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family GH57 attributes are likely to be characteristic of 
α-amylases from the family GH119, too. With regard to 
family GH126, confirmation of the unambiguous presence 
of the α-amylase specificity may need more biochemi-
cal investigation because of an obvious, but unexpected, 
homology with inverting β-glucan-active hydrolases.
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Abbreviations
CAZy	� Carbohydrate-Active enZymes
CBM	� Carbohydrate-binding module
CSR	� Conserved sequence region
GH	� Glycoside hydrolase
SBD	� Starch-binding domain
TIM	� Triose-phosphate isomerase

Introduction

α-Amylase represents the best known and most inten-
sively studied amylolytic enzyme. Amylolytic enzymes are 
enzymes degrading starch and starchy substrates and are 
applied widely in various branches of the food, pharmaceu-
tical, and chemical industries. In a broader sense, the desig-
nation “amylolytic enzymes” has been used for the variety 
of starch hydrolases and related enzymes that are active—
in terms of hydrolysis, transglycosylation, and isomeriza-
tion—towards the α-glucosidic bonds present in starch and 
related poly- and oligo-saccharides.

As our understanding of the details of protein primary 
and tertiary structure of individual amylolytic enzymes 
increased in the last couple of decades, it has become 

Abstract  α-Amylase (EC 3.2.1.1) represents the best 
known amylolytic enzyme. It catalyzes the hydrolysis of 
α-1,4-glucosidic bonds in starch and related α-glucans. In 
general, the α-amylase is an enzyme with a broad substrate 
preference and product specificity. In the sequence-based 
classification system of all carbohydrate-active enzymes, 
it is one of the most frequently occurring glycoside hydro-
lases (GH). α-Amylase is the main representative of family 
GH13, but it is probably also present in the families GH57 
and GH119, and possibly even in GH126. Family GH13, 
known generally as the main α-amylase family, forms clan 
GH-H together with families GH70 and GH77 that, how-
ever, contain no α-amylase. Within the family GH13, the 
α-amylase specificity is currently present in several sub-
families, such as GH13_1, 5, 6, 7, 15, 24, 27, 28, 36, 37, 
and, possibly in a few more that are not yet defined. The 
α-amylases classified in family GH13 employ a reaction 
mechanism giving retention of configuration, share 4–7 
conserved sequence regions (CSRs) and catalytic machin-
ery, and adopt the (β/α)8-barrel catalytic domain. Although 
the family GH57 α-amylases also employ the retaining 
reaction mechanism, they possess their own five CSRs and 
catalytic machinery, and adopt a (β/α)7-barrel fold. These 
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clear that these enzymes, which are very closely related by 
their function on starch, e.g., α-amylase, β-amylase, and 
glucoamylase, are not closely related in terms of struc-
ture and reaction mechanism. It has turned out to be more 
appropriate to base a classification of amylolytic enzymes 
on similarities in their amino acid sequences and three-
dimensional structures, reaction mechanisms, and catalytic 
machineries, all reflecting evolutionary relatedness, than on 
specificity. Such an approach, however, opens the door to 
ideas that enzymes closely related in function will classify 
separately, but also that similar reactions can be catalyzed 
by structurally different and thus evolutionarily unrelated 
proteins.

This appears to be the situation for the α-amylase 
enzymes that are the topic of the present review. The 
main goal is to describe the most recent knowledge of 
α-amylases with regard to the existence of structurally dif-
ferent enzymes apparently possessing the same α-amylase-
type activity. Since the α-amylase is an enzyme with a 
broad substrate preference and product specificity, empha-
sis is also given to subtle but unique structural features dis-
criminating between closely related α-amylases, taking into 
account, for example, their taxonomical origin.

CAZy classification system and α‑amylases

α-Amylases are glycoside hydrolases (GHs) and have 
therefore become a part of the sequence-based classifica-
tion system of enzymes active towards various saccharides. 
This system was first developed some 20 years ago for GHs 
[1] and later updated [2, 3]. Now, the entire system exists 
online (since 1998) for all Carbohydrate-Active enZymes 
(CAZy), as the so-called CAZy database (or CAZy server; 
http://www.cazy.org/) covering: (1) catalytic modules 
involved in degradation, creation, and modification of gly-
cosidic linkages of saccharides; and (2) associated carbo-
hydrate-binding modules (CBM) responsible for adhesion 
to saccharides [4]. The classification of catalytic modules 
includes, in addition to GHs, glycosyl transferases, poly-
saccharide lyases, and carbohydrate esterases.

The CAZy classification system based on comparison 
of amino acid sequences was established in an effort to 
overcome the inability of classical IUB Enzyme Nomen-
clature (for GHs: EC 3.2.1.x) to reflect structural features 
and evolutionary aspects of GHs [1]. Within the CAZy 
system, individual enzymes are classified into sequence-
based families. Currently, more than 130 such families 
(designated with Arabic numerals, e.g., GH13) have been 
created chronologically since 1991. The enzymes (pro-
teins) belonging to the same GH family should, in princi-
ple, exhibit sequence similarities (usually with conserved 
sequence regions; CSRs), share catalytic machinery (the 

same catalytic residues located on corresponding struc-
tural elements), employ the same reaction mechanism 
(either retaining or inverting) and adopt the same type of 
catalytic domain fold [1]. There are two additional levels of 
hierarchical classification in the CAZy database, i.e., clans 
as a higher level and subfamilies as a lower level of hier-
archy [4, 5]. A GH clan groups together families sharing 
catalytic machinery and adopting the same structural fold 
of the catalytic domain, but with significant difference in 
overall sequence. A clan is designated by a letter preceded 
by a dash (e.g., GH-H) attributed in the alphabetical order 
of their appearance, with every GH clan creation being 
based on tertiary structure information [4]. A GH subfam-
ily is a group of members of one family that shares more 
sequence/structural and functional characteristics than 
applicable for the entire family, i.e., a subfamily members 
should share a more recent evolutionary ancestor. Subfami-
lies of a given GH family are designated by a numeral suf-
fix preceded by underscore (e.g., GH13_7). In the scientific 
literature proposals have been made to split various GH 
families into subfamilies, and the α-amylase family GH13 
was the first to have been officially divided in this way, in 
this case into 37 subfamilies, by the CAZy curators [6]. In 
addition to GH13, of all 131 GH families, official subfami-
lies have been defined only for the families GH5 [7] and 
GH30 [8]. Moreover, the entries for the families GH21, 
GH40, GH41, GH60, and GH69 were deleted from the GH 
system (CAZy; [4]).

Currently, the entire CAZy database covers the sequence 
data from more than 2,100 genomes of Bacteria, almost 
150 genomes of Archaea and around 70 of Eukaryotes 
(CAZy; [4]). The encyclopedic project CAZypedia (http:/
/www.cazypedia.org/) was created about 5 years ago and, 
being written and curated by scientists directly involved in 
studying such enzymes, it constitutes a very comprehensive 
and complementary source of information.

α-Amylase (EC 3.2.1.1), the most widely studied amylo-
lytic enzyme, catalyzes the hydrolysis, with retention of 
configuration, of the internal α-1,4-glucosidic bonds in 
starch and related poly- and oligo-saccharides and is an 
endo-acting enzyme [9]. Some exo-acting enzymes can be 
considered as α-amylases, but are not addressed in detail 
here. The α-amylases, however, exhibit quite varied prod-
uct profiles, depending on their origin [10]. In addition to 
the main hydrolytic reaction, many α-amylases are also 
able to catalyze transglycosylation, e.g., those from Asper-
gillus oryzae [11], Alteromonas haloplanktis [12], human 
saliva [13], and human pancreas [14], and even a chimera 
from Bacillus amyloliquefaciens and Bacillus licheniformis 
[15]. Without a serious biochemical characterization, the 
α-amylase specificity should not be ascribed unambigu-
ously to an enzyme displaying simply amylolytic (i.e., a 
starch-hydrolyzing) activity [16]. Any experimental data, 

http://www.cazy.org/
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on the other hand, can now be supported by reliable in sil-
ico analyses of primary structure and predictions.

Currently, the α-amylase enzyme specificity within the 
CAZy database can be found unambiguously in the fami-
lies GH13, GH57 and GH119, moreover it has been sug-
gested to also be present in family GH126 (CAZy; [4, 17]. 
Of these, the family GH13 can be considered to be the 
main α-amylase family first proposed in the CAZy system 
in 1991 [1], with family GH57 as the second and smaller 
α-amylase family established in 1996 [3] and the families 
GH119 and GH126 defined in 2006 and 2011, respectively 
(CAZy; [4]).

α‑Amylase family GH13

α-Amylase family GH13 was established in 1991 when 
the classification of GHs, i.e., the CAZy database [4], was 
first published [1]. At that time, the family GH13 was (due 
to classification criteria) defined as a polyspecific enzyme 
family covering, in addition to α-amylase, enzymes such 
as α-glucosidase, dextran glucosidase, isoamylase, pul-
lulanase, amylopullulanase, neopullulanase, cyclodextrin 
glucanotransferase, and some exo-acting amylases [1]. 
The classification reflected the predictions made previ-
ously that various starch hydrolases and related amylolytic 
enzymes would exhibit mutual sequence similarities and 
share catalytic residues and folds [18–21]. Currently, the 
family GH13 contains approximately 30 different enzyme 
specificities from three EC groups, i.e., hydrolases, trans-
ferases, and isomerases [4, 22], plus non-enzymatic mem-
bers represented by the heavy-chains of heteromeric amino 
acid transporters and 4F2 antigens [23–25]. With regard to 
the number of sequences belonging to GH13, this family 
ranks among the largest in CAZy with more than 13,500 
members in March 2013 (CAZy; [4]) originating predomi-
nantly from Bacteria (~11,500), with fewer from Eukary-
otes (~1,800) and Archaea (~200).

In general, the GH13 α-amylases and other family GH13 
members are three-domain proteins (Fig.  1) consisting of 
the main catalytic (β/α)8-barrel domain (domain A) with 
a small domain B protruding out of the barrel as a longer 
loop between the strand β3 and helix α3 and succeeded at 
the C-terminal end by domain C, adopting an antiparal-
lel β-sandwich fold [10, 26–30]. This domain organiza-
tion was first determined for Taka-amylase A [31], i.e., the 
α-amylase from A. oryzae. The domain of the (β/α)8-barrel 
is composed of eight inner parallel β-strands surrounded 
by eight α-helices and, because it was first recognized in 
the structure of triose-phosphate isomerase (TIM; [32]), it 
is often called the TIM-barrel [33]. Individual GH13 mem-
bers and sometimes all members with a given specific-
ity may contain additional domains on either terminus of 

their polypeptide chain. Although their functions have still 
not been completely understood, such domains are often 
involved in binding starch, glycogen, and other related sac-
charides [34–38]. Typical starch-binding domains (SBDs) 
have also been classified within the CAZy database as the 
so-called CBM families [4] with CBM20 as a representa-
tive of the C-terminal SBD that was first recognized [39–
41]. At present, ten CBM families are considered as SBD 
families: CBM20, CBM21, CBM25, CBM26, CBM34, 
CBM41, CBM45, CBM48, CBM53, and CBM58 [42–45].

History

All the family GH13 members should obey several distinct 
criteria [10, 46]: (1) employing the retaining mechanism of 
α-glycosidic bond cleavage; (2) adopting a (β/α)8-barrel as 
the catalytic domain; (3) exhibiting 4–7 CSRs positioned 
mostly on β-strands of the barrel (Fig. 2); and (4) sharing 
the catalytic machinery, consisting of strand β4-aspartic 
acid (catalytic nucleophile), β5-glutamic acid (proton 
donor), and β7-aspartic acid (transition-state stabilizer)—
here referred to as the catalytic triad. These criteria were 
defined explicitly by [47] in a more stringent version that 
reflected the situation 20  years ago when a much lower 
number of sequences was available.

Throughout family GH13, sequence identity is 
extremely low and only the catalytic triad, i.e., Asp206, 
Glu230, and Asp297 (Taka-amylase A numbering; [31]), 
plus the arginine (Arg204) positioned two residues before 
the catalytic nucleophile (Fig. 2) are conserved invariantly 
[46]. This is, however, not applicable for the non-enzymatic 
GH13 members, that, depending on their taxonomic origin, 
may not contain the catalytic residues [23, 25].

In general, however, most functionally important and 
other conserved residues for any GH13 family member are 
found in the 4–7 CSRs [46] (Fig. 2). The four best known 
regions, i.e., CSRs I, II, III, and IV, were well established 
in 1986 by comparison of 11 α-amylases originating from 
microorganisms, plants and animals [48]. It is worth men-
tioning that the CSRs I, II, and IV were initially proposed 
by Toda et al. [49] who pointed out these regions for Taka-
amylase A and pig pancreatic α-amylase, then by Friedberg 
[50] who added the regions in the B. amyloliquefaciens 
α-amylase and finally by Rogers [51] who completed the 
picture by describing them in the barley α-amylase. The 
three additional regions, i.e., CSRs V, VI, and VII, were 
identified later [52, 53]. The first four CSRs are located at 
or near the C-termini of strands β3, β4, β5 and β7 of the 
catalytic (β/α)8-barrel domain and include the catalytic 
triad. The three additional CSRs, positioned near the C-ter-
minus of domain B and at or near the C-termini of the bar-
rel strands β2 and β8, contain residues that may be used to 
distinguish the GH13 specificities from each other.
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Clan GH‑H

Nowadays, enzymes related structurally to α-amylase are 
represented by the CAZy clan GH-H consisting of three 
families, i.e., the families GH70 and GH77 in addition to 
the main family GH13 [4, 10].

The family GH70 contains glucosyltransferases having 
a circularly permuted version of the α-amylase-type (β/α)8-
barrel catalytic domain, first predicted by MacGregor et al. 
[54] and confirmed by solving the three-dimensional struc-
ture of Lactobacillus reuteri glucansucrase [55] followed 
by the structures of a few closely related enzymes [56–58].

The members of family GH77 are 4-α-glucanotransferases  
with a regular catalytic (β/α)8-barrel, but lacking the 
domain C that follows the barrel in family GH13 [59–61]. 
Moreover, in several GH77 4-α-glucanotransferases from 
Borrelia, the above-mentioned conserved arginine that is 
situated two residues preceding the catalytic nucleophile, 

in CSR II, is substituted by a lysine [62]. This means that, 
when the enzymes of clan GH-H are considered as a whole, 
only the catalytic triad is truly invariantly conserved [63].

Despite the observed differences between the individual 
GH families of clan GH-H, there is no doubt that all the 
members of this clan containing α-amylases (i.e., GH13, 
GH70, and GH77) share a common ancestor [64, 65] and 
may be readily discriminated from the remotely homolo-
gous family GH31 of α-glucosidases [66].

Subfamilies in GH13

The many specificities, large number of sequences, and 
obvious subgroups of enzymes, e.g., the so-called oligo-
1,6-glucosidase and neopullulanase subfamilies [67], sug-
gested the need for further subdivision of GH13. A major 
breakthrough to describe the family members at a lower 
level of hierarchy came in 2006 when GH13 was broken 

(a) (b) (c)

(d) (e) (f)

(g)

Fig. 1   Tertiary structures of representative family GH13 α-amylases. 
The structures from following subfamilies and origins are shown: a 
GH13_1, Aspergillus oryzae (PDB code: 2TAA; [31]); b GH13_5, 
Bacillus licheniformis (PDB code: 1BLI; [249]); c GH13_6, Hor-
deum vulgare—barley isozyme AMY-1 (PDB code: 1P6W; [129]); d 
GH13_37, uncultured bacterium AmyP (modeled structure; residues 
Leu6-Thr491) obtained from the Phyre server [245] based on the Fla-
vobacterium sp. 92 GH13 cyclomaltodextrinase (PDB code: 3EDE; 
[205]) as template; e unclassified, A. haloplanktis (PDB code: 1G94; 
[12]); f unclassified, Halothermothrix orenii AmyB (PDB code: 
3BC9; [70]); g unclassified, Bacteroides thetaiotaomicron (PDB 
code: 3K8L; [38]). The individual domains are colored as follows: 
catalytic (β/α)8-barrel blue, domain B green, domain C red, N-termi-

nal domain cyan; starch-binding domain of CBM58 family magenta. 
The GH13 catalytic triad, i.e., catalytic nucleophile—Asp (top), pro-
ton donor—Glu (left) and transition-state stabilizer—Asp (right)—is 
highlighted in the (β/α)8-barrel domain in each structure in a similar 
position. Saccharide molecules are colored yellow to emphasize: c an 
additional surface binding site as “a pair of sugar tongs” with the side-
chain of tyrosine (in black) involved in binding; e a heptasaccharide 
occupying the subsites from −4 to +3 as a transglycosylation prod-
uct from acarbose (a pseudotetrasaccharide); and g a maltopentaose 
bound by the SBD of the family CBM58 inserted within the domain 
B. The structures were retrieved from the Protein Data Bank (PDB; 
[250]) and visualized with the program WebLabViewerLite (Molecu-
lar Simulations, Inc.)
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up into 35 subfamilies by CAZy curators [6]. This basically 
reflects the idea that there are groups of enzymes in family 
GH13 that exhibit, within such a subfamily, a substantially 
higher degree of similarity in sequence, taxonomy, and/or 
specificity than in family GH13 as a whole. Currently, 37 
subfamilies of GH13 have been defined (CAZy; [4]), but 
several sequences and characterized enzymes are not yet 
assigned to a subfamily [38, 68–71].

Subfamily GH13_1

The subfamily GH13_1 covers the eukaryotic α-amylases 
from fungi and yeast only [6] with no α-amylase of a dif-
ferent taxonomic origin (CAZy; [4]). The number “1” 
for this GH13 subfamily may well reflect the fact that the 
α-amylase from A. oryzae (i.e., Taka-amylase A; [49]) is 
classified here, which was the first α-amylase with its three-
dimensional structure solved (Fig. 1; [31]). Tertiary struc-
tures are available also for two additional closely related 
α-amylases from Aspergillus niger; one being the so-called 
acid-stable α-amylase [72] and the other one exhibiting 
100 % sequence identity to Taka-amylase A [73]. There are 
two additional Taka-amylase A tertiary structures exhibit-
ing an increased thermostability, one with chemically mod-
ified Asp197 [74] and the other as a heavy-atom derivative 
[75].

Although there is no structure as yet for GH13_1 
α-amylase from a yeast (CAZy; [4]), several yeast 
α-amylases were demonstrated to possess SBDs of fami-
lies CBM20, e.g., the enzymes from Cryptococcus sp. S-2 
[76] and Cryptococcus flavus [77], or CBM21, e.g., the 
enzymes from Lipomyces kononenkoae [78] and Lipomyces 
starkeyi [79]. Some show an ability to degrade raw starch 
without a distinct SBD, for example the α-amylase of Sac-
charomycopsis fibuligera KZ [80]. This may reflect the 
presence of surface (i.e., secondary) binding sites, which is 
a general feature of CAZy [81]. Approximately half of the 
known surface binding sites have been found within several 
GH13 subfamilies [82], but they are best known from bar-
ley and other plant α-amylases of subfamily GH13_6 [83]. 
In the subfamily GH13_1, a surface binding site was seen, 
e.g., outside the active site in the A. niger α-amylase struc-
ture [73]. While SBDs may be present also in some fun-
gal α-amylases, e.g., from Aspergillus kawachii [84], it is 
not clear why some of these α-amylases contain an SBD 
whereas others do not [40, 41, 85].

Interestingly, the GH13_1 members exhibit simi-
larities in their CSR VI (strand β2) to cyclodextrin glu-
canotransferases from GH13_2 and in CSR VII (strand 
β8) to α-glucosidases from GH13_31, respectively [46]. 
This relatedness was also seen in the evolutionary tree of 
the entire family GH13 [6], where subfamilies GH13_1 
and GH13_2 are adjacent to each other, and the GH13_31 

α-glucosidases are on the neighboring branch as a part of 
the so-called oligo-1,6-glucosidase subfamily cluster cov-
ering several GH13 enzyme specificities [67]. Structural 
details can be found in various three-dimensional structures 
of the subfamily GH13_2 cyclodextrin glucanotransferases 
[86, 87] and subfamily GH13_31 that contains oligo-
1,6-glucosidases [88, 89], α-glucosidase [90], dextran glu-
cosidases [91, 92], and sucrose isomerases [93–95]. The 
presence of a glutamic acid residue in the position i-3 from 
the transition-state stabilizer, i.e., the invariant aspartic acid 
residue at the strand β7 in CSR IV (Fig.  2) may be con-
sidered as another characteristic sequence feature of most 
subfamily GH13_1 members.

Subfamilies GH13_5 and GH13_28

The subfamilies GH13_5 and GH13_28 include bacterial 
liquefying and saccharifying α-amylases, respectively. Ter-
tiary structures are available for three typical representa-
tives of the liquefying α-amylases of GH13_5, i.e., from  
B. licheniformis (Fig.  1; [96, 97]), Bacillus stearothermo-
philus [98] and B. amyloliquefaciens [99] and one sacchari-
fying α-amylase of GH13_28 from Bacillus subtilis [100]. 
Structures have been determined for additional GH13_5 
α-amylases, e.g., that from Bacillus halmapalus [101], for 
which also secondary (surface) binding sites were observed 
[102], two others from Bacillus strains [103, 104], and 
even an exo-amylase from Bacillus sp. 707 [105], i.e., a 
maltohexaose-producing amylase [106] also classified in 
subfamily GH13_5 (CAZy; [4]). Interestingly, from the 
evolutionary point of view, the unclassified polyextremo-
philic α-amylase AmyB from Halothermothrix orenii [70] 
that possesses an N-terminal domain preceding the canoni-
cal (β/α)8-barrel (Fig.  1), seems to be closely related to 
GH13_5 subfamily enzymes (Fig. 3).

Although the enzymes of these two subfamilies possess 
quite different sequences, e.g., one of the most obvious dif-
ferences is the length and sequence of domain B [23], both 
these α-amylase subfamilies belong to the so-called “amyl-
ase” part in the evolutionary tree of the entire family GH13 
covering subfamilies 5, 6, 7, 15, 24, 27, 28, and 32 [6].

Later, some fungal α-amylases produced intracellu-
larly were added to the subfamily GH13_5 [107]. These 
enzymes in some cases, e.g., from Histoplasma capsula-
tum [108] and Paracoccidioides brasiliensis [109], seem 
to be associated with virulence by their involvement in 
the production of an outer α-(1,3)-glucan layer. Recently, 
this subfamily was increased by addition of a few potential 
α-amylases from Archaea (CAZy; [4]).

In subfamily GH13_28, the presence of the SBD from 
family CBM26 occurring as repeated motifs in α-amylases 
from lactobacilli [110, 111] is of a special interest 
[112, 113]. It should be pointed out that the α-amylases 



1154 Š. Janeček et al.

1 3



1155α-Amylase within the CAZy classification system

1 3

from GH13_5 are closely related to plant and archaeal 
α-amylases from subfamilies GH13_6 and GH13_7 
(Fig. 3), whereas those from GH13_28 are closer to animal 
α-amylases from subfamilies GH13_15 and GH13_24 [80, 
107, 114, 115].

Subfamilies GH13_6 and GH13_7

The subfamilies GH13_6 and GH13_7 represent mainly 
α-amylases from plants and Archaea, respectively, which 
were originally revealed as constituting a group of closely 
related α-amylases [114, 116]. Such a close relatedness 
(Fig. 3) is remarkable not only due to a long taxonomical 
distance between prokaryotic archaebacteria and eukary-
otic plants, but also because of, for example, marked differ-
ences in thermostability of archaeal and plant α-amylases. 
While plant α-amylases do not have exceptional thermo-
stability, the GH13_7 α-amylases are, in general, produced 
by hyperthermophilic archaeons from various strains of 
two genera, Pyrococcus and Thermococcus [117], and 
these enzymes tend to be active and stable at temperatures 
around 80 °C and higher.

The best characterized representatives of the GH13_7 
subfamily are the α-amylases from Thermococcus 
hydrothermalis [118], Thermococcus onnurineus [119], 

Pyrococcus furiosus [120, 121], and Pyrococcus woesei 
[122], for which also the three-dimensional structure has 
already been determined [123]. Recently, a few hypotheti-
cal α-amylases from Bacteria were assigned to the GH13_7 
subfamily (CAZy; [4]) that was for a long period consid-
ered to be solely the archaeal α-amylase subfamily [107, 
114, 115, 124]. All of these hypothetical enzymes originate 
interestingly from flavobacteria.

On the other hand, the subfamily GH13_6 basically cov-
ers higher plant α-amylases and those from green algae, 
but the bacterium Saccharophagus degradans was found 
to contain in its genome a plant-like copy of α-amylase 
in addition to a bacterial one, indicating a horizontal gene 
transfer event [115]. At present, there may be four GH13_6 
α-amylases from Bacteria, the one from S. degradans, 
two from strains of Spirochaeta thermophila and one from 
Stigmatella aurantiaca (CAZy; [4]). With regard to the 
best characterized plant α-amylases, these are the two bar-
ley isozymes AMY1, a low pI isozyme [125] and AMY2, 
a high pI isozyme [126], with solved three-dimensional 
structures (Fig.  1) determined both in free forms and as 
complexes [127–130]. α-Amylases from other higher 
plants, such as wheat [131], rice [132], maize [133], kid-
ney bean [134], apple [135], Arabidopsis thaliana [136], 
banana [137], and others are also included in GH13_6 
(CAZy; [4]). Interestingly, the plant α-amylases belong to 
the GH13 α-amylases having the shortest polypeptide chain 
(Fig. 2).

Surface binding sites were observed among the repre-
sentatives of both subfamilies. In addition to four such sites 
seen in the structure of the archaeal GH13_7 α-amylase 
from P. woesei [123], the surface binding sites have been 
best studied in two barley α-amylase isozymes [129, 130, 
138–140], especially the one located in domain C of the 
low pI isozyme AMY1 called “a pair of sugar tongs” [129] 
that shows no equivalent binding in the counterpart high pI 
isozyme AMY2 [141].

Both GH13_6 and GH13_7 subfamilies were originally 
revealed as two closely related groups positioned in the 
evolutionary tree on adjacent branches [114]. More recent 
studies have indicated [107, 115, 142, 143], however, that 
these two together with the subfamily GH13_5 belong to 
one evolutionary cluster of α-amylases (Fig. 3), both when 
the phylogenetic tree is based on the alignment of CSRs 
only and when a substantial part of amino acid sequences, 
typically the catalytic domain, are included in the calcu-
lation (e.g., Fig. 2). This applies even in the evolutionary 
tree of the entire family GH13 in the so-called “amylase” 
part [6]. The subfamilies GH13_6 and GH13_7 share 
several unique sequence features that discriminate them 
from the α-amylases in the remaining GH13 subfamilies 
[114]. One of the most notable features may be the Gly202  
(T. hydrothermalis α-amylase numbering; [118]) at the end 

Fig. 2   Amino acid sequence alignment of GH13 α-amylases repre-
senting the individual α-amylase subfamilies. The aligned sequences 
span the typical GH13 α-amylase’s domain arrangement consisting of 
catalytic (β/α)8-barrel with domain B (inserted between the strand β3 
and helix α3) and domain C (succeeding the TIM-barrel). The name 
of an enzyme is composed of the GH13 subfamily number (“xx” for 
the recently described α-amylase from Bacillus aquimaris and “??” 
for α-amylases from A. haloplanktis, Bacteroides thetaiotaomicron, 
and Halothermothrix orenii AmyB that currently are still not assigned 
any GH13 subfamily in CAZy) followed by the abbreviation of the 
source (organism) and the UniProt accession number. Note there are 
two α-amylases from Halothermothrix orenii, the AmyA assigned to 
subfamily GH13_36 (UniProt Q8GPL8) and the AmyB not assigned 
as yet to any GH13 subfamily (UniProt B2CCC1). The organisms 
are abbreviated as follows: Aspor, Aspergillus oryzae; Bacli, Bacillus 
licheniformis; Horvu, Hordeum vulgare; Pycwo, Pyrococcus woesei; 
Tenmo, Tenebrio molitor; Sussc, Sus scrofa (pancreas); Aerhy, Aer-
omonas hydrophila; Bacsu, Bacillus subtilis; Stmli, Streptomyces 
limosus; Hator, Halothermothrix orenii; Uncba, uncultured bacte-
rium; Bacaq, Bacillus aquimaris; Altha, A. haloplanktis; and Bctth, 
Bacteroides thetaiotaomicron. The seven CSRs typical for the fam-
ily GH13 [46] and the catalytic triad are highlighted in yellow and 
blue, respectively. The residues conserved invariantly are marked by 
an asterisk below the alignment. The individual α-amylase family 
GH13 domains are indicated as a colored lane above the alignment: 
blue catalytic domain A, green domain B, red C-terminal domain C. 
The positions corresponding to the deleted SBD of the family CBM58 
in ??_Bctth_Q8A1G3 (SusG α-amylase) are signified by a magenta 
lane. All sequences were retrieved from the UniProt knowledge data-
base [251]. The sequence alignments were done using the program 
Clustal-W2 [252] and then manually tuned in order to maximize 
sequence similarities

◂



1156 Š. Janeček et al.

1 3

of the CSR II at the strand β4 of the catalytic (β/α)8-barrel 
(Fig.  2) the carbonyl group of which serves as a specific 
ligand for the calcium ion in the complex structure of bar-
ley α-amylase (high pI isozyme AMY2) with acarbose 
[128] and could play the same role in the archaeal counter-
part, i.e., the P. woesei α-amylase [123].

Subfamilies GH13_15, GH13_24 and GH13_32

The α-amylase subfamilies GH13_15, GH13_24 and 
GH13_32 represent mainly the α-amylases from insects, ani-
mals (including mammals) and Actinobacteria, respectively. 
Their mutual relatedness (Fig. 3) was revealed in 1994 [53] 
and confirmed in many subsequent studies [107, 115, 142–
144] including the comparison made when the entire family 
GH13 was officially divided into subfamilies [6].

A special case is represented by the α-amylase from the 
Antarctic psychrophile A. haloplanktis [145] that was dem-
onstrated to exhibit close similarity to animal α-amylases 
[53, 115, 146], but up to now has not been assigned to any 
GH13 subfamily (CAZy; [4]). Its three-dimensional struc-
ture is available [68, 69] and based on structural studies 
[12] this α-amylase was also found to perform a transgly-
cosylation reaction (Fig. 1e). Together with related animal 

α-amylases (Fig. 3) it belongs to a group of the so-called 
chloride-activated α-amylases [147, 148] and is a useful 
model for comparative studies [149].

Among insects, the α-amylases belong to the subfam-
ily GH13_15, and the α-amylases from a model organ-
ism Drosophila melanogaster [150] and related fruit flies 
have been the subject of many evolutionarily oriented 
studies [151–153]. The tertiary structure is available for 
the α-amylase from a yellow meal worm Tenebrio molitor 
[154, 155].

In the subfamily GH13_24, covering animals from, for 
example, molluscs [156, 157] and arthropods [158] to ver-
tebrates (i.e., frogs, fishes, birds, and mammals including 
human beings; [159]), the best known representatives with 
tertiary structures available are pig pancreatic α-amylase 
[160–163] plus those from human saliva [164] and pan-
creas [165]. Recently the structure of the α-amylase of the 
fish Oryzias latipes was solved [166]. The surface binding 
sites were also well recognized in tertiary structures of sev-
eral subfamily GH13_24 members, e.g., in the α-amylases 
from pig pancreas [163, 167–169] and both human saliva 
[13] and pancreas [170].

The third subfamily GH13_32 interestingly contains 
bacterial α-amylases mostly from actinomycetes. Some of 

(a) (b)

Fig. 3   Evolutionary trees of GH13 α-amylases representing the 
individual α-amylase subfamilies. The trees are based on the align-
ment of: a catalytic (β/α)8-barrel including domain B with succeed-
ing domain C (653 positions; aligned in Fig. 2); and b seven GH13 
characteristic CSRs (52 residues; highlighted in Fig. 2). The names of 

the α-amylases are explained in the legend to Fig. 2. The evolutionary 
trees were calculated as a Phylip-tree type using the neighbor-joining 
clustering [253] and the bootstrapping procedure [254] (the number 
of bootstrap trials used was 1,000) implemented in the ClustalX pack-
age [252], and then displayed with the program TreeView [255]
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these amylases may exhibit a maltotriohydrolase specific-
ity (EC 3.2.1.116), e.g., those from Thermobifida fusca 
[171] and Brachybacterium sp. [172], both belonging to 
Actinobacteria. Such α-amylases from Actinobacteria are 
often called “animal-type” α-amylases [115]. In this sub-
family, the halophilic α-amylase from Kocuria varians has 
been described recently [173] as possessing, C-terminal to 
the catalytic domain, two tandem copies of an SBD of the 
family CBM25 [174, 175]. A similar domain arrangement 
was found previously in the α-amylase from Bacillus sp. 
No. 195 [176] that also belongs to the subfamily GH13_32 
(CAZy; [4]). Typical GH13_32 α-amylases from strepto-
mycetes [177, 178] may also contain an SBD, usually of 
the family CBM20 [41] at their C-terminus. A very recent 
evolutionary study has identified the subfamily GH13_32 
type of α-amylase in basidiomycetes of fungi, i.e., Eucarya 
[179] and the authors, in agreement with another study 
[180], concluded that the gene donor may have originated 
from Actinobacteria.

Subfamily GH13_27

The subfamily GH13_27 covers a small group (~50 
sequences) of bacterial α-amylases (Fig.  3) recognized as 
homologous before the CAZy classification was estab-
lished [181]. In most studies [53, 80, 115] this subfamily 
is usually represented by two experimentally characterized 
α-amylases from Aeromonas hydrophila [182] and Xan-
thomonas campestris [181]. Although no three-dimensional 
structure is available for any GH13_27 α-amylase, there is 
no doubt—based on sequence comparison—these enzymes 
are typical 3-domain GH13 α-amylases (i.e., without addi-
tional domains such as SBDs). In addition to the two rep-
resentatives from A. hydrophila and X. campestris, two 
α-amylases from Pseudomonas sp. KFCC 10818 have been 
cloned, expressed, sequenced, and characterized [183, 184].

Subfamily GH13_36

The subfamily GH13_36 seems to contain a group of 
α-amylases possessing related GH13 enzyme specificities 
[185]. This subfamily was originally defined as the group 
of amylolytic enzymes with an “intermediary” position in 
the evolutionary tree between the polyspecific subfamilies 
of oligo-1,6-glucosidase and neopullulanase [67]. That pro-
posal was mainly based on a specific sequence in the CSR 
V—typically QPDLN and MPKLN for oligo-1,6-glucosi-
dases and neopullulanases, respectively, the “intermediary” 
group being characterized by MPDLN (Fig. 2). Nowadays, 
the oligo-1,6-glucosidase and neopullulanase subfami-
lies cover several CAZy-curated GH13 subfamilies [6]. 
The “intermediary” group was, however, assigned to the 
subfamily GH13_36 only recently (CAZy; [4]). Only 11 

GH13_36 members have been biochemically characterized 
to any extent, although in some cases, these enzymes were 
described just as an “amylase” [185], e.g., the enzymes 
from Dictyoglomus thermophilum AmyC [186] and Bacil-
lus megaterium [187]. The activity towards α-1,6-branched 
glucans together with a transferase ability were, however, 
demonstrated for the amylolytic enzyme from B. mega-
terium [188, 189] as well as for the periplasmic one from  
X. campestris [190]. Furthermore, the GH13_36 “amyl-
ase” from Paenibacillus polymyxa was able to release pan-
ose from pullulan [191, 192], the one from Bacillus clarkii 
exhibited predominating activity toward γ-cyclodextrins 
[193] and the lipoprotein amylase from Anaerobranca 
gottschalkii showed both cyclodextrin-hydrolyzing and 
transglycosylating activities [194]. No additional activ-
ity was observed for the other lipoprotein α-amylase from 
Thermotoga maritima [195] or for the halothermophilic 
α-amylase from H. orenii [196], for which the three-dimen-
sional structure is available as the only representative of the 
subfamily GH13_36 [197].

Recently established subfamily GH13_37

The subfamily GH13_37 is the most recently established 
α-amylase subfamily in CAZy (CAZy; [4]). It was created 
based on isolation and phylogenetic analysis of a novel 
α-amylase designated AmyP from a marine metagenomic 
library [198]. The enzyme was later shown to exhibit the 
ability to degrade raw starch [199]. Currently this subfamily 
contains, in addition to the AmyP, <20 hypothetical mem-
bers that come mostly from marine bacteria (CAZy; [4]). 
These α-amylases are most closely related to maltohexaose-
producing amylases from the subfamily GH13_19 [198]. 
If only α-amylases are considered, however, the subfam-
ily GH13_37 members share the branch of the evolution-
ary tree with those from the subfamily GH13_36 (Fig. 3). 
Of special interest is the fact that they may lack domain B 
(Fig. 1) since the loop connecting the strand β3 to helix α3 
of their catalytic (β/α)8-barrel seems to be too short (i.e., 
<25 residues; Fig. 2) to form a domain B typical of the fam-
ily GH13. The situation will be clearer when the announced 
three-dimensional structure of the novel α-amylase AmyP 
[200] will be solved and described in detail.

As yet non‑defined GH13 subfamily

An additional GH13 α-amylase subfamily that may be 
defined in CAZy in the near future could be based on the 
α-amylase BaqA from Bacillus aquimaris described very 
recently by Puspasari et  al. [71]. The fact that the source 
is again a marine bacterium and the enzyme is also a raw 
starch-degrading α-amylase [201] deserves attention. 
However, this new group of α-amylases seems to be most 
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closely related to those from subfamily GH13_1, especially 
if only the GH13 characteristic CSRs I–VII are considered 
(Fig. 3). The α-amylases from GH13_37, together with the 
above-mentioned GH13_36 intermediary α-amylases and 
the GH13_19 maltohexaose-producing amylases, were 
found to occupy the adjacent cluster in the evolutionary 
tree [71]. The exclusive sequence feature of this newly pro-
posed GH13 α-amylase subfamily is the presence of two 
consecutive tryptophans (Trp201 and Trp202, B. aquima-
ris α-amylase numbering), located at helix α3 (Fig. 2) pre-
ceding strand β4 (i.e., the CSR II) of the catalytic (β/α)8-
barrel domain, that may indicate a surface binding site 
[71]. The same feature is present in α-amylase homologues 
from Geobacillus thermoleovorans [202] and Anoxybacil-
lus sp. SK3–4 and sp. DT3–1 [203]. The recently solved 
three-dimensional structure of the G. thermoleovorans 
α-amylase has shown [204] that the above-mentioned 
tryptophan pair is positioned in a region with additional 
aromatic residues exhibiting a structural resemblance to 
the neopullulanase subfamily GH13_20, especially to the 
cyclomaltodextrinase from Flavobacterium sp. 92 [205]. In 
the latter enzyme the aromatic region interacts with domain 
N, which is not present in α-amylases. Moreover, the sec-
ond tryptophan of the exclusive tryptophan pair (W205, G. 
thermoleovorans α-amylase numbering) is not exposed to 
the solvent but buried [204]. Further, it was pointed out that 
the G. thermoleovorans α-amylase resembles in structure, 
not only GH13_1 and GH13_20 enzymes but also some 
from the GH13_2 subfamily [204] that contains cyclodex-
trin glucanotransferases [6].

Notably there is another interesting and yet unclassi-
fied α-amylase with three-dimensional structure already 
solved—the SusG protein from Bacteroides thetaio-
taomicron [38]. It is related to subfamilies GH13_36 and 
GH13_37 and, in a wider sense also to the currently unclas-
sified group represented by marine B. aquimaris α-amylase 
mentioned above (Fig. 3). The α-amylase SusG is encoded 
by a member of the sus (starch utilization system) locus of 
the human gut symbiont B. thetaiotaomicron [206–208] 
and represents the only GH13 α-amylase with an SBD 
inserted in domain B (Fig.  1); in this particular case the 
SBD is of family CBM58 [38].

Family GH57

A new family, GH57, containing α-amylases was cre-
ated in 1996 [3] after long efforts to find the family GH13 
sequence features in two supposed “α-amylases”, one from 
the thermophilic bacterium D. thermophilum [209] and 
the other from the hyperthermophilic archaeon P. furiosus 
[210]. Even after the family GH57 was established, the 
possibility of a relationship between the two families GH13 

and GH57 was not definitively eliminated, although it had 
proved impossible to align convincingly the two above-
mentioned GH57 enzymes with representatives of GH13 
α-amylases [211]. The first GH57 crystal structure, how-
ever, solved for the 4-α-glucanotransferase from Thermo-
coccus litoralis in 2003, unambiguously confirmed that the 
GH57 family cannot belong to the GH-H clan [212].

Nowadays the family GH57 represents a second and 
smaller α-amylase family [213]. It contains ~900 members 

Fig. 4   a Evolutionary tree showing the α-amylase representative 
of the family GH57 among the other GH57 enzyme specificities 
together with the α-amylase representative of the family GH119. The 
tree is based on the alignment of the five GH57 characteristic CSRs 
(36 residues). The name of an enzyme is composed of the GH57 or 
GH119 family number followed by the abbreviation of specific-
ity (in capitals), abbreviation of source (organism) and the UniProt 
accession number. All sequences were retrieved from the UniProt 
knowledge database [251]. The specificities are abbreviated as fol-
lows: AAMY α-amylase, PAMY putative α-amylase-like protein, 
MGA maltogenic amylase, AMY unspecified amylase, APU amy-
lopullulanase, APU-CMD amylopullulanase-cyclomaltodextrinase, 
BE branching enzyme, BE-AAMY α-amylase-branching enzyme, 
4AGT 4-α-glucanotransferase, AGAL α-galactosidase. The organ-
isms are abbreviated as follows: Bacci, Bacillus circulans; Bccth, 
Bacteroides thetaiotaomicron; Mccja, Methanocaldococcus jan-
naschii; Pycfu, Pyrococcus furiosus; Sttma, Staphylothermus mari-
nus; Thchy, Thermococcus hydrothermalis; Thcko, Thermococcus 
kodakaraensis; Thcli, Thermococcus litoralis; Thtma, Thermotoga 
maritima; Uncba, uncultured bacterium. The evolutionary tree was 
calculated as a Phylip-tree type using the neighbor-joining cluster-
ing [253] and the bootstrapping procedure [254] (the number of 
bootstrap trials used was 1,000) implemented in the ClustalX pack-
age [252], and then displayed with the program TreeView [255]. b 
Structural models of α-amylases from families GH57 and GH119. 
Left superimposed modeled structures of the GH57 Methanocaldo-
coccus jannaschii α-amylase (blue) and GH119 Bacillus circulans 
α-amylase (magenta). The α-helical bundle succeeding the catalytic 
(β/α)7-barrel was modeled only in the GH57 α-amylase. The rectan-
gle indicates a detailed view on the right. Right a close-up focused 
on predicted catalytic residues of the α-amylases from GH57 (Glu145 
and Asp237) and GH119 (Glu231 and Asp373). Both models were 
superimposed with the real structure of GH57 Thermococcus lito-
ralis 4-α-glucanotransferase (PDB code: 1K1Y; [212]; not shown). 
The structural models of α-amylases were obtained from the Phyre 
server [245] based on the GH57 4-α-glucanotransferase template as 
follows: residues Met1-Tyr356 of the GH57 α-amylase [216] and 
Thr121-Asp429 of the GH119 α-amylase [242]. The superimposed 
part covers 218 Cα-atoms with a 0.75 Å root-mean square deviation; 
the superimposition was done using the MultiProt server [256]. Acar-
bose-occupying subsites −1 through +3 [257] from the complex with 
GH57 4-α-glucanotransferase structure [212] is shown. The struc-
tures were visualized with the program WebLabViewerLite (Molecu-
lar Simulations, Inc.). c Sequence logos of α-amylases from families 
GH57 from Archaea and Bacteria and GH119. CSR-1, residues 1–5; 
CSR-2, residues 6–11; CSR-3, residues 12–17; CSR-4, residues 18–
27; CSR-5, residues 28–36. Asterisks signify the catalytic nucleophile 
(glutamic acid) in position 15 (in CSR-3) and proton donor (aspartic 
acid) in position 20 (in CSR-4). The logos are based on identifying 
the CSRs in both families [217, 242] as follows: for 59 α-amylase 
sequences (47 from Archaea and nine from Bacteria) from family 
GH57 and for six bacterial GH119 α-amylases. Sequence logos were 
created using the WebLogo 3.0 server [258]

▸
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all originating from prokaryotes with the approximate 
Archaea:Bacteria ratio 3:1 and, like the main α-amylase 
family GH13, the family GH57 is a polyspecific family 
(Fig.  4a; CAZy; [4]). Interestingly, the two fundamen-
tal family members, which were originally considered 
to be α-amylases [209, 210], now are both recognized as 

4-α-glucanotransferases: the enzyme from D. thermo-
philum was re-evaluated as a glucanotransferase in 2004 
[214], whereas a transferase activity for the one from  
P. furiosus was identified immediately [215]. There are five 
well-established enzyme specificities in the family GH57 
[216, 217], i.e., α-amylase [218], 4-α-glucanotransferase 

(a)

(b)

(c)
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[209, 210, 219–221], amylopullulanase [222–225], branch-
ing enzyme [226–228], and even α-galactosidase [229]. 
Noticeably, two additional amylolytic specificities in the 
family GH57 may be defined by two partially character-
ized GH57 members: the PF0870 open reading frame from 
the P. furiosus genome [230] and a non-specified amylase 
of an uncultured bacterium isolated from a hydrothermal 
vent in the Atlantic Ocean [231]. Recently, a GH57 enzyme 
was described possessing dual specificity: the amylopul-
lulanase from the archaeon Staphylothermus marinus also 
exhibits cyclomaltodextrinase activity [232]. Dual specific-
ity may also be found for the AmyC enzyme from T. mar-
itima, described originally as an α-amylase [226], but its 
sequence-structural features clearly indicate it may have 
also branching enzyme activity [217].

Although family GH57 shares the retaining reaction 
mechanism with the main α-amylase family GH13 [87, 
228], a (β/α)7-barrel (i.e., an incomplete TIM barrel) is 
adopted as the fold bearing the catalytic residues [212, 228, 
233–235]. Any GH57 member can be characterized by five 
CSRs—identified originally by Zona et al. [236] and refined 
recently by Blesak and Janecek [217]—that are clearly dif-
ferent from those characteristic for family GH13 [46]. The 
catalytic machinery also discriminates the families GH57 
and GH13 from each other, because a glutamic acid at 
strand β4 (Glu123 in T. litoralis 4-α-glucanotransferase) 
and aspartic acid at strand β7 (Asp214) of the (β/α)7-barrel 
act as the catalytic nucleophile and proton donor, respec-
tively [212, 228]. Remarkably, in GH57 enzymes, there is 
no third catalytic amino acid residue like the transition-
state stabilizer necessary in family GH13 [10, 87, 237]. The 
(β/α)7-barrel domain is succeeded in every GH57 member 
by a helical segment consisting of a bundle of 3–4 α-helices 
[216, 217]. Since the CSR-5 positioned in this α-helical 
bundle was revealed to contain functionally essential resi-
dues [228], it was proposed that both the barrel and the hel-
ical bundle together form the catalytic area of enzymes in 
the family GH57 [217].

α‑Amylase and its putative homologues

It should be pointed out that although the family GH57 is 
considered to be an α-amylase family, the true α-amylase 
(EC 3.2.1.1) enzyme specificity has still not been confirmed 
unambiguously. The only evidence comes from the study 
by Kim et al. [218] who showed that the α-amylase from 
the methanogenic archaeon Methanococcus jannaschii 
degrades soluble starch. The uncertainty concerning the 
exact specificity has arisen from the fact the α-amylase was 
also able to degrade pullulan at a relative rate of 82 % of 
that determined for starch [218, 238]. Thus the potential 
α-amylase, identified first as a hypothetical MJ1611 open 
reading frame in the M. jannaschii genome [239], is the 

leading family GH57 member warranting the “α-amylase” 
designation [240].

What is, however, more interesting is the observation 
that family GH57 contains members, i.e., the so-called 
α-amylase-like proteins, exhibiting clear sequence features 
of the α-amylase from M. jannaschii, but simultaneously 
lacking one or both catalytic residues [216]. With regard to 
their origin, GH57 α-amylases come predominantly from 
Archaea (~80 %), whereas the GH57 α-amylase-like pro-
teins originate mostly from Bacteria (~85 %). Both of these 
groups contain proteins approximately 500 amino acid resi-
dues long that exhibit a high degree of sequence identity to 
each other, especially in the CSRs that have been suggested 
to be sequence fingerprints of the individual family GH57 
enzyme specificities [217]. The most substantial difference 
discriminating the α-amylases and α-amylase-like proteins 
of family GH57 from each other is the presence of both 
characteristic catalytic residues in α-amylases (Fig.  4b) 
and the lack of one or both of these residues in their homo-
logues [216]. The catalytic nucleophile located at the strand 
β4 of the catalytic (β/α)7-barrel in CSR-3 (Glu145 in M. 
jannaschii α-amylase) and proton donor at the strand β7 
in CSR-4 (Asp237) are most frequently substituted by a 
serine and glutamic acid, respectively, in amylase-like pro-
teins that are found mainly in two genera Bacteroides and 
Prevotella, both from the order Bacteroidales of Bacteria.

The family GH57 enzymes with specificities of amylop-
ullulanase, branching enzyme and 4-α-glucanotransferase 
contain some sequence-structural segments at their C-ter-
mini additional to catalytic (β/α)7-barrel with succeed-
ing three-helix bundle [212, 228, 234, 235], while both 
α-amylases and α-amylase-like proteins seem to be com-
posed of only the barrel and helical bundle [217]. A similar 
two-domain arrangement is also found in α-galactosidases, 
but the domain covering the α-helical region in α-amylases 
seems usually to be ~50–100 residues longer than that pre-
sent in the α-galactosidases [217]. With regard to the N-ter-
minus, there is probably no signal peptide in α-amylases 
and α-amylase-like proteins since the CSR-1 is almost 
exclusively located very close to the N-terminus [216] and 
no information is available on a signal peptide for the only 
characterized α-amylase from M. jannaschii [218].

The unique sequence features that discriminate both 
α-amylases and α-amylase-like proteins from the remain-
ing family GH57 enzyme specificities as well as from each 
other are seen in their CSRs and best represented by their 
sequence logos. They were suggested to define the so-
called sequence fingerprints of a given enzyme specificity 
[217]. Based on a detailed bioinformatics analysis of 367 
sequences resulting in creating the sequence logos for five 
GH57 enzyme specificities, the positions 1, 12, 13, 21, 27, 
and 35–36 were revealed to be specifically characteristic 
for α-amylase as follows (Fig. 4c): (1) positions 1 (CSR-1) 



1161α-Amylase within the CAZy classification system

1 3

and 12 (CSR-3) contain mostly glutamic acid or glutamine 
and arginine or glutamic acid, respectively, with all four 
remaining well-established GH57 specificities being char-
acterized by a histidine and tryptophan in the correspond-
ing positions; (2) positions 13 (CSR-3) and 21 (CSR-4) are 
exclusively occupied by invariant asparagine and tyrosine, 
respectively, the other specificities possessing different 
residues there and not so strictly conserved; (3) the posi-
tion 27 (CSR-4) is an invariant histidine, but this position 
is not so unique for α-amylases since a corresponding 
histidine can also be found in amylopullulanases; and (4) 
positions 35–36 at the end of logo (CSR-5) consist of two 
adjacent tyrosines and may represent the most unambigu-
ous GH57 α-amylase feature because a tyrosine residue has 
not been seen at these positions in any GH57 sequences 
ascribed to a specificity other than that of α-amylase. It 
should be emphasized here that these last two positions in 
a GH57 sequence logo (positions 35–36; CSR-5) represent 
a sequence fingerprint that most reliably distinguishes the 
individual enzyme specificities from each other [217].

Sequence logos reveal also specific differences between 
α-amylases and their α-amylase-like protein counterparts 
[216]. For example: (1) the invariant proline in position 5 
(the end of CSR-1) in α-amylases is often substituted by an 
isoleucine in bacterial α-amylase-like proteins; (2) the posi-
tion 7 (CSR-2) is frequently occupied by a cysteine if either 
of the two, i.e., an α-amylase and/or an α-amylase-like pro-
tein, originates from Bacteria (for the α-amylase-like pro-
teins from the genus Bacteroides, there are two adjacent 
cysteines in the CSR-2); (3) highly specific for α-amylases 
is the presence of three aromatic residues in positions 18, 
21 and 24 (CSR-4), whereas only the position 18 may 
be considered as aromatic one in the α-amylase-like pro-
teins; and (4) the last three positions (34–36; CSR-5) of 
the α-amylase sequence logo are mostly aromatic residues, 
too, the middle position 35 being replaced by an arginine 
in the α-amylase-like proteins. These specific differences 
between the enzymatically active α-amylases and their 
most probably inactive α-amylase-like counterparts from 
the family GH57 are, however, still smaller than the dif-
ferences between the α-amylases and the other well-estab-
lished enzymes specificities within GH57, as indicated by 
the evolutionary tree (Fig. 4a).

Family GH119

The family GH119 was established in 2006 following 
the study by Watanabe et  al. [241] who described a novel 
α-amylase as a product of the gene IgtZ from Bacillus circu-
lans AM7 and found no obvious sequence similarity to any 
α-amylase from either family GH13 or GH57. The speci-
ficity of α-amylase was ascribed to the IgtZ protein based 

on production of glucose and maltooligosaccharides up to 
maltopentaose from maltooligosaccharides longer than 
four glucose units, amylose and soluble starch [241]. The 
α-amylase IgtZ also contains SBDs of families CBM20 (1 
copy) and CBM25 (2 copies). The family GH119 may thus 
be considered as the third CAZy α-amylase family, but it 
is worth mentioning that currently, i.e., 7 years after it was 
created in the CAZy database, the family is still very small 
since only five hypothetical bacterial proteins obtained 
from genome sequencing projects have been added to the 
α-amylase IgtZ described originally (CAZy; [4]). Until 
recently, when a close relatedness of the family GH119 to 
GH57 was revealed (Fig. 4b; [242]), information on family 
GH119 concerning sequence-structural details (e.g., cata-
lytic machinery and fold) was, in fact, lacking [243].

A relatedness to the family GH57

Based on a detailed in silico analysis that involved com-
parison of amino acid sequences of all family GH119 
members (CAZy; [4]) in combination with the BLAST tool 
[244] and tertiary structure modeling at the Phyre-2 [245] 
and SwissModel [246] servers, an unambiguous evolu-
tionary relatedness was revealed between families GH119 
and GH57 [242]. The five CSRs characteristic of the fam-
ily GH57 [217, 236] were identified in the sequences of 
all six GH119 members. It was thus possible to predict the 
GH119 catalytic residues, i.e., Glu231 and Asp373 in the 
sequence of the α-amylase IgtZ from B. circulans, which 
are conserved invariantly in GH119 (Fig. 4c). This predic-
tion is further supported by three-dimensional structure 
modeling indicating that the family GH119 shares with the 
family GH57 both the catalytic (β/α)7-barrel fold and cat-
alytic machinery (a glutamic acid as the catalytic nucleo-
phile and an aspartic acid as the proton donor at the strands 
β4 and β7 of the barrel; Fig. 4b). Despite the clear similar-
ity, the family GH119 retains its own identity in the evolu-
tionary tree common for both families (Fig. 4a) reflecting 
its characteristic sequence features also in the CSRs [242]. 
As suggested, the creation of a novel CAZy GH clan of 
families GH57 and GH119 is thus highly probable but this 
needs to be confirmed by solving the tertiary structure and 
identifying experimentally the catalytic residues in a family 
GH119 representative [242].

Family GH126

The last CAZy GH family supposedly containing the speci-
ficity of α-amylase is the family GH126, created on the 
basis of a report by Ficko-Blean et al. [17]. They assessed 
the CPF_2247 protein product from the Clostridium per-
fringens ATCC 13124 genome as an α-amylase since the 
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enzyme showed activity on maltooligosaccharides, amyl-
ose and glycogen, but no attempt was made to show that 
anomeric configuration is conserved. Remarkably, although 
the CPF_2247 defines its own family GH126, which cur-
rently also contains approximately 60 hypothetical proteins 
from Bacteria (CAZy; [4]), it exhibits ~20  % sequence 
identity to endo-β-1,4-glucanases from the family GH8 
[17]. Moreover, the CPF_2247 is structurally most closely 
related to GH8 endoglucanase CelA [247] and GH48 cello-
biohydrolase CelS [248] both from Clostridium thermocel-
lum. These two families form together the clan GH-M 
(CAZy; [4]). The enzymes from the clan GH-M employ, 
however, an inverting mechanism of glucosidic bond cleav-
age and the CPF_2247 “α-amylase” seems to share with 
them, in addition to a catalytic (α/α)6-barrel fold, its cata-
lytic nucleophile (Glu84) plus a few other invariantly con-
served and functionally important residues (Fig.  5; [17]). 
These facts are not consistent with the general definition of 
α-amylase enzyme specificity [9, 87] employing the retain-
ing mechanism, that has been confirmed by crystal struc-
tures of various α-amylases from family GH13 [11, 12, 14, 
73, 100, 101, 123, 128, 130, 148, 162] and representatives 
from family GH57 [212, 228].

Despite these apparent inconsistencies, monitoring 
the depolymerization of various polysaccharides by the 
CPF_2247 using thin-layer chromatography revealed clear 
activity on amylose and glycogen (with production of a 
mixture of maltooligosaccharides from maltose to malto-
heptaose), but no activity on pullulan and cellulose [17]. 
Furthermore, reaction products from the series of malto-
triose to maltoheptaose tested by high-performance anion 
exchange chromatography showed that maltopentaose is 
the minimal oligosaccharide substrate for CPF_2247, from 
which the enzyme removes a single glucose residue [17]. 
This means that, as well as the difficulty of understanding 
how an α-amylase could share the catalytic mechanism 
with inverting β-glucanases, there is also some uncer-
tainty concerning the endo/exo fashion of action of this 
remarkable GH126 amylolytic enzyme CPF_2247 from C. 
perfringens.

Conclusions

As documented in the present review, α-amylase ranks 
among the most frequently occurring CAZy. It is likely 

(a) (b)

Fig. 5   Structure of the “α-amylase” of family GH126. a GH126 
structure of the α-amylase from Clostridium perfringens (PDB code: 
3REN; [17]) showing the (α/α)6-barrel with highlighted residues 
(colored by element) involved in catalysis: Glu84 (general acid), 
Asp136 (general base), and Tyr194 (contributing to catalysis). b 
Superimposition of Clostridium perfringens GH126 α-amylase (blue) 
with Clostridium thermocellum GH8 endoglucanase CelA (red PDB 
code: 1KWF; [247]). The superimposed part covers 193 Cα-atoms 
with a 1.93  Å root-mean square deviation; the superimposition was 
done using the MultiProt server [256]. The detailed view focuses on 
the catalytic residues in the structure of GH8 endoglucanase CelA 

(Glu95 and Asp278 with Tyr215) and the proposed residues in the 
GH126 α-amylase (Glu84 and Asp136 with Tyr194). Cellopenta-
ose occupying subsites −3 through +2 [257] in complex with GH8 
endoglucanase CelA is shown. A comparison with the family GH15 
glucoamylase, i.e., an α-glucan-active enzyme with (α/α)6-barrel 
catalytic fold employing the inverting mechanism [259], reveals less 
similarity since the superimposed part between the GH126 α-amylase 
and Aspergillus niger GH15 glucoamylase [260] covered only 146 
Cα-atoms with a 1.97  Å root-mean square deviation. The structures 
were retrieved from the PDB [250] and visualized with the program 
WebLabViewerLite (Molecular Simulations, Inc.)
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that α-amylases are present in families GH57 and GH119, 
and possibly even in GH126, but α-amylase is considered 
the main representative of family GH13—known gener-
ally as the main α-amylase family. This GH family forms 
a clan together with families GH70 and GH77, but in the 
latter two, no α-amylase specificity has been found. Within 
the family GH13, however, the α-amylases define several 
GH13 subfamilies, the members of which exhibit closer 
sequence-structural similarities than observed for the fam-
ily as a whole. Nevertheless, despite more than 13,500 
sequences classified currently in the family GH13, all the 
members share 4–7 CSRs, the α-amylase-type of (β/α)8-
barrel catalytic domain, catalytic machinery, and retaining 
reaction mechanism. The α-amylase classified in family 
GH57 employs the same retaining mechanism as GH13 
α-amylase. All the family GH57 members differ, however, 
from those of family GH13 in that they possess their own 
five CSRs and adopt a (β/α)7-barrel fold (i.e., an incomplete 
TIM-barrel) bearing catalytic machinery different from that 
used in the family GH13. All of these GH57 characteristics 
are likely to be shared by family GH119, which is the third 
GH family containing α-amylase specificity. The last GH 
family that has been indicated to contain the specificity of 
an α-amylase, i.e., the family GH126, is of special interest 
and the situation may be clarified when further biochemi-
cal characterization and structure determination have been 
carried out, since proteins of the family GH126 exhibit an 
unambiguous homology to β-glucan-active hydrolases of 
families GH8 and GH48 that employ an inverting reaction 
mechanism.

Future discoveries relating to α-amylases may show 
wider, but related, specificities and new structures, giv-
ing new families within the CAZy system, but thorough 
biochemical characterization and structure determination 
is required before new and surprising conclusions can be 
accepted.
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