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Abstract Cortical glutamatergic neurons are generated

by radial glial cells (RGCs), specified by the expression of

transcription factor (TF) Pax6, in the germinative zones of

the dorsal telencephalon. Here, we demonstrate that Pax6

regulates the structural assembly of the interphase centro-

somes. In the cortex of the Pax6-deficient Small eye (Sey/

Sey) mutant, we find a defect of the appendages of the

mother centrioles, indicating incomplete centrosome mat-

uration. Consequently, RGCs fail to generate primary cilia,

and instead of staying in the germinative zone for renewal,

RGCs detach from the ventricular surface thus affecting the

interkinetic nuclear migration and they exit prematurely

from mitosis. Mechanistically, we show that TF Pax6

directly regulates the activity of the Odf2 gene encoding for

the appendage-specific protein Odf2 with a role for the

assembly of mother centriole. Our findings demonstrate a

molecular mechanism that explains important characteris-

tics of the centrosome disassembly and malfunctioning in

developing cortex lacking Pax6.

Keywords Centriole structure � Transcriptional control

Introduction

The complex structure of the mammalian neocortex consists

of billions of neurons and glial cells generated during devel-

opment by stem and progenitor cells located in the

germinative zones of the dorsal telencephalon (pallium), the

ventricular zone (VZ) and the subventricular zone (SVZ) [1,

2]. Before the beginning of neurogenesis, neuroepithelial cells

with stem cell-like properties in VZ of cortical primordium

divide in a symmetric proliferative manner to increase the

progenitor pool. At the onset of neurogenesis, the neuroepi-

thelial cells start to express some glial determinants as well as

TF Pax6, and transform into radial glial cells (RGC), which

produce almost all cortical glutamatergic neurons [3–8].

During neurogenesis, which in the mouse extends from

embryonic stage (E)10.5 till E18.5, distinct neuronal types are

produced following an intrinsic ‘‘inside-first outside-last’’

program [9]. At early stages (E10.5–E13.5), RGCs divide in

an asymmetric differentiation manner, generating RGCs for

self-renewal and neurons via a direct mode of neurogenesis.

Guided by the long processes of RGCs extended across the

cortical depth, the newborn neurons delaminate from the VZ

and migrate into the cortical plate (CP) where they are pre-

dominantly positioned into layer six, and consequently, into

layer 5 [10, 11]. However, after midgestation (E13.5), the

RGCs divide asymmetrically to self-renew, producing a sec-

ond type of progenitor cells, the intermediate progenitors,

located in the SVZ. Here, they may undergo up to 3 divisions

before entering into symmetric terminal neurogenic divisions

(indirect mode of neurogenesis), generating neuronal sub-

types with upper layers identities, firstly neurons of layer 4,

and subsequently, layer 3 and layer 2 neurons [12–14].
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The evolutionary conserved paired-domain, homeodo-

main containing TF Pax6 is an important component of an

encoded genetic program in cortical RGCs regulating

neurogenesis, cortical arealization and layer formation [15–

19]. In Pax6 deficiency, as seen in Pax6/Small eye homo-

zygous (Sey/Sey) mutant mice [20], the RGC produces only

half of the normal number of cortical neurons [21]. Fur-

thermore, the size of their motor and somatosensory cortex

is severely diminished and the upper layer neuronal sub-

types are almost completely missing [15, 18, 19, 22–28].

TF Pax6 is an intrinsic determinant of RGCs, endowing

them with neurogenic ability [21, 29]. Multiple evidence

indicates that Pax6 exerts control on RGC morphology and

cell cycle including cell cycle length and exit, mitotic spindle

orientation, centrosome localization during mitosis and reg-

ulates the interkinetic nuclear migration [23, 24, 29–32]. The

interkinetic nuclear migration is cell cycle dependent move-

ment during which the nuclei of the apical RGCs translocate

from a basal (S-phase) to an apical (M-phase) position [33].

This process is related to cell microtubules in which the cen-

trosome, as the microtubule-organizing centre, plays a critical

role [34]. The centrosome also plays important roles in the

regulation of progenitor proliferation, fate determination,

neuronal differentiation and migration [35]. Consisting of two

centrioles, which differ in structure and function, the centro-

some replicates in a cell cycle dependent semi-conservative

mode [36]. As a result, only one of the centrosomes, the

mother centrosome, inherits the original more mature

(mother) centriole (MC). The mother centriole specifically

carries distal/subdistal appendages marked by specific pro-

teins such as Odf2 (Outer dense fibre 2/Cenexin), which is

considered a molecular marker of centriole maturation, and

Ninein [37–41]. After RGC division, the cell containing the

mother centrosome stays in the VZ, while the cell containing

the daughter centrosome (without appendages) migrates into

the cortical plate upon neuronal differentiation [42]. The

mother centriole is transformed into a basal body and grows a

primary cilium [43, 44], which is involved in mediating signal

transduction critical for normal corticogenesis [45, 46].

Here, we present evidence that TF Pax6 controls cen-

trosome assembly in interphase RGCs. We found that Pax6

controls the transcription of the Odf2 gene and conse-

quently, the production of the appendage-specific protein

Odf2, thereby contributing to the centriole maturation.

Results

Mislocation and loss of centrosome subdistal

appendages in Sey/Sey cortex

During interphase, the centrosomes in RGCs are generally

located at the cell membrane in the most apical region of the

VZ surface. It is only during mitosis that centrosomes leave

this position to build the spindle poles. To study centrosome

location in Pax6-deficient mouse cortex, we performed

immunohistochemistry (IHC) analysis of c-Tubulin, a com-

mon centriole marker on brain cross-sections from wild-type

(WT) and homozygous Pax6/Small eye (Sey/Sey) mutant

embryos at stage E15.5. While in WT cortex the centrosomes

were strictly aligned, seemingly anchored to the ventricular

surface (Fig. 1a), in the Pax6 deficient brain they were widely

distributed within the space between the ventricular surface

and the cell nuclei (Fig. 1b), which is in accordance with

reported results for the rat Small eye mutant (rSey2/rSey2) [31].

Given the importance of the MC appendages for the connec-

tion to the cell membrane during the generation of primary

cilia, we hypothesized that a structural defect of the append-

ages in Pax6 loss of function (LOF) may underlay centrosome

mislocation in VZ (Fig. 1c). To test this hypothesis, we

investigated by electron microscopy (EM) the centrosome/

basal body structure at the cortical ventricular surface in E15.5

WT (Fig. 1d–d000) and Sey/Sey (Fig. 1e-e000) embryos. As

normally half of the centrioles are MC, in the control brain

51.26 % (±6.21) of the centrioles showed subdistal append-

ages (Fig. 1f). Strikingly less centrioles showed subdistal

appendages in the Sey/Sey brains (21.8 % with appendages;

78.2 % without appendages; ±7.13) (Fig. 1g). Thus com-

pared to WT, less than 50 % of the centrioles in Pax6 deficient

cortex contained appendages, suggesting a defect in centro-

some maturation (Fig. 1h).

Reduction of primary cilia in Sey/Sey cortex

Absence of subdistal appendages has been shown to cause

loss of primary cilia in mouse F9 cells [47]. To investigate

whether the loss of appendages and the resulting dislocation

of centrioles have an influence on the appearance of primary

cilia, we analysed EM images from E15.5 cross-sections of

WT and Sey/Sey brain sections. We found that the number of

centrioles connected to primary cilia was dramatically

reduced in E15.5 Pax6 loss of function brains (Fig. 2c–d0)
compared to WT (Fig. 2a–b0) (WT: 34.89 % ± 9.24; Sey/

Sey: 6.01 ± 4.42) (Fig. 2e, f), indicating more than 80 %

reduction in the mutant brain (Fig. 2g). Furthermore, IHC

performed using an antibody to adenylyl cyclase III (ACIII)

as a specific primary cilia marker [48] revealed a 50 %

reduction in the number of primary cilia at the ventricular

surface (Fig. 2h, i). Taken together, these results suggest that

Pax6 disruption alters the centriole maturation in RGCs.

Abnormal localization of the mother centrosome

in Pax6 deficient cortex

After mitosis, the mother centrosome locates to the RGC

that re-enters the cell cycle and stays in VZ [42]. To
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Fig. 1 Defect of centrosome maturation in Pax6-deficient cortex. a,

b IHC with the centrosome marker c-Tubulin (in red) in WT (a) and

Pax6/Small eye (Sey/Sey) (b) E15.5 cortex reveals a disturbed

localization of centrosomes in the mutant cortex. Cell nuclei are

counterstained with DAPI (blue). c Schematic presentation to explain

how a structural defect of the mother centriole appendages could lead

to mis-localization of the centrosomes. d–e0 0 0 Electron microscopy

micrographs illustrating the structural defect of the mother centrioles

in Sey/Sey (e–e0 0 0) compared with WT (d–d0 0 0) control cortex.

Arrowheads point to subdistal appendages easily detectable only in

WT cortex. f–g Statistical analysis of the centriole number at the

ventricular surface of WT embryo showing that half of the centrioles

(51.26 ± 6.21 %) contains appendages, thus identifying them as

mother centrioles, and 48.74 % (±6.21) as daughter centrioles

(without appendages). Note that in the Sey/Sey cortex only 21.8 %

(±7.13) of centrioles contain appendages and 78.2 % (±7.13) miss

these appendages (n = 3) (bars 0.5 lm). h Relative to the control, the

Pax6 deficient cortex shows a strong reduction in the number of

matured centrioles containing appendages at the ventricular surface

(WT: 1 ± 0.12); Sey/Sey: 0.43 ± 0.14); *B0.05; p = 0.012)

Pax6 controls centriole maturation 1797
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study the position of the mother centrosome in Pax6

deficiency, we applied a modified version of the published

method of Imai et al. [49]; using a fluorescent photo

switchable Kaede-centrin1 protein that is specifically

expressed in the centrioles upon in utero electroporation

into the embryonic brain. Due to severe cranial and brain

defects of the Sey/Sey embryos, their survival upon in

utero electroporation was low. We used therefore embryos

after conditional deletion of Pax6 in cortical progenitors

(Pax6cKO). Pax6fl/fl transgenic mice [50] were crossed to
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Emx1Cre transgenic line [51], specifically to Emx1-

Cre?/-;Pax6fl/fl males [18]. Twenty-four hours after in

utero electroporation at E13.5 with Kaede-centrin1 plas-

mid, the brains were isolated, thick sectioned, and after

photo conversion of the Kaede fluorescent protein, orga-

notypic culturing of the brain sections was carried out for

additional 48 h. During this time, the electroporated

RGCs undergo 2 mitotic cycles, permitting the visuali-

zation of the mother centriole (in red) and the daughter

centriole (in green) fluorescence via IHC [42, 52].

Quantitative analysis revealed that in Pax6cKO cortex,

the VZ (identified through a clear immunosignal for the

progenitor marker Sox2) contained significantly lower

number of mother centrosomes compared to the control

(Fig. 3a–f00), 70 % in the control and 40 % in the mutant

(Fig. 3g, h respectively). Taken together, these results

show a substantial reduction in the number of mature

centrioles in the VZ, which become abundantly distrib-

uted in the CP in the Pax6 deficient brain (Fig. 3i).

Pax6 as a transcriptional regulator of Odf2 gene

Given the phenotype of MC in Sey/Sey cortex described

above, we hypothesized that the expression of the

important determinant of centrosome maturation, Odf2/

Cenexin, could be affected in Pax6LOF. The Odf2 gene

encodes the outer dense fibre 2 protein, located together

with Ninein in the subdistal appendages of MC [39]. In

the absence of Odf2, Ninein recruitment to the subdistal

appendages and formation of primary cilia in murine F9

cells fail [47]. Ninein is involved in microtubule

anchoring to the mother centriole, and in Ninein defi-

ciency, cells containing the MC prematurely exit the

mitotic cycle, leaving the VZ [42].

Whole-mount in situ hybridisation (ISH) analyses

indicated a strong Odf2 expression in the brain and spinal

cord of E12.5 embryo brain, reminiscent to Pax6

expression, including the forebrain [53] (Fig. 4a). In

addition, ISH at the peak of neurogenesis of the upper

layer neuronal subtypes (E15.5), revealed that compared

to the WT brain, the expression of Odf2 in Sey/Sey cortex

was significantly reduced (Fig. 4b, b0). To further support

the observed reduction of Odf2 expression, we performed

quantitative real time PCR assays (RT-PCR), using cor-

tices from E15.5 WT and Sey/Sey embryos. Consistent

with the ISH data, the results revealed a strong down-

regulation of Odf2 expression in E15.5 Sey/Sey cortex,

compared to control (inhibition by 46.05 ± 6.24 %;

n = 3) (Fig. 4c). Next we employed IHC to study the

assembly of the mother centriole appendages in absence

of Pax6, using IHC with antibody directed to Odf2 as a

specific marker. Consistent with the ISH data, at E15.5

the expression of Odf2 protein in the mother centrosomes

was strongly reduced in Sey/Sey compared to the control

cortex (Fig. 4d, d0). In addition, immunostaining for

Ninein, a protein mostly expressed at the subdistal

appendages [47, 54], indicated a strong reduction of this

mother centriole structural protein in the Pax6 deficient

cortex (Fig. 4e, e0).
As these findings were consistent with a direct regula-

tion of Odf2 by TF Pax6, we next performed a luciferase

reporter gene assay in NIH3T3 cells using an expression

plasmid in which firefly luciferase acted as a reporter under

the control of the Odf2 promoter [55]. Co-transfection of

this together with a Pax6 expression plasmid (CMV-Pax6)

revealed a slight activation (20 %) of the reporter (Fig. 4f).

To assess Pax6 consensus-binding sites within 2.1 kb

region of the Odf2 promoter, we used MatInspector soft-

ware analysis and identified three possible Pax6 binding

sites (Fig. 5a). To validate the capacity of Pax6 to bind to

those regulatory regions of Odf2 we performed an elec-

trophoretic mobility shift assay [56]. Incubation of

radioactively labelled oligonucleotides for the predicted

binding sites with Pax6 protein showed a strong binding to

one of these sites (sequence 3 in Fig. 5b). To determine

whether the binding was specific, the binding mixture was

pre-incubated with an anti-Pax6 antibody (Fig. 5b). After

electrophoresis, the protein-bound radiolabeled probes

were supershifted, and thus contained the presence of a

DNA-Pax6 protein antibody complex (line 6 in Fig. 5b).

Together, these data indicate that in vitro Pax6 interacts

specifically with the identified sequence 3 in the Odf2

putative promoter.

To investigate whether Pax6 controls the expression of

Odf2 also in vivo we performed chromatin immunopre-

cipitation (ChIP) using cortical extracts from E12.5

embryos. As shown in Fig. 5c, DNA fragments containing

b Fig. 2 Loss of Pax6 causes a profound reduction of centrioles

connected to primary cilia at the ventricular surface. a, b WT E15.5

cortex contains centrioles, showing the characteristic appendages

(black arrowheads), connected to primary cilia (black arrows)

(a, b) at the ventricular surface (a0, b0). c, d Centrioles in Pax6

mutant E15.5 cortex show fewer connections to primary cilia. Instead

they show characteristic vesicles at the distal end of the mother

centriole (white arrowheads), necessary to build up the primary

cilium. c0, d0 The overview shows that the centrioles (white arrows)

are located away from the ventricular surface (bars 0.5 lm).

e, f Statistical analysis of the number of centrioles connected to

primary cilia. In WT cortex around 35 % of centrioles are connected

to primary cilia (34.89 ± 9.24 %), while in Sey/Sey cortex only

around 6 % show this connection (6.01 ± 4.42 %). g Normalized to

control, the number of centrioles connected to primary cilia in Sey/Sey

show a reduction of more then 80 % (WT: 1 ± 0.26; Sey/Sey:

0.17 ± 0.13; * = p\0.05; p = 0.03). h, i Analysis of WT and Sey/

Sey E15.5 cortex by IHC using antibodies against c-Tubulin and

ACIII show a significant loss of primary cilia at the ventricular

surface in Pax6 LOF brains. WT: 1 ± 0.06; Sey/Sey: 0.51 ± 0.09;

** = p\0.01; p = 0.005; n = 3; bars 10 lm)

Pax6 controls centriole maturation 1799
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the sequence 3 of the putative Odf2 promoter were pre-

cipitated by the anti-Pax6 antibody (but not by anti-GFP

antibody) from the chromatin. In parallel we performed a

ChIP assay on Chromatin from NIH3T3 cells following

overexpression of Pax6 and this also indicated a specific

Pax6/chromatin binding (data not shown).

Based on the direct regulation of Odf2 by Pax6, alto-

gether the above findings suggest that the subdistal
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appendages of the mother centrioles in renewed RGCs are

severely malformed, and are almost fully missing during

late neurogenesis. Furthermore, this structural defect of

MC clearly causes the loss of Ninein at the MC, as an

indirect effect of Pax6LOF.

Loss of Odf2 causes premature exit of RGCs

from mitosis

To study the role of Odf2 in cortical progenitors, we per-

formed in vivo knock down of Odf2 via in utero

electroporation. Two effective Odf2 short hairpin con-

structs were generated, SH3 and SH5 (Fig. 6b). Each of the

short hairpin constructs or the control plasmid together

with a GFP-expression plasmid was electroporated at

E13.5 in WT embryo brains, and the cortices were analysed

at E16.5. The performed IHC analysis (Fig. 6a–a00)
revealed that after 72 h, normalized to the control, the Odf2

knock down through SH3 and SH5 caused dramatic

reduction in GFP?/Pax6? progenitors in the VZ, by

79.8 ± 6.18 and 73.67 ± 5.27 %, respectively (Fig. 6c),

suggesting premature exit from mitosis and differentiation

of RGPs. To analyse whether the loss of Pax6? RGCs in

the Odf2 knock down cortex is due to premature cell cycle

exit, we electroporated E13.5 embryo brains with either a

control or a SH3 plasmid, together with a GFP-expression

vector and, 24 h later, the pregnant mice were injected with

BrdU solution (0.14 g/kg). After additional 24 h, the brains

were dissected and analysed. To estimate the cell cycle exit

index, IHC with antibodies against Ki67, BrdU and GFP

was performed (Fig. 6f, f0). Ki67 vs. BrdU labelling

indicates the relative proportion of cells exiting the cell

cycle (Ki67-/BrdU?) and cells re-entering the cell cycle

(Ki67?/BrdU?) after the last cell division. As expected, the

analysis revealed that upon knockdown Odf2 through SH3,

considerably less cells were GFP?/BrdU?/Ki67? (26.31 ±

2.1 %), and thus re-entered into mitosis as compared to the

control (58.08 ± 3.04 %) (Fig. 6g).

To further validate that the loss of progenitors in the VZ

is due to the reduced expression of Odf2, we subsequently

performed in vivo rescue assays. Odf2- and empty GFP-

expression plasmids were co-electroporated in E13.5

Pax6cKO embryos, and the cortex was analysed at E16.5

by IHC (Fig. 6d–d0). The results showed almost a three-

fold (2.87 ± 0.7) increase in GFP?/Sox2? progenitors in

the VZ compared to the cortex electroporated with empty

vector and GFP-expression plasmid indicating maintenance

of progenitor cells in the VZ in presence of high level of

Odf2 (Fig. 6e).

Together these findings show that the appendage protein

Odf2, which is regulated by TF Pax6 in RGCs, is an

intrinsic factor for the RGC re-entry into the mitotic cycle,

and is therefore significant for progenitor maintenance

during cortical development.

Discussion

Transcription factor Pax6 is an intrinsic determinant for

RGCs, exerting a number of important functions during

cortical neurogenesis [15, 21, 24, 25, 27–29, 57–63]. Here,

we report a novel role of TF Pax6 in centrosome assembly

and maturation in RGCs.

To build up the layered structure of mammalian cortex,

complex mechanisms including interkinetic nuclear

migration [64] control the correct types of asymmetric

divisions (direct and indirect) of the RGCs in the pallial

apical VZ surface [3, 4, 6]. In Pax6 deficiency, as seen in

the Pax6/Sey/Sey mutant, the interkinetic nuclear migration

in RGCs is abnormal, including ectopic (basal) division of

the apical progenitors and unstable centrosome positioning

during the S to M phase of the cell cycle [31, 65]. Each

centrosome consists of a pair of centrioles that has specific

morphology and function [34, 66–68]. The mother centri-

ole, which is generated at least one and a half cell cycles

earlier than the daughter centriole, contains appendages

that incorporate numerous distinct proteins including Odf2

[38, 39], and Ninein [37, 41].

The proposed role of the appendage protein Ninein is

quite controversial. Asami et al. [30] found reduced

expression of Ninein in Sey/Sey mice and a spindle dis-

orientation after knock down of Ninein, while other

authors showed premature exit from the mitotic cycle of

RGCs, and affected interkinetic nuclear migration after

Ninein knock down, due to a missing anchorage of

microtubules to the centrosome [42, 69]. As shown by

b Fig. 3 Abnormal behaviour of the mother centrosome containing the

older (matured) centriole. Electroporation was done with Kaede-

Centrin1 plasmid of E13.5 embryo brains via in utero electroporation

in pregnant mice (Pax6fl/flEmx1cre?/-;Pax6fl/fl) allowing conditional

deletion of Pax6 in RGCs [18], and after 24 h, a photoconversion on

isolated brain sections was performed with UV light (350–400 nm).

After additional culturing for 48 h, based on a specific immunoflu-

orescence, quantification of the percentage of the differently aged

mother (green/red or yellow; arrowheads) and daughter (green)

centrioles was done. a–c, g In control cortex most of the mother

centrioles (red and green signal) are located within VZ. Statistical

analysis revealed around 70 % of mother centrosomes in the VZ only

30 % were located more basally (VZ: 68.69 ± 0.32; CP:

31.31 ± 0.32). d–f00, h In Pax6LOF cortex only around 40 % of

mother centrosomes are located in VZ while around 60 % were

located in CP (VZ: 37.65 ± 8.31 %; CP: 62.35 ± 8.31 %). i The

diagram represents the results from the counting indicating that upon

conditional deletion of Pax6 in RGCs, the Sox2?VZ contains much

less RGCs with mother centrioles. On the contrary, in Pax6

deficiency, the CP contains higher number of mother centrioles

(WT: VZ: 68.69 ± 0.32 %, CP: 31.31 ± 0.32 %; Sey/Sey: VZ:

37.65 ± 8.31 %, CP 62.35 ± 8.31 %; ** = p\0.01; p = 0.0074;

control n = 3; Pax6cKO n = 4)

Pax6 controls centriole maturation 1801
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Wang et al. [42] after mitosis, the centrosomes are

asymmetrically inherited with a mature MC, kept within

the renewed RGC and a younger DC, and included in the

differentiating cells. Knock down of Ninein hampers this

effect, resulting in premature exit from the mitotic cycle

[42], which is similar to the effect observed here in Sey/

Sey mice [18, 24]. Surprisingly, up until now no evidence

has been presented showing Ninein is a direct down-

stream target of Pax6 [69] suggesting that the loss of

Ninein from the mother centrioles appendages might be a

secondary effect.

In this study, we found that TF Pax6 directly regulates

the expression of Odf2, and thereby the production of a

structural protein that is an essential compartment of the

mother centriole subdistal appendages, working structurally

upstream of the appendage protein Ninein [54]. We were

able to show a loss of Odf2 at the centrosome additionally to

the loss of Ninein in the Pax6LOF phenotype. An earlier

publication proposed a direct relationship between the loss

of Odf2 and the loss of Ninein at the subdistal appendages

suggesting an important role of Odf2 for Ninein recruitment

to the subdistal appendages [47]. As shown here, the knock

Fig. 4 The expression of mother centriole specific proteins Odf2 and

Ninein are down regulated in Pax6 deficient cortex. a Whole-mount

ISH shows a strong expression of Odf2 mRNA in the forebrain. b–b0

ISH on cross brain sections shows suppression of Odf2 expression at

E15.5 in the Pax6 mutant cortex. c The diagram illustrates the relative

expression level of Odf2 transcripts using quantitative RT-PCR

analysis in Pax6LOF cortex compared to WT *:\0.05

(p = 0.0057); n = 3. d–d0 IHC with antibody for Odf2 (green) on

cross E15.5 WT (d) and Sey/Sey (d0) sections reveals absence of

appendages in MC in Pax6LOF. e–e0 IHC with antibody for Ninein

(green) shows reduced expression at the centrioles (c-Tubulin?/in

red) in the Sey/Sey cortex (e0) E15.5 (bars 10 lm). f Co-transfection

of NIH3T3 cells in vitro with expression plasmids for Odf2 promoter

in front of firefly luciferase reporter sequence together CMV-Pax6

expression plasmid, causes activation of Odf2-promoter-luciferase

activity, suggesting a genetic interplay between the two genes

1802 M. A. Tylkowski et al.
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down of Odf2/Cenexin caused a loss of RGCs as a result of

premature exit of RGCs from mitotic cycle in Pax6LOF.

Furthermore, we found that Odf2/Cenexin overexpression

in Pax6-deficient background was able to rescue the pre-

mature exit of RGCs from mitotic cycle, supporting the idea

that the loss of Odf2 (and not of Ninein itself) is the reason

for the defective re-entry of RGCs into the mitotic cycle in

the Sey/Sey mutant cortex. We also found that in lack of

Pax6, the compromised centrosome maturation is accom-

panied by defect in asymmetric partitioning of the two

centrosomes. Thus, our results reveal a new molecular

mechanism involved in progenitor maintenance in the VZ

via Pax6 dependent control of the expression of appendage-

specific protein Odf2.

Fig. 5 Odf2 is a downstream target of TF Pax6 in cortical progen-

itors. a Three sequence (SQ1, SQ2, SQ3, coloured) in the Odf2

promoter contain consensus Pax6 binding sites. b Electrophoretic

mobility shift assays performed with in vitro translated Pax6 protein

and P32-labelled oligonucleotides for the identified 3 consensus Pax6

binding sites (in lane 1, SQ1; in lane 2, SQ2; in lane 3, SQ3) in the

Odf2 promoter show that Pax6 binds strongly to one (SQ3, lane 3) of

these sites. Pre-incubation of the binding mixture with a Pax6

antibody shows a supershift (lane 6, arrowhead) of the protein-bound

radiolabeled probe, confirming the specificity of the DNA-Pax6pro-

tein-Pax6 antibody complex. Controls in lane 4 and lane 5 show

absence of shifting when the binding mixture contains only SQ3 or

SQ3 and translated Pax6 protein, respectively. c In a ChIP Pax6

antibodies precipitated the Pax6 binding sequence within the Odf2

promoter
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In accordance with findings of Ishikawa et al. [47], that

Odf2 is essential for the primary cilia formation in F9 cells,

we were able to demonstrate that also in Sey/Sey embryos

less centrioles were connected to primary cilia and less

RGCs were able to form a primary cilia into the ventricle

(Fig. 2). This defect is possibly caused by a mis-localisa-

tion of the centrosome, as shown by Tamai et al. [31],

because of missing anchorage of the basal body to the

plasma membrane. Cilia have a critical role in signal

transduction controlled by SHH and WNT [46, 70, 71], and

cilia malformation in Pax6LOF as shown here, could be

related to at least two of the abnormalities in the Pax6

deficient cortex: enlargement of Wnt3a expression domain

in the E10.5 telencephalic primordium [72] and defective

dorsoventral molecular patterning of forebrain [37–59, 61].

In conclusion, in this report we have shown a new link

between centrosome misbehaviour and TF Pax6. By reg-

ulating directly the expression of Odf2, Pax6 controls
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centriole maturation in apical progenitors and consequently

the re-entry of RGCs in the mitotic cycle.

Materials and methods

Animals

Small eye (allele Sey) Pax6fl/fl and Emx1Ires-Cre were

maintained in a C57BL6/J background. Sey/? male and

female were crossed to produce Sey/Sey mice. ?/?

embryos from the same litter were used as control. CD1

mice were used for in utero electroporation of short hair-

pin constructs and control constructs. For in utero elec-

troporation of Kaede-Centrin1 we used transgenic mice

with a floxed Pax6 allele [50] and the Emx1Cre?/- [51]

mouse lines. We crossed female Pax6fl/fl with male Pax6fl/fl;

Emx1?/- to produce Pax6fl/fl;lEmx1Cre?/- embryos named

Pax6cKO. Pax6fl/fl embryos were used as control. Animals

were handled in accordance with the German Animal Pro-

tection Law and with the permission of the Bezirksregierung

Braunschweig.

In utero electroporation

In utero electroporation was performed using 2.5 lg/ll

endotoxin-free DNA plasmids prepared using EndoFree

Plasmid (Qiagen). An eGFP plasmid was co-injected with

SH3, SH5 or control plasmid at a concentration of 1:1.

E13.5 or E15.5 CD1 mice were anesthetized by intraperi-

toneal injection of Ketamine/Xylazine (100/10 mixture,

0.1 mg per gram body weight). The uterine horns were

carefully exposed through the incision using O-ringed

forceps and humidified gauze pads. Plasmids were injected

with 0.05 % Fast Green (Sigma) into the telecephalic lat-

eral ventricles of embryos using pulled glass capillaries.

Five electrical pulses were applied at 30–35 V using plat-

inum tweezer electrodes (CUY650P3, BEX Co., Ltd.). The

uterine horns were then replaced in the abdominal cavity

and skins were sutured using a surgical needle and thread.

Three days after electroporation, pregnant mice were killed

and embryos were processed for histological analysis.

Photoswitch and culture of Kaede-Centrin1

electroporated brains slides

Brains were electroporated with Kaede-Centrin1 plasmid as

described. After 24 h, mice were killed and embryonic

brains were embedded in 2 % low melting agarose in EBSS

(Gibco) and cut in 400 lm slices with a vibratom. Slices

were cultured on Millicell cell culture inserts (Millipore)

with brain slice culture medium (50 % EBM (Gibco); 25 %

HBSS (Gibco); 5 % FBS; 1 % 1009 N2 supplement (Gib-

co); 1 % 1009 Penicillin/Streptomycin (Gibco); 1 % 1009

Glutamin (Gibco); 0.66 % D-(?)-glucose (Sigma). Before

incubation slides were exposed to UV light (350–400 nm)

for 5 s. After 2 days of incubation in a humidified incubator

(37 �C; 5 % CO2) slides were fixed with 4 % PFA and

embedded in tissue freezing medium (Jung).

Identification of Pax6 binding sites in the Odf2

promoter

To identify potential binding sites within a 2,1-kb region of

the mouse Odf2 promoter we searched for the reported

Pax6 consensus-binding site [73] with MatInspector

software.

Determination of Pax6 DNA binding

Electrophoretic mobility shift assay (EMSA) has been

used. PAX6 proteins were expressed using the TNT

in vitro transcription and translation system (Promega),

according to manufacturer’s instructions. Double-stranded

oligonucleotides were end-labelled using polynucleotide

kinase and c-P32ATP. The binding reaction was performed

for 1 h on ice in binding buffer (25 mM HEPES pH7.4,

10 % glycerol, 75 mM NaCl, 0.25 mM EDTA, 1 mM

DTT, 0.1 % Nonidet P-40, 1 mM MgCl2, protease inhibi-

tor cocktail) containing 0.5 lg poly-dI-dC, double-stranded

oligonucleotides (with radial activity at 35,000 cpm) and

b Fig. 6 Odf2 knock down in developing cortex in vivo causes

premature cell cycle exit. a–a00 Forced expression of individual

Odf2-sh plasmid (SH3/SH5), showing a strong capacity to reduce

Odf2 level in vitro, as demonstrated in (b) or control plasmid together

with GFP-plasmid to mark the electroporated cells was done in E13.5

embryo brains via in utero electroporation and analysis was

performed at E16.5. a IHC with RGC marker Pax6 indicates a severe

diminishing of RGC number (GFP?/Pax6?/yellow, pointed by

arrowheads) upon Odf2 knock down with both SH3 (A0) and SH5

(A00). c Counting indicated that normalized to the control, Odf2 knock

down causes a reduction of the RGC number by approximately 80 %

with SH3 and with 75 % with SH5 (control: 1 ± 0.03; n = 3; SH3:

0.2 ± 0.06; *** = p \ 0.001; p = 0.0005; n = 3; SH5:

0.26 ± 0.05; p = 0.0002; n = 3). The arrow in a shows Pax6

negative cell leaving VZ. d, d0 Overexpression of Odf2 rescues the

Odf2 knock down phenotype in Pax6LOF cortex. Pax6cKO embryos

were electroporated with an Odf2 expression plasmid (d0) or a control

plasmid (d) at E13.5 and analysed at E16.5. e After Odf2 overex-

pression the number of GFP?/Sox2? was almost three times higher

then after control plasmid expression (control: 1 ± 0.07; n = 4; Odf2

over expression: 2.87 ± 0.70; n = 4; * = p\0.05; p = 0.01). f, f0,
g 24 h after the performed in utero electroporation with either SH3

(f0) or control plasmid (f), BrdU pulse labelling for 24 h was done,

and IHC analysis with antibodies for GFP, BrdU and Ki67 was

performed. Red arrows indicate GFP?/BrdU?/Ki67? cells, while red

arrowheads: GFP?/BrdU?/Ki67- cells. g Quantification of the index

for cell cycle exit indicates a premature exit of RGCs from mitotic

cycle after knock down of Odf2 (in the control, dividing RGC:

1 ± 0.05; n = 3; after SH3-Odf2KD: 0.45 ± 0.04; n = 3; ***:

p \ 0.005 (p = 0.00051)
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10 ll of in vitro-translated Pax6 protein. For antibody

supershift analyses, 0.5 ll of Pax6 polyclonal rabbit anti-

body (Covance) was added and samples were incubated for

additional 15 min. Samples were loaded onto 4 % TAE

polyacrylamide gels and electrophoresed at 10 V/cm to

resolve complexes. Gels were dried and processed for

autoradiography.

Chromatin immunoprecipitation (ChIP) assay

Chromatin was extracted from E12.5 cortices. ChIP assays

were performed according to manufacture’s instruction

(Chromatin Immunoprecipitation (ChIP) Assay Kit, Milli-

pore) using polyclonal Pax6 antibodies (rabbit, Covance) to

immunoprecipitate Pax6-binding chromatin fragments,

with pre-immune serum and polyclonal GFP antibodies

(Abcam) as immunoprecipitation controls (10 lg antibody

per immunoprecipitation).

Generation and characterization of Odf2 RNAi vector

Oligonucleotides were selected, synthesized commercially,

and cloned into the pSilencer-2.0 vector (Ambion), which

places shRNA expression under the control of the U6

promoter. In this study 8 Odf2 shRNA plasmids (SH1-8)

and a control plasmid lacking homology with any known

mRNA were used. All shRNA plasmids were co-transfec-

ted with HA-Odf2 into NIH3T3 cells and cultured for

2 days. Western blotting was used to analyse the efficiency

of knockdown by shRNA(s). Therefore NIH3T3 cells were

harvested with 0.25 % Trypsin (GIBCO) and quantified.

Similar amounts of cell lysate were applied on SDS-PAGE

and probed with antibody against HA (rat; 1:500; Roche).

For loading control antibody for b-Actin was used. Two

shRNAs (SH3 and SH5) with the sequence 50-AAGAA

CTCCTCCAGGAGATAC-30 (SH3) and 50-AATAAACA

GCTGAGTCAGAAG-30 (SH5) were found to result in the

most efficient knock down Odf2 expression and were used

in all subsequent experiments.

Tissue preparation

Isolated brains were fixated in 4 % paraformaldehyde in

PBS for 1.5 h (E13.5), 2 h (E15.5) or 2.5 h (E16.5),

respectively, at 4 �C. Tissues were rinsed in PBS and

equilibrated overnight at 25 % sucrose/PBS at 4 �C for

cryoprotection. Then tissue was frozen in Tissue freezing

medium (Jung).

Immunohistochemistry

Brain Sections (16 lm) were blocked for 1 h in blocking

solution (10 % normal goat serum in PBT). Primary

antibodies were incubated over night at 4 �C in blocking

solution. After 3 times washing in PBS, sections were

incubated with secondary antibodies (Invitrogen) for 2 h at

room temperature, washed again and mounted with Vec-

tashild mounting medium (Vector Labs) containing 40,6-

diamidino-2-phenylindole (DAPI). We used the following

primary antibodies/dilutions: ACIII (rabbit; 1:500), BrdU

(rat; 1:200; Abcam), GFP (chicken; 1:500; Abcam), Ki67

(rabbit; 1:100; Vector Labs), Ninein (rabbit; 1:500; Ab-

cam), Odf2 (rabbit; 1:50), Pax6 (rabbit; 1:300; Covance/

mouse; 1:200; DSHB), Sox2 (rabbit; 1:200; Millipore). The

anti-BrdU antibody was visualized after pretreatment of

tissues in 2 N HCl at 37 �C for 30 min.

In situ hybridisation

Non-radioactive in situ hybridisation was carried out on

Cryo-brain-sections (16 lm) according to Muhlfriedel

et al. [74].

Electron microscopy of E15.5 embryonic cortex

Cortex hemispheres of E15.5 WT and Pax6/Small eye

homozygous (Sey/Sey) embryos [20] were dissected and

prepared for Epon embedding. Semi-thin cuttings were

used for trimming. Ultra thin sections were analysed by

transmission electron microscopy.

Cell culture

NIH3T3 cells and HEK-293 cells were maintained and

cultured in DMEM medium plus 10 % FCS. Cells were

transfected using Transfectin (BioRad) according to sup-

plier’s guidelines. For the luciferase assay, cells were

transfected with Odf2-promoter-luciferase construct alone

or together with Pax6 expression plasmid (CMV-Pax6). For

quantitative analysis of Odf2 cells were transfected with

HA-Odf2 together with control plasmid or SH-construct

containing plasmid, respectively.

Luciferase assay

Cells were lysed and assayed for Luciferase activity

according to the assay manufacturer’s instructions

(Promega).

qPCR analysis

Total RNA was extracted from cortex cells by peqGOLD

RNAPureTM and digested with RQ1 DNase. cDNA was

generated from 0.5 lg of total RNA using RevertAidTM H

Minus First Strand cDNA Synthesis Kit (Fermentas) and

oligo(dT)18 primer. Real time PCR was performed on

1806 M. A. Tylkowski et al.
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iCycler IQ PCR System (BioRad) using cloned Odf2 and

Hprt fragments, respectively, as standard fort quantifica-

tion. The specificity of the SYBR Green assay was verified

by melting curve analysis.

Statistical analysis

Results are presented as mean ± standard deviation (SD).

The number of experiments is indicated in the figure leg-

ends. Statistical differences were evaluated using Student’s

t test.
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