrosomes [17, 48]. In

response to such perturbations, the stress responsive p38

mitogen-activated protein kinase (p38MAPK) is activated,

phosphorylating p53 and p21 to promote cell cycle arrest

through CDK2 inhibition [48]. Arrested cells with dys-

functional centrosomes are generally unable to differentiate

or form functional cilia [48]. In further support of a role for

CS in centrosome maintenance, PCM1 depletion can also

manifest as a G1 arrest through the activation of the p38-

p53 signaling axis, similar to the response to centrosome

fragmentation [17, 48]. Consequently, upon depletion of

PCM1, both DNA replication and cell cycle progression

can be restored by deletion of p53 or chemical inhibition of

the p38 kinase, although these cells display defective

spindle poles and aneuploidy as a consequence of dys-

functional centrosomes.

Centriolar satellites and ciliogenesis

Primary cilia are antenna-like structures that originate from

the centrosome and protrude from the cell body for up to a

14 M. A. X. Tollenaere et al.
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few micrometers. The central scaffold is composed of a

rigid microtubule network that extends away from the cell

surface but is still covered by the cell membrane. Primary

cilia serve as ‘‘sensing antennae’’ to detect various extra-

cellular signals and perform specialized sensory tasks

(reviewed in [8] and [49]). To this end, cilia are richly

decorated with various receptors (e.g. odorant receptors

and rhodopsin) to establish olfaction and vision, and are

fundamental for key signal transduction responses includ-

ing the Wnt and hedgehog signaling pathways.

Additionally, nodal cilia, which generate the leftward flow

of extra-embryonic fluid, are required to establish correct

left–right asymmetry during embryonic development in

vertebrates [50]. CS are recognized as key regulators of

ciliogenesis, most likely by controlling licensing of cen-

triole maturation and integrating signals from the cilium,

the cell interior, and the cell cycle machinery (Fig. 2) [51,

52]. As mentioned above, CS factors such as C2CD3

facilitate the recruitment of distal appendage proteins such

as Ttkb2, CEP164, Ift88 and Ift52 during ciliogenesis [42].

More specifically, Ttkb2 is required for removal of CP110,

which serves as an antagonizer of ciliogenesis, while

CEP164 is a key factor for establishing the primary cilium

as discovered in a microscopy-based siRNA screen [14,

53]. Ift88 and Ift52 are crucial proteins involved in intra-

flagellar transport (IFT), which mediates cargo transport

inside the cilium [54].

The role of CS in ciliogenesis is perhaps best under-

scored by the crucial role of the BBSome in the process.

The BBSome is a stable multi-protein complex localizing

to the ciliary transition zone, which consists of at least

seven core components (BBS1, BBS2, BBS4, BBS5,

BBS7, BBS8, and BBS9). Current models posit a specific

role for the BBSome in protrusion of the microtubule

network from the ciliary base by recruitment of internal

cell membrane proteins to the growing structure [36, 55].

Mouse models with targeted disruption of BBS compo-

nents have shown that loss of the BBSome perturbs

trafficking of cilia membrane precursors and compromises

cilium formation [56–59]. In humans, mutations in any of

the BBS proteins are causative of the Bardet–Biedl Syn-

drome (BBS-OMIM209900). BBS patients display a high

Fig. 2 Dynamic regulation of centriolar satellites through the cell

cycle. CS are only detected in interphase cells and are involved in

maintaining centrosomal proteostasis by storing or actively trans-

porting centrosomal proteins throughout interphase. Consequently,

CS are involved in the maturation and duplication of the centrosome.

In addition, CS are centrally involved in ciliogenesis. Upon cell cycle

exit, MIB1-mediated ubiquitylation is suppressed and CS facilitate

the recruitment of various factors to the ciliary transition zone. Upon

cell cycle re-entry, the primary cilium is disassembled. CS facilitate

this process through two separate pathways, one involving PCM1-

dependent PLK1 loading to CS and activation of HDAC6, and

another causing inhibition of CEP290 and Rab8a transport by CP110.

Subsequently, upon mitotic entry, centriolar satellites are dissolved

followed by redistribution of numerous centriolar satellite factors to

the centrosome

Functions and regulation of centriolar satellites 15
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frequency of renal failure/abnormalities, obesity, retinal

dystrophy, mental retardation, and limb malformations

(e.g. polydactyly). It should be noted, however, that BBS

and other ciliopathies are genetically heterogenous disor-

ders, and linking clinical phenotypes to specific mutations

has, therefore, proven to be challenging [60, 61].

BBSome assembly occurs in a highly hierarchical

manner, with BBS4 being the last added component [62].

Interestingly, BBS4 is the only BBSome factor that stably

localizes to CS through interactions with PCM1, CEP131,

and CEP290 [37, 63]. BBS4 binds the extreme C-terminus

of PCM1 and localizes to satellites, the centrosome, and the

basal body in ciliated cells [10, 13, 24]. BBS4 was also

shown to impact CS localization by bridging the interaction

between PCM1 and dynein/dynactin, but more recently it

has been established that BBS4 itself depends on CS for

recruitment to the basal body and subsequent BBSome

formation [13, 24, 37, 63]. In 2007, Nachury and col-

leagues suggested a model in which CS could spatially

limit BBSome activation to the basal body by acting as a

chaperone for BBS4 during cytoplasmic transport [36].

This hypothesis has recently been strengthened through a

study on CEP131. CEP131 not only binds PCM1 and BBS4

at CS, but it also inhibits BBS4 recruitment to the basal

body, and cells depleted of CEP131 display increased

accumulation of BBS4 and the BBSome at the ciliary

transition zone [37]. Furthermore, zebrafish morphants

lacking CEP131 are visually impaired and display delayed

melanosome trafficking, perturbed Kupffer’s vesicles, and

randomized left–right asymmetry in embryos, phenotypes

that are all related to defects in ciliogenesis [37, 64]. In

addition, the Drosophila CEP131 orthologue, DILA,

localizes to the basal body in ciliating cells and is required

for ciliogenesis in sensory neurons and germ cells [65].

Together, these results suggest that CEP131 and CS are

important mediators of ciliogenesis through regulation of

BBSome accumulation at cilia [37]. However, as CEP131

also localizes to the centrosome independently of CS, it is

equally possible that the observed phenotypes can be

attributed to a centrosome-specific defect rather than per-

turbed CS functionality. Interestingly, whereas cells

transiently depleted of CEP131 are clearly impaired in

ciliogenesis in a number of cell culture models and lower

organisms, possibly as a consequence of perturbed

BBSome trafficking, a recent study demonstrated, unex-

pectedly, that CEP131 knockout mice are both viable and

proficient in ciliogenesis [66]. This suggests that a com-

pensatory pathway exists in higher eukaryotes and that

alternative mechanisms may further regulate BBSome

assembly. Indeed, no CEP131 mutations have so far been

associated with ciliopathies in humans. The molecular

mechanisms underlying the dynamic exchange of BBS4

from satellites and its integration into the BBSome upon

ciliogenesis remain largely unexplored but may be regu-

lated through post-translational modifications. One

potential regulator could be the ubiquitin E3 ligase MIB1,

which has been recently identified as a bona fide compo-

nent of CS, and which was shown to ubiquitylate PCM1

and CEP131 in cycling cells [67, 68]. Strikingly, a marked

attenuation of MIB1 activity and decreased ubiquitylation

of PCM1 and CEP131 was observed upon serum starva-

tion, which is a common cue for inducing ciliogenesis in

human fibroblasts [68]. In addition, depletion of MIB1 was

accompanied by activation of the ciliation program in

cycling cells. These observations suggest that MIB1 may

inhibit ciliogenesis during the cell cycle through ubiqui-

tylation of CS factors, including PCM1 and CEP131 [68,

69].

In addition to the inhibitory role of MIB1, CS were

recently found to antagonize ciliogenesis in a surprising

manner. OFD1 was shown to serve as yet another cilio-

genesis inhibitor functioning at CS [70]. In addition to its

association with CS, OFD1 also localizes to centrioles and

it has long been suggested to play roles in centrosome

maintenance and primary cilia assembly [10, 14, 71–73].

OFD1 facilitates plasma membrane docking of the cen-

trosome and recruitment of Ift88 to distal appendages of

the centrioles. Moreover, embryonic fibroblasts from

OFD1 knockout mice display abnormally long centrioles

compared to their wild-type counterparts [72]. Accord-

ingly, mutations in OFD1 in humans manifest as primary

cilia dysfunction in disorders such as oral–facial–digital

syndrome, Joubert syndrome, and nephronophthisis-related

ciliopathies [10, 74]. Tang and colleagues demonstrated

that OFD1 removal from satellites through the autophagy

pathway stimulates ciliogenesis [70]. Thus, autophagy-

deficient cells demonstrated elevated OFD1 levels at CS,

reduced BBS4 accumulation around the ciliary transition

zone, and perturbed ciliogenesis. Reduction of the satellite-

associated OFD1 pool by partial knockdown (which leaves

the centrosomal fraction intact) rescued the ciliogenetic

potential of these cells [70]. Since the centriolar pool of

OFD1 seems to be a prerequisite for centrosome mainte-

nance and primary cilia formation, while CS-associated

OFD1 seems to inhibit this process, it is attractive to

speculate that many of the proteins mentioned above may

have different functions depending on their localization to

the satellites, centrosome, or basal body. Interestingly, a

different link between autophagy and ciliogenesis was

reported by Cuervo and colleagues [75]. In contrast to a

stimulatory role of autophagy in ciliogenesis, these authors

observed an inhibitory role of autophagy mediated by the

degradation of IFT20. This protein is required for cargo

transport inside the cilium and is implicated in the nucle-

ation and maintenance of this structure. Upon serum

starvation, IFT20 is no longer targeted by the autophagy

16 M. A. X. Tollenaere et al.

123



pathway and localizes to the basal body to promote cilio-

genesis [75]. Conversely, upon ciliogenesis highly

localized autophagosome formation near the basal body

can be observed, suggesting that there are two distinct

phases of autophagy governing ciliogenesis [75]. While

basal autophagy negatively controls ciliogenesis through

IFT20 degradation, centrosomal or CS-localized OFD1 is

not efficiently targeted by this system. Upon ciliogenesis,

the combination of CS accumulation at the basal body and

increased formation of cilia-associated autophagosomes

might offer a permissive environment for OFD1 removal

from CS to further stimulate ciliogenesis [70].

CEP290 and TALPID3/KIAA0586 are two other CS

factors with prominent roles in ciliogenesis. Both proteins

localize to the ciliary transition zone and further stimulate

ciliogenesis by recruiting Rab8a to the BBSome [26, 52,

76–78]. Rab8a and its GTP exchange factor, Rabin8,

physically interact with BBS1 and are both required for

ciliary vesicle trafficking [36, 79, 80]. In addition, TAL-

PID3 is required for disassembly of CS at the ciliary

transition zone prior to ciliary vesicle formation [78].

Knockdown of PCM1, CEP290, or TALPID3 leads to

reduction of Rab8a at the cilium and impaired ciliogenesis.

In line with the role of CS and CEP290 in Rab8a transport,

dysfunction or absence of CEP290 perturbs the ciliary

influx and localization of specific photo-transducers and

odorant signaling molecules such as Golf and Gy in the cilia

of olfactory receptor neurons [26, 76, 81]. Consistent with

the above, mutations in CEP290 are linked to ciliopathies

such as Joubert Syndrome, Meckel Syndrome, Leber

Congenital Amaurosis, and even BBS. Moreover, both

physical and genetic interactions between CEP290 and

BBS4 have recently been demonstrated in mouse models,

potentially offering an explanation for the overlapping

spectrum of ciliopathies caused by mutations in CEP290

and BBS4 [63]. CS-mediated transport of Rab8 supported

by CEP290 seems to be antagonized by CP110, a centro-

somal protein involved in cell cycle progression and

centrosome duplication [52, 82–84]. CP110-mediated cilia

resorption is dependent on its interaction with Rab8a and

CEP290, but CP110 has so far not been detected in CS.

Consistent with the notion that ciliogenesis is suppressed in

cycling cells, CP110 expression is strongly induced when

cells re-enter the cell cycle from quiescence [82].

A second CS-mediated pathway involved in cilia

resorption involves PCM1 and PLK1 (Polo-like kinase 1)

[12]. Microtubules in cilia are highly glutamylated, acet-

ylated, and glycosylated, ensuring their structural integrity

[80]. PLK1 activates HDAC6 (histone deacetylase 6),

which is the deacetylase responsible for removing acetyl

groups from axonemal microtubules during cilium disas-

sembly [12, 85]. PLK1 localization to the pericentriolar

matrix was shown to be dependent on a direct interaction

with PCM1, the presence of CS, and active microtubule-

mediated transport. Interestingly, the interaction between

PCM1 and PLK1 is fully dependent on CDK1-mediated

phosphorylation of Thr-703 on PCM1 [12]. Similar to

CP110, the activity of CDK1 is suppressed throughout G1

phase and peaks in early mitosis, suggesting that CS are

subject to strong cell cycle-dependent regulation (Fig. 2).

The involvement of CS in ciliogenesis is, however, not

limited to the mechanisms described above. Other CS

proteins such as SSX2IP, CCDC13, FOP, FOR20, and

CEP72 have also been implicated in ciliogenesis [18, 28,

29, 35, 86, 87]. Despite the molecular details of how these

proteins facilitate ciliogenesis remain obscure, perturbed

centrosome maturation or failure to target CEP290 and

Rab8a to the basal body are common phenotypes resulting

from ablation of these factors [16, 18, 88]. However,

similar to several other CS proteins, neither SSX2IP,

CCDC13, FOP, FOR20, nor CEP72 require CS for their

centrosomal localization. Additionally, it remains to be

established whether the phenotypes caused by ablation of

these factors are a consequence of centrosome/basal body

dysfunction, perturbed CS functionality, or both.

Centriolar satellites and neurogenesis

Besides controlling the localization of proteins involved in

centrosome maturation and ciliogenesis, CS have also been

implicated in neurogenesis. Functional interactions

between PCM1 and several proteins involved in neuro-

genesis, such as Huntingtin (HTT), HAP1 (Huntingtin

associated protein 1), DISC1 (disrupted in schizophrenia

1), Hook3, and CaMKIIb have been reported [11, 13, 19,

20, 89]. These proteins can all be detected at the centro-

some, which plays a pivotal role in various neuro-

developmental processes. DISC1, BBS4, and PCM1 have

been shown to operate synergistically to mediate centro-

somal trafficking of CS [13]. As its name suggests, the

DISC1 gene has been found to be disrupted in patients

suffering from schizophrenia and is recognized as a risk

factor for general psychiatric illness, including recurring

depression and bipolar disorder [90, 91]. Disrupting the

DISC1-BBS4-PCM1 complex by depleting any of these

factors impairs neuronal migration during cortical devel-

opment [13]. Comparable to the role of CS in ciliogenesis

and the organization of microtubule arrays, it was sug-

gested that these proteins are dependent on each other and

function cooperatively to recruit specific proteins involved

in neurogenesis to the centrosome [10, 13].

CaMKIIb is a Calcium/Calmodulin-dependent kinase

that functions at the centrosome and is responsible for

dendrite retraction. Knockdown or mislocalization of

CaMKIIb leads to excessive growth of dendrites, a con-

sequence of which is defective formation of dendrite
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patterns and neuronal impairment [19, 92]. Interestingly,

the centrosomal localization of CaMKIIb is almost com-

pletely dependent on its interaction with PCM1 and the

presence of CS [19]. Of note, interaction studies have

identified associations between CEP131, Calmodulin, and a

majority of the Calmodulin kinase isoforms, indicating

additional regulatory roles of CS components in neuro-

genesis [68].

Further evidence for the implications of CS in neuro-

genesis comes from the functional interactions between

PCM1, HAP1, and HTT [11, 89]. Although the role of

HAP1 and HTT at CS remains elusive, there is evidence

that they are required for centrosomal protein transport,

which is to some extent dependent on PCM1 [89]. Deple-

tion of HTT or HAP1 does not only lead to PCM1 dispersal

but also negatively affects ciliogenesis. Abnormally long

polyglutamine stretches in the HTT protein are causative of

the devastating neurodegenerative disorder Huntington’s

disease, and olfactory abnormalities have been reported in

several cases [93]. These studies make it tempting to

speculate that impaired ciliogenesis in Huntington’s dis-

ease models can to some extent be attributed to CS

dysregulation [89, 94].

Dynamic regulation of centriolar satellites

As alluded to in the previous paragraphs, disruption of CS

is causative of a range of cellular defects, including an

unorganized microtubule network, dysfunctional ciliogen-

esis, centrosome fragmentation, cell cycle arrest, and

impaired neurogenesis [4, 10, 14, 17, 19, 20, 29, 48]. As

the satellites seem to affect such a wide range of processes,

it is likely that they are subject to tight regulation at dif-

ferent levels. Indeed, evidence that CS are dynamically

regulated in response to changing cellular conditions or

perturbations has recently emerged. Early CS studies

established that these structures are only present in inter-

phase cells and gradually dissolve when cells enter mitosis,

becoming completely absent during metaphase and ana-

phase (Fig. 3) [1, 2, 4]. During this window of the cell

cycle, a subset of CS proteins localize to the centrosome

until the satellites are reassembled after mitosis. The

molecular mechanisms behind the assembly and disas-

sembly of CS are largely unknown, but as PCM1 protein

levels remain stable throughout the cell cycle, mitotic

satellite dissolution is likely to be regulated by post-

translational modifications of one or more CS components

[95]. Quantitative phosphoproteomic screens have identi-

fied multiple residues in PCM1 that are phosphorylated in

mitosis and consistently, PCM1 displays a characteristic

gel-mobility shift in extracts from mitotic cells which is

dependent on CDK1 activity (Fig. 1d) [12, 96]. Thus far,

only CDK1-dependent phosphorylation of Thr-703 on

PCM1 has been confirmed, however, this specific phos-

phorylation event does not seem to mediate CS dissolution

but is required for recruitment of PLK1 to CS and cilia

resorption [12].

A recent study demonstrated that CS are also exqui-

sitely sensitive to a broad range of cellular stresses such

as UV radiation and heat shock, which induce rapid

removal of a subset of CS factors including CEP131,

PCM1, and CEP290 (Fig. 3) [68]. Stress-induced CS

reorganization is fully dependent on p38 activity and

coincides with inactivation of the ubiquitin E3 ligase

MIB1. Similar to CS dissolution in mitosis, the mecha-

nistic details on how p38 activation leads to CS

reorganization are currently lacking. Perhaps somewhat

counterintuitive, UV- and p38-dependent CS remodelling

is accompanied by a marked increase in PCM1–CEP131

interaction, a conundrum which could be key to under-

stand this process [68]. Even though it is unclear what the

long-term fate of these PCM1-, CEP131-, and CEP290-

deprived satellites are, these observations suggest that

PCM1 might not be an essential scaffold for satellites per

se, as has long been thought [2, 9].

While PCM1 is essential for long-term maintenance of

CS, it is not the only factor responsible for the structural

integrity of these structures. Depletion of several other CS

components also causes loss or mislocalization of satel-

lites (Fig. 1c, proteins highlighted in red). In addition,

overexpression of several CS factors such as BBS4,

CEP290, and PCM1 leads to formation of large aggregates

that stain positive for other satellite markers, suggesting

that these proteins are themselves able to nucleate CS

formation [24, 26, 41]. Based on these observations it

appears that the integrity of CS depends on a number of

factors that all contribute to a stable environment in these

structures.

Apart from the molecular composition of CS, the

dynamics and trafficking activity of these structures also

appear to be subject to tight regulation. Both BBS4, Par6a,

and CEP290 have been implicated in directly regulating the

subcellular localization of CS by functionally linking them

to microtubule-associated motor proteins [24–26, 34, 76].

BBS4 and Par6a are both able to bind p150glued, which

physically links dynein motor proteins and their respective

cargo. Accordingly, depletion of BBS4 or Par6a results in

the loss of CS in the vicinity of the centrosome [24, 25].

CEP290 associates with both dynein and kinesin motor

proteins, suggesting that this factor can impact on both

anterograde (away from the centrosome) and retrograde

(towards the centrosome) transport of satellites along the

microtubule network. Indeed, depletion of CEP290 results

in an even tighter clustering of CS around the centrosome

[26, 76]. Together, these observations suggest an attractive

model in which the combined effects of CEP290, BBS4,
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and Par6a binding to dynein and/or kinesin motor proteins

regulate the dynamic shuttling of CS along microtubules.

Similar to our limited understanding of the dynamic

regulation of CS, the process of CS biogenesis remains

largely unexplored. Early studies of satellite assembly

mainly focused on PCM1, a protein capable of self-inter-

action and aggregation, dependent on two non-overlapping

regions (201–494 and 745–1128) (Fig. 1d) [3, 95]. PCM1

truncations encompassing these regions are able to form

large aggregates that retain the ability to interact with other

CS markers including endogenous PCM1 [3]. A different

mechanism of CS assembly that is linked to the formation

of supernumerary centrosomes in S phase-arrested cells has

been proposed [97]. CS contain a number of proteins

required for centrosome biogenesis (e.g. centrin and peri-

centrin) and have been suggested to impact on centrosome

duplication and stability [17, 18, 48]. Two studies inde-

pendently demonstrated that prior to the formation of

supernumerary centrosomes during a prolonged S phase, a

remarkable increase in nuclear centrin granules could be

observed, which was dependent on CDK2 and Chk1 [97,

98]. Following nuclear export, these centrin granules

appeared to coalesce with PCM1 and showed remarkable

similarities to CS as judged by electron microscopy. While

suggesting an interesting link between CS and centrosome

over-duplication, which is a common hallmark of cancer

cells, it is not clear if these observations actually reflect a

molecular mechanism underlying CS biogenesis in unper-

turbed interphase cells [99, 100].

Concluding remarks

Centriolar satellites harbor a wide range of proteins that

have specialized functions at the centrosome, centrioles,

and/or basal body. Although the exact functions of CS are

still not fully understood, it is generally accepted that they

contribute to the trafficking of protein cargo to the peri-

centriolar matrix. CS facilitate this through active

microtubule-dependent transport and by acting as tempo-

rary storage containers [9]. In addition, it is clear that

several proteins present in the satellites are directly

responsible for maintaining the structural integrity and/or

localization of these structures [10, 13, 66]. Besides their

importance in the recruitment of centrosomal proteins, CS

are also directly involved in assembly of the BBSome and

the timely disassembly of cilia, and thus seem to play a

central role in centrosome biology (Fig. 4). Hence, per-

turbed CS function leads to various centrosomal defects

Fig. 3 Centriolar satellite remodeling in mitosis and in response to

cell stress. Centriolar satellites undergo extensive remodeling upon

mitotic entry and in response to a range of cellular stresses, including

proteotoxic stress and transcriptional blocks. Mitotic CS dissolution

results in the redistribution of various satellite proteins to either the

centrosome or cytoplasm and is likely to be regulated by post-

translational protein modifications. Stress-induced CS remodeling is

fully dependent on p38MAPK activity and coincides with MIB1

inactivation, leading to stimulation of ciliogenesis and AZI1-PCM1

complex formation
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such as a failure to maintain interphase and mitotic

microtubules, and impaired ciliogenesis and neurogenesis

[4, 19, 27].

Despite a complete inventory of CS factors is lacking,

research over the last decade has pinpointed approxi-

mately 30 proteins that localize to these structures or

directly interact with PCM1 (Fig. 1c). The identification

and functional studies of these proteins have greatly

improved our understanding of the multi-faceted roles of

CS. While the original view of these structures as protein

transporting vehicles still seems valid, a considerable

number of CS factors can localize to the centrosome

independently of CS integrity, and in many cases it is still

unclear whether these proteins have additional functions

directly at the satellites. Recent reports have partially

addressed this issue by demonstrating that some proteins

indeed have CS-specific functions, with roles of CEP131

in regulating BBS4 release from satellites and of CS-

localized OFD1 in inhibiting ciliogenesis serving as prime

examples [37, 70].

It has also become clear that CS are dynamic structures

that change their molecular composition throughout the

cell cycle and during conditions of cell stress (Figs. 2, 3)

[12, 37, 68, 70]. In the latter case, CS dissolution is med-

iated by the stress responsive kinase p38, possibly

stimulating ciliogenesis [68]. The mechanism and func-

tional consequences of mitotic CS dissolution remain

unexplored, but it has been proposed that mitosis-specific

post-translational modifications, such as CDK1-mediated

phosphorylation, govern this process [95, 96].

It seems likely that CS harbor many additional proteins

that are involved in centrosome biogenesis, ciliogenesis,

and/or neurogenesis. Future studies will undoubtedly

uncover such factors, thus expanding the presently known

repertoire of cellular proteins localizing to CS and

increasing our understanding of the biology and functions

of these fascinating structures. Further exploration of the

mechanisms governing the regulation and spatiotemporal

dynamics of CS organization will also be important for

shedding more light on these topics. The fact that several

kinases and an E3 ubiquitin ligase have been shown to

function at CS naturally raises the question of what other

regulatory mechanisms control CS status under different

conditions. In combination, future studies along these lines

are likely to offer exciting new insights into the biology

and mechanistic underpinnings of CS function at the

crossroads of many critical cellular processes and human

diseases such as ciliopathies and neurological disorders.
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45. Krämer A, Mailand N, Lukas C et al (2004) Centrosome-asso-

ciated Chk1 prevents premature activation of cyclin-B-Cdk1

kinase. Nat Cell Biol 6:884–891. doi:10.1038/ncb1165
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