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small-molecule secondary metabolites as well as small pro-
teins and peptides with a broad spectrum of activities against 
pathogens. The number of identified peptides now exceeds 
1,700 and is continually increasing [1]. Although they often 
possess common attributes such as small size, an overall 
positive charge and amphipathicity, they fall into a num-
ber of diverse and distinct groups. These include α-helical 
peptides, β-sheet peptides, those with mixed α-helical and 
β-sheet structures, extended peptides and peptides enriched 
in specific amino acids. Whereas the antibacterial activities 
of a number of peptides have been described in detail, less is 
known about their antifungal effects, which will be the main 
focus of this review. Gene encoded peptides are of particular 
interest as the genes can be cloned and expressed recom-
binantly for pharmaceutical applications or employed in the 
generation of transgenic plants for agricultural applications. 
This review focuses on antifungal peptides with activity in 
the low micromolar range whose mechanism of action has 
been investigated.

Bacteria and viruses generally get more public attention 
than fungi because they spread rapidly and have drastic  
effects on human health and well-being but a number of 
fungal species are also serious pathogens [2, 3]. Advances 
in medicine, particularly the treatment of HIV/AIDS and  
cancer and the increased success rates in organ transplanta-
tion, has led to an increase in the number of people with 
compromised immune systems. These people are highly 
susceptible to fungal infection. The fourth most common 
cause of nosocomial infection is now the major human fun-
gal pathogen Candida albicans [4]. Mortality rates associ-
ated with systemic fungal infection are close to 50 %, with 
rates reaching 100  % for some fungal pathogens in the 
developing world [5]. Antifungal treatments that are cur-
rently employed in the clinic are being rendered insufficient 
due to issues with toxic side effects, poor efficacy, and the 
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tides were originally proposed to act via membrane permea-
bilization, the mechanism of antifungal activity for these 
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Introduction

Innate immune systems have evolved in all kingdoms 
of eukaryotes to protect against infection by bacteria, 
viruses, and eukaryotic pathogens such as fungi and para-
sites. The components of these immune systems consist of 
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development of resistance in pathogens. These factors all 
contribute to the need to investigate the potential use of 
innate immunity peptides as novel therapeutics for main-
tenance of human health. Other fungal species, particularly 
filamentous fungi, are pathogenic to plant species and cause 
crop losses of major economic significance each year [3, 6].  
Expression of certain antifungal proteins in transgenic 
plants has increased resistance to disease [7–9]. For these 
reasons, the development of novel antifungal molecules is 
of great interest for both human and plant protection. An 
understanding of the mechanisms of action of naturally 
occurring antifungal peptides will be essential in achieving 
these goals.

Fungal cell architecture

The cell wall

Fungal cells differ from other eukaryotic cells in many ways. 
The cell wall acts as a protective barrier, limiting the access 
of molecules to the plasma membrane, as well as being 
involved in cell adhesion, pathogenesis, and cell signaling 
[10]. Yeast and filamentous fungi share similar cell wall 
architecture (Fig.  1). The chitin layer sits adjacent to the 
plasma membrane and, while it is the least abundant cell wall 
constituent (2–10 %), its crystalline structure plays a large 
role in cell wall stability [11]. The β-glucan network con-
sists largely of (1 → 3)-β-glucans with (1 → 6)-β-branches. 
However, in yeast, (1  →  6)-β-glucans are also present  
[11, 12]. This network represents 50–60 % of the cell wall 
by weight [13]. The outermost layer of the cell wall is com-
prised of glycosylated proteins and constitutes between 20 

and 60 % of cell wall mass [11, 13]. Glycosylated proteins 
on the yeast cell surface are decorated by mannose residues 
while those in filamentous fungi can also include galactose, 
glucose, and uronic acids [13]. A large degree of intermo-
lecular disulfide bridging also occurs between proteins in 
the outer layer. These disulfide linkages, as well as the car-
bohydrate moieties extending from these proteins, play a 
major role in limiting the porosity of the wall [14]. Apart 
from being cross-linked to each other, cell wall proteins are 
also covalently linked to the β-glucan network in two ways. 
The first involves a GPI-anchor that links the protein to the 
(1 → 3)-β-glucan via a (1 → 6)-β-glucosidic linkage. These 
proteins are trafficked to the plasma membrane before part 
of the GPI-anchor is removed and the β-glucan is attached 
[15]. The second linkage involves direct attachment of the 
protein to the (1 → 3)-β-glucan via an alkali-sensitive bond 
[16].

Plasma membrane composition

Plasma membranes are composed of three main lipids: 
phospholipids, sphingolipids, and sterols. The plasma mem-
branes of mammalian cells typically include zwitterionic 
phospholipids such as phosphatidylcholine, in contrast to 
bacteria and fungi, which are richer in anionic phospho-
lipids. This difference in lipid composition is proposed to 
contribute to the selectivity of some antimicrobial peptides 
[17]. In bacteria, the common anionic lipids are phosphati-
dylglycerol and cardiolipin, whereas phosphatidylserine 
and phosphatidylinositol are more common in fungal mem-
branes [18]. The plasma membranes of eukaryotic cells also 
contain sterols. In animal cells, this is generally cholesterol, 
while lower eukaryotes, including fungi, contain ergosterol 

Fig. 1   Fungal cell wall compo-
sition. Schematic representation 
of the fungal cell wall showing 
the outer layer of glycosylated 
proteins (green) with the linked 
carbohydrate residues (red 
circles), the (1–3)-β-glucan 
network (dark blue) with 
(1–6)-β-glucosidic linkages 
(light blue), and the chitin layer 
(yellow) that lies adjacent to the 
plasma membrane of the cell 
(purple)
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[19]. This difference in sterol content is exploited in the 
mechanisms of antifungal drugs including amphotericin B 
and the azoles [20, 21].

Sterols and sphingolipids are often associated in “lipid 
rafts” with GPI-anchored proteins [22]. Disruption of either 
ergosterol or sphingolipid synthesis prevents raft formation 
in yeast and also impairs delivery of GPI-anchored pro-
teins to the cell membrane [23]. Since cell wall proteins are 
also trafficked via a GPI anchor, it is likely that delivery of 
these proteins is also affected by disruption of lipid rafts. 
Sphingolipids are potentially specific targets for antifun-
gal molecules due to structural differences between fungal, 
plant, and mammalian sphingolipids such as 9-methyl group 
branching of the sphingoid base and different degrees of 
unsaturation in fungal sphingolipids [24].

Antimicrobial peptides

The survival of all higher organisms is dependent upon their 
ability to protect themselves from attack by pathogens. In 
many instances, this involves the production of a myriad 
of antimicrobial peptides. The main focus for discovery of 
antimicrobial peptides has long been restricted to those with 
antibacterial activity. As such, antibacterial peptides are 
the best characterized. Relatively little is known about the 
mechanism of action of antifungal peptides. Table 1 lists the 
antifungal peptides described in this review. Some of these 
peptides act specifically against fungi, while others have 
broader activity. Figure 2 summarizes the range of mecha-
nisms of action that have been described for these peptides.

Antifungal peptides from plants

Due to the constant threat of attack from fungal patho-
gens and their lack of an adaptive immune response, plants 
express a large number of antifungal proteins for protection 
against fungal disease. These proteins either play a role in 
the plant’s constitutive immunity or can be induced upon 
attack by pathogens. The inducible, pathogen-related (PR) 
proteins are generally expressed not only at the site of infec-
tion but also systemically. Seventeen families of PR proteins 
have been described to date. Many of these are enzymes 
including (1 →  3)-β-glucanases (PR-2), chitinases (PR-3, 
-4, -8 and -11), proteinases (PR-7) peroxidases (PR-9), and 
oxalate oxidases (PR-16 and -17). Their activities are rela-
tively well understood and have been reviewed previously so 
they will not be discussed in detail here [see review by 18].  
An ever-increasing number of small, disulfide-rich proteins 
also exist including thaumatin-like proteins, thionins, lipid 
transfer proteins (LTP), plant defensins, hevein- and knot-
tin-type proteins, Ib-AMPs and snakins. Some members 
of these families have been classified into PR groups such 
as defensins (PR-12), thionins (PR-13), and LTPs (PR-14) 

[25]. Since only pathogen-induced proteins can be placed 
in these groups, many family members are excluded so this 
nomenclature will not be used here.

Thaumatin-like proteins

Thaumatin, from the African shrub Thaumatococcus daniellii,  
is a 22-kDa extremely sweet tasting protein that displays 
antifungal activity. Similar thaumatin-like (TL) proteins 
with antifungal activity have been isolated from other plant 
species including tobacco, maize, barley, winter wheat, 
and black nightshade [26–30]. The structures of several of 
these proteins have been solved [31–34] and they display 
a conserved fold consisting of three domains. Domain I is 
an 11-strand flattened β-sandwich that forms the core of 
the molecule, from which a number of disulfide-stabilized 
loops extend (domains II and III, Fig. 3a) [31]. Another con-
served feature is the presence of a cleft between domains I 
and II. This cleft has an overall basic charge in thaumatin 
but is acidic in the other family members [26, 28, 32]. This 
cleft is believed to be involved in binding of the TL pro-
tein osmotin, from Nicotiana tabacum, to fungal cell wall 
components including β-1,3 glucans [28, 32, 35]. Some TL 
proteins also exhibit glucanase activity [36].

Osmotin is the best characterized TL protein. It is pro-
duced in response to osmotic stress and accumulates to high 
concentrations in the vacuole. It is growth inhibitory toward 
a number of fungi but does not retain the sweet-tasting char-
acteristic of thaumatin [29]. Osmotin, along with zeamatin, 
another TL protein from maize, permeabilizes the mem-
branes of susceptible fungi such as Fusarium oxysporum 
[30, 37]. It is unlikely that this results from direct interac-
tion of the protein with the membrane because TL pro-
teins do not exhibit any of the structural characteristics of 
membrane permeabilizing peptides such as amphipathicity. 
However, permeabilization by zeamatin occurs readily at 
4 °C, indicating that involvement of an enzymatic activity 
in the antifungal mechanism is unlikely [30]. Zeamatin is 
known to inhibit α-amylase and trypsin [38] but such inhibi-
tory activities has not been linked to antifungal activity or 
membrane permeabilization. In contrast, a flax seed TL pro-
tein permeabilizes artificial liposomes [39], which suggests 
direct peptide–lipid interaction. TL proteins demonstrate 
variable activity against a spectrum of fungal species, even 
among different strains of the same species. This specificity 
is predicted to result, in part, from differences in the fungal 
cell wall. S. cerevisiae, for example, is resistant to osmo-
tin and this resistance has been attributed to the presence 
of three Pir proteins (Pir 1–3) in the cell wall [40]. Disrup-
tion of the gene responsible for targeting of these proteins to 
the cell wall (SSD1) renders the yeast sensitive to osmotin 
[41]. Furthermore, the expression of one of these S. cerevi-
siae Pir proteins in the osmotin sensitive fungus Fusarium 
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oxysporum leads to osmotin resistance [42]. While the pres-
ence of Pir proteins leads to osmotin resistance, other cell 
wall proteins, in particular the carbohydrate moieties on 
these proteins, are required for osmotin sensitivity [43]. Dis-
ruption of the enzymes (mannosyltransferase) responsible 
for the transfer of phosphomannans to glycosylated proteins 
leads to a decrease in osmotin sensitivity [43]. This is postu-
lated to result from the decrease in negative charges on the 
cell surface and the associated decrease in binding of the 
positively charged osmotin.

Another interesting feature of osmotin is its ability to 
induce kinase signaling cascades. Osmotin activates the 

pheromone-response MAP kinase signal pathway in S. cere-
visiae, leading to modifications in the cell wall that increase 
the susceptibility of the cell to the protein [44]. It also acti-
vates a RAS2/cAMP stress response pathway that induces 
apoptosis. This activation is mediated through a G-protein 
coupled receptor (GPCR)-like integral membrane protein 
[45]. This involvement of proteins on the plasma membrane 
demonstrates that antifungal molecules may have more than 
one distinct target on a single fungal species. Taken together, 
these observations suggest that the mode of action of osmotin  
is complex, and does not simply involve permeabilization 
of membranes as once thought. Synergistic activity between 

Table 1   Naturally occurring antifungal peptides

Peptide Source Structural class Target(s)

Thaumatin-like proteins Plants β-sheets Filamentous fungi, yeast

Thionins Plants Mixed αβ Filamentous fungi, yeast, bacteria, 
mammalian cells

Plant defensins Plants Cysteine-stabilized αβ motif Filamentous fungi, yeast

Lipid transfer proteins Plants α-helical bundle Filamentous fungi, bacteria

IbAMPs Plants β-hairpin Filamentous fungi, less active  
against yeast

Snakins Plants Not reported Filamentous fungi, bacteria

Hevein-type peptides Plants Mixed αβ Filamentous fungi, yeast, bacteria

Knottin-type peptides Plants β-sheet (cystein-knot) Filamentous fungi, some Gram 
positive bacteria

2S albumin peptides Plants α-helical Filamentous fungi

Hairpinins Plants α-helical Filamentous fungi

Histatins Humans α-helical Yeast

Cathelicidins Mammals Variable Bacteria, yeast, less active against 
filamentous fungi

Mammalian defensins Mammals Mixed αβ Yeast

Lactoferrin-derived Mammals Variety of structures Bacteria, yeast, filamentous fungi

Temporins Insects α-helical Bacteria, yeast, filamentous fungi

Brevinin Insects Mixed αβ Yeast, bacteria

Insect defensins Insects Cysteine-stabilized αβ  
motif

Filamentous fungi, yeast, some 
active against bacteria

Thanatin Insects β-hairpin Filamentous fungi, bacteria

Glycine-rich peptides Insects Not reported Yeast

Cecropins Insects α-helical Filamentous fungi, bacteria

Spinigerin Insects α-helical Filamentous fungi, yeast, bacteria

Insect knottin-type peptides Insects β-sheet (cystein-knot) Yeast

Penaeidins Shrimp α-helical, random coil Filamentous fungi, Gram positive 
bacteria

Hemocyanin-derived peptides Shrimp Not reported Filamentous fungi

Crab β-hairpin peptides Crab β-hairpin Yeast, bacteria

Tachystatins Crab β-sheet (cystein-knot) Yeast, bacteria

Big defensin Crab Mixed αβ Yeast, bacteria

Cenchritis muricatus peptides Mollusk α-helical Filamentous fungi, yeast

Gomesin Spiders β-hairpin Filamentous fungi, yeast

Yeast killer toxins Yeast Mixed Yeast

Peptides from filamentous fungi Fungi β-sheet (barrel-like) Filamentous fungi
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TL proteins suggests that they act on different fungal tar-
gets. For example, when induced to express in grape vines, 
osmotin and TL protein display synergistic antifungal activ-
ity towards Uncinula necator and Phomopsis viticola in 
infected leaves and berries [46]. Constitutive expression 
of the rice TL protein in banana plants leads to increased 
resistance to wilt caused by F. oxysporum sp. Cubensec [47] 
demonstrating the utility of small antifungal peptides from 
this class in agricultural biotechnology.

Cysteine-rich peptides

Thionins

The antimicrobial activity of thionins was recorded long 
before they were isolated from plant tissue. In the late 19th 

century, brewers noticed that barley seeds contained a sub-
stance that was toxic to yeast. In 1942, this substance was 
isolated and named purothionin [48]. A number of thionins 
have since been purified from various plant species and tis-
sues. They are small proteins (~5 kDa) that are stabilized by 
three to four disulfide bonds. They generally carry an overall 
positive charge of seven or ten depending on which group 
they belong to (groups I–III). One group (group IV), car-
ries no charge [49]. Despite a high degree of sequence vari-
ability, thionins share a common structural fold (Fig. 3b). 
The structure can be represented by the Greek capital letter 
Γ (gamma), with two α-helices forming the long arm and 
two β-strands forming the short arm [49]. A groove between 
these two regions contains the five amino acids that are most 
highly conserved between family members. One amino acid 
in this region, tyrosine 13, is fully conserved among all 

Fig. 2   Mechanisms of action of 
antifungal peptides. Schematic 
representation of the various 
mechanisms of action pro-
posed for antifungal peptides 
described in this review

Fig. 3   Plant antifungal protein structures. a Thaumatin-like pro-
tein-domain I is the 11-stranded flattened β-sandwich from which 
domain II and III extend. b Thionin-Г (gamma) shaped fold with two 
α-helices forming the long arm and two β-strands forming the short 

arm. c Lipid transfer protein-bundle of four α-helices joined by loop 
regions. d Hevein type protein-three strand antiparallel β-sheet with 
α-helices on either side
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toxic thionins and iodination of this residue leads to a loss 
in activity [49].

Thionins display a broad range of toxicity against  
bacterial, fungal, mammalian, and insect cells. This lack of 
specificity and the ability of thionins to permeabilize the 
membranes of target cells [50, 51] implies a direct interac-
tion of thionins with lipids. In support of this, thionins are 
known to bind to lipids during protein extraction and the 
addition of phospholipids inhibits their antimicrobial effects 
[48]. The membrane permeabilizing activity appears to 
occur via a specific interaction with anionic phospholipids 
at the conserved cleft that results in solubilization of these 
lipids and extraction from the membrane [52, 53]. Mem-
brane permeabilization by thionins is inhibited by mono and 
di-valent cations, a property which is likely to restrict the 
utility of thionins as antimicrobial agents unless variants can 
be generated with decreased sensitivity to cations [54].

Plant defensins

Plant defensins are small, cysteine-rich proteins (45–54 
amino acids) that have been isolated from many plant 
species and tissues [55]. A variety of functions have been 

attributed to plant defensins. While many have antifungal 
activity, plant defensins have also been described with func-
tions in antibacterial activity, zinc tolerance, and blocking 
of ion channels [reviewed in 56], as well as inhibition of 
protein translation machinery, α-amylases and proteases 
[57–60]. Plant defensins with antifungal activity have 
shown promise for use in both agricultural and therapeutic 
settings. Potatoes expressing the alfalfa defensin (MsDef1, 
previously known as alfAFP) showed significant resistance 
against the fungal pathogen Verticillium dahlia in the field 
compared to non-transformed controls [61]. Expression of a 
Dahlia defensin (DmAMP1) in rice was sufficient to provide 
protection against two major rice pathogens, Magnaporthe 
oryzae and Rhizoctonia solani [62]. In addition, treatment 
with the radish defensin, RsAFP2 led to protection against 
Candidiasis in a mouse model [63]. A review of the use of 
plant defensins to engineer fungal resistance of crops can 
be found in [64] including a table of fungal pathogens for 
which resistance has been generated through expression of 
transgenic defensin.

The structures of many defensins have been solved. They 
display a common fold consisting of a triple-stranded, anti-
parallel β-sheet connected to an α-helix by three disulfide 

Fig. 4   Sequence alignment and structural comparison of plant defensins. 
a Sequence alignment of a variety of plant defensins. The eight con-
served cysteines that form the four characteristic disulfide bonds (with 
the extra disulfide in PhD1 as a dotted red line) are highlighted as are the 

conserved glycine residues. b The conserved cysteine stabilized αβ (CS 
αβ) fold consisting of a triple-stranded, anti-parallel β-sheet connected to 
an α-helix by three disulfide bonds. Beta-strands are represented in cyan, 
random coils and turns are in white, and disulfide bonds are in yellow
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bonds forming a cysteine-stabilized αβ motif (CSαβ, 
Fig. 4b). A fourth disulfide joins the N- and C-termini creat-
ing an extremely stable protein [65–69]. Despite this com-
mon fold, the level of sequence identity between defensins 
is very low (Fig. 4a). The eight cysteine residues are invari-
ant, and the two glycine residues (positions 13 and 34), an 
aromatic residue (position 11) and a glutamate (position 29) 
are highly conserved (numbering relative to RsAFP2) [70]. 
Two defensins have also been isolated that contain a fifth 
disulfide bond [71]. These conserved residues are thought 
to maintain the structural confirmation of the core defensin 
fold while variation in the reactive surface loops is the root 
of the variable specificity with respect to target species and 
the diversity of functions carried out by plant defensins [60].

Observations to date on the activity of various plant 
defensins suggest that while those with similar sequences 
may act via similar mechanisms, those with a low level of 
sequence identity are likely to act via differing mechanisms. 
A plant defensin from radish (RsAFP2) and one from dahlia 
(DmAMP1) cause Ca2+ influx and K+ efflux in Neuros-
pora crassa hyphae as well as alkalinization of the growth 
media [72]. The sequence identity between RsAFP2 and 
DmAMP1 is 50 % as calculated using the BLASTp suite-2 
sequences (NCBI). Alkalinization initiated by RsAFP2 
is inhibited by G-protein inhibitors, but the alkalinization 
caused by DmAMP1 is not [72]. This suggests that these 
defensins may induce similar responses via different mech-
anisms. The presence of high-affinity binding sites for plant 
defensins on target cells [73, 74] has led to the suggestion 
that these peptides may undergo receptor-mediated insertion 
into membranes [74]. This is consistent with the observation 
that both RsAFP2 and DmAMP1 permeabilize fungal mem-
branes [75] but not artificial bilayers [72, 76].

Sphingolipids have been reported as binding sites for 
both RsAFP2 and DmAMP1. Disruption of the biosynthetic 
pathway for the sphingolipid mannosediinositolphosphoryl-
ceramide (M(IP)2C) in S. cerevisiae results in resistance 
to DmAMP1 [74]. DmAMP1 binds to purified M(IP)2C 
and this binding is enhanced in the presence of ergosterol 
[77]. RsAFP2 binds to glucosylceramide (GlcCer), another 
sphingolipid in P. pastoris and C. albicans; [78]. Strains that 
do not contain this lipid are resistant to RsAFP2-induced 
permeabilization and growth inhibition but are suscepti-
ble to DmAMP1, confirming that RsAFP2 and DmAMP1 
bind to different lipid receptors. Interestingly, an RsAFP2  
variant (Y38G) that lacks antifungal activity still binds to 
GlcCer [78]. Also, RsAFP2 is unable to permeabilize arti-
ficial liposomes containing GlcCer indicating that bind-
ing alone is not sufficient for membrane permeabilization. 
RsAFP2 does not bind to human or soybean GlcCer and this 
may determine the protein’s spectrum of activity. Treatment 
of C. albicans with RsAFP2 leads to generation of reactive 
oxygen species (ROS) [76] and induction of programmed 

cell death [79]. The defensin from Heuchera sanguinea also 
induces ROS and programmed cell death but does not rely 
on an interaction with sphingolipids and is hypothesized to 
interact with another, yet to be identified, membrane com-
ponent [80]. Screening of a C. albicans deletion collection 
revealed a role for genes with functions in cell wall integrity 
and hyphal growth/septin ring formation in RsAFP2 tol-
erance [81]. This work continued to provide evidence for 
interaction between the defensin and glucosylceramides in 
the cell wall. RsAFP2 induced morphological changes in 
the cell wall and altered septum formation leading to activa-
tion of the cell wall integrity pathway [81].

Like RsAFP2, MsDef1, a defensin from Medicago sativa, 
is unable to inhibit the growth of F. graminearum variants 
lacking GlcCer [82] suggesting a commonality in the mech-
anism involving GlcCer binding. However, while MsDef1 
interacts with, and blocks mammalian L-type calcium chan-
nels, RsAFP2 does not [83]. This indicates overlapping 
but different mechanisms of action for these two peptides. 
MsDef1 activates two of the three MAP kinase signaling 
cascades present in Fusarium graminearum (Gpmk1 and 
Mgv1) and deletions of genes in these pathways leads to 
increased sensitivity of the fungus to MsDef1, RsAFP2, and 
MtDef2 (from Medicago truncatula) [84]. Interestingly, a 
second M. truncatula defensin, MtDef4, does not activate 
these pathways and does not display enhanced activity 
toward the deletion mutants. This indicates that signaling 
cascades are involved in mediating adaptive resistance to 
some but not all plant defensins, for example, through cell 
wall modifications.

Some plant defensins enter fungal cells and interact with 
intracellular targets. NaD1, a defensin expressed at high lev-
els in the floral tissue of Nicotiana alata, interacts with the 
fungal cell wall and permeabilizes the plasma membrane 
before traversing into the cytoplasm [85]. Interaction with 
the cell wall is critical for activity and the kinetics of perme-
abilization differ significantly to that of other AMPs that act 
through membrane permeabilization [86]. Permeabilization 
is also saturable, suggesting that interaction with a receptor 
may be involved. Whether interaction with specific intracel-
lular targets is also required for activity is as yet unknown. 
PsD1 (from Pisum sativum) localizes to the nucleus of 
treated N. crassa cells, interacts with a cell cycle control 
protein, cyclin F, and halts the cell cycle [87]. Overall, the 
studies carried out to date indicate the sequence divergence 
of plant defensins may be indicative of abundant, variable 
mechanisms of antifungal activity.

Lipid transfer proteins

Lipid transfer proteins (LTPs) are slightly larger than thion-
ins and defensins (~10 kDa) and contain four disulfide bonds. 
Members of this family share an overall sequence identity 
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of about 30 %, including the eight cysteine residues. While 
LTPs were originally identified for their ability to transfer 
lipids from mitochondria to artificial liposomes [88], their 
function as intracellular lipid traffickers is unlikely, as they 
are not present in the cytosol and are targeted to the cell wall 
[89]. Furthermore, an LTP from onion seeds (AceAMP1) is 
unable to transfer phospholipids from liposomes to mito-
chondria, indicating not all LTPs function in the same man-
ner [90]. The structure of LTPs consists of a bundle of four 
α-helices joined by loop regions [91] (Fig.  3C). The four 
α-helices form a hydrophobic pocket that can accommodate 
a fatty-acyl chain.

Antifungal and antibacterial activities have been 
reported for a number of LTPs, including AceAMP1 [91]. 
As yet, the mechanism of antifungal activity of LTPs is not 
well understood, although a recent study into the activity of 
Ha-AP10 from Helianthus annuus reveals that it permeabi-
lizes fungal spores as well as artificial liposomes composed 
of the anionic lipid phosphatidylglycerol but not the zwit-
terionic lipid phosphatidylcholine [92]. The mechanism 
behind this permeabilization and whether it is representa-
tive of the activity of other LTPs is still unknown. Lipid 
transfer proteins isolated from Coffea canephora and Cap-
sicum annuum have also been shown to inhibit mammalian 
α-amylases [93, 94]

Ib-AMPs

Four small (20-mer) peptides have been isolated from the 
seeds of Impatiens balsamina (Ib-AMP1-4). They are the 
smallest antifungal peptides identified in plants, and are 
produced through processing of a single polypeptide pre-
cursor [95]. The structure of Ib-AMP1 has been solved by 
NMR and reveals a well-defined loop structure stabilized by 
two disulfide bonds [96]. The peptides inhibit the growth of 
bacteria and fungi, and are 2–20 times more active against 
filamentous fungi than single-celled yeast [97]. This selec-
tivity may be explained by binding of IbAMP1 to chitin. 
Filamentous fungi have about five times more chitin than 
yeast and it is likely that the higher concentration of chi-
tin on the surface of filamentous fungi increases the bind-
ing of Ib-AMP to the cell. The peptides bind to the hyphal 
walls and are not thought to act via pore formation because 
they do not significantly disrupt artificial liposomes [98]. 
IbAMP1 enters the cytoplasm of C. albicans cells [97] but 
the mechanism of this internalization and its role in growth 
inhibition is not understood. Variants containing all d-amino 
acids are just as active as the native peptide [97], suggest-
ing that interaction with a specific receptor is not required 
for activity. In addition, linear analogues of IbAMP1 have 
improved activity against Staphylococcus aureus, probably 
due to their enhanced ability to depolarize the plasma mem-
brane [99].

Snakins

Snakins are 63–66 amino acid peptides (~7 kDa) that were 
first isolated from potatoes [100]. Homologous cDNAs 
have been obtained from many other plant species [101]. 
All snakins have 12 conserved cysteine residues and six 
disulfide bonds [100]. Snakin-1 (SN-1) is expressed consti-
tutively in the outer layers of the potato tuber, stems, axillary 
buds, and flower petals. Expression of the SN-1 gene is not 
induced by activation of hormone-induced stress response 
pathways as exposure to methyl jasmonate, ethylene, absci-
sic acid, salicylic acid, isonicotinic acid, or indolacetic did 
not result in induction of SN-1 mRNA and challenge by 
bacterial and fungal pathogens also failed to induce expres-
sion of the SN-1 gene in potato leaves [100]. The activity of 
SN-1 varies against different fungal species and, while SN-1 
exhibits synergy with potato tuber defensin (PTH1) against 
some fungal strains, the combined effect is merely additive 
against other species [100]. This indicates that combina-
tions of antimicrobial peptides can work together against 
pathogens and that the mechanism of activity of a single 
antifungal molecule may vary against different pathogens. 
Snakin-2 (SN-2) is also basally expressed in potato tissue 
and exhibits only 38 % amino acid sequence identity with 
SN-1. However, SN-2 is induced upon wounding and in 
response to pathogen infection [101]. Interestingly, despite 
their high level of sequence variation, SN-1 and SN-2 dis-
play very similar activity spectra [101]. Snakins are not pre-
dicted to act via membrane permeabilization and have no 
effect on artificial liposomes [100].

Hevein-type peptides

Hevein, a protein from the rubber tree, and related peptides 
range in size from 30 to 43 amino acids and contain three 
to five disulfide bonds. Their structure consists of a triple-
stranded, antiparallel β-sheet with α-helices on either side 
(Fig.  3d) [102]. Generally, hevein-type peptides exhibit 
chitin-binding properties and consequently were thought to 
inhibit fungal growth by interfering with cell wall biosyn-
thesis [103]. However, hevein-type peptides from Pharbi-
tis nil (Pn-AMP1) and Eucommia ulmoides (EAFP2) have 
recently been demonstrated to have activity against fungal 
species lacking chitin [102, 104]. Pn-AMP1 does not enter 
fungal hyphae but it does cause actin depolarization leading 
to growth arrest [104]. As reported for osmotin, the sensitiv-
ity of cells to Pn-AMP1 is mediated by a mannosyltrans-
ferase indicating cell wall binding to carbohydrate moieties 
may be essential [104]. Hevein-type peptides from wasabi 
(WjAMP-1), cycad (Cy-AMP1) and spindle tree (Ee-CBP) 
are also active against bacteria [105–107]. Interestingly, 
Cy-AMP1 requires its chitin-binding activity for antifun-
gal, but not for antibacterial activity [107]. Hevein-type 
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proteins from the wheat Triticum kiharae have recently been 
described to play a role in salinity stress as well as in fungal 
resistance, expanding the function of hevein-type proteins 
beyond the antifungal response [108].

Knottin-type peptides

The knottin-type peptides are a family of proteins with, as 
the name suggests, a cysteine-stabilized, “knotted” topol-
ogy, defined by two parallel disulfide bonds threaded by a 
third disulfide bond (Fig.  5) [109]. Proteins from diverse 
sources and with diverse functions are members of this 
group, including spider neurotoxins, protease inhibitors 
and antifungal peptides from insects and crabs. A compre-
hensive database of knottin-type peptides can be found at 
http://knottin.cbs.cnrs.fr. Knottin-type, antifungal peptides 
have been isolated from the plants Mirabilis jalapa L.  
(Mj-AMP1 and 2) [110] and Phytolacca americana (PAFP-S)  
[111]. The structure of PAFP-S consists of a triple-stranded, 
anti-parallel, β-sheet with a long loop region connecting 
β-strands 1 and 2.

The two peptides, Mj-AMP1 and Mj-AMP2, differ by 
only four amino acids and yet Mj-AMP2 has ten-fold higher 
activity against most fungi [110]. Three of these differences 
occur in the C-terminal hairpin domain, thus, this region 

may be essential for activity. Interestingly, this C-termi-
nal domain represents a β-hairpin motif, referred to as the 
γ-core, which is conserved among many classes of antimi-
crobial peptides and is often implicated as essential for the 
activity of these peptides [112, 113]. Despite their similar-
ity to spider neurotoxins, these peptides have no effect on 
insect neuronal cells [110]. However, a knottin-like peptide 
from garden pea (PA1b) has recently been found to act as an 
insecticide through inhibition of vacuolar ATPase, a prop-
erty not previously described for peptide inhibitors [114].

2S albumin proteins

Proteins in the 2S family are storage proteins in the seeds 
of both monocots and dicots. They have been investigated 
mostly as allergens [115, 116] but have the characteristic 
molecular weight, cationic residues, and disulfide bonds of 
antimicrobial peptides. Antifungal activity has been demon-
strated for 2S albumin proteins, which are heterodimeric, 
from the seeds of Malva parviflora [117], Passiflora edulis 
f. flavicarpa [118], and Raphanus sativus [119]. The mecha-
nism by which 2S proteins inhibit fungal growth is not very 
well understood. Incubation of various fungal species with 
the R. sativus proteins resulted in growth inhibition but not 
a loss in viability [119]. The P. edulis 2S protein prevents 

Fig. 5   Sequence alignment and structural comparison of knottin-type 
peptides. a Sequence conservation within knottin-type peptides. The 
six conserved cysteines that form the three characteristic disulfide 
bonds are highlighted as are two conserved glycine residues and a 
conserved proline. Cysteine resides are highlighted in black with 
solid black lines denoting disulfide bonds. b The conserved structure  

of knottin-type peptides including PAFP-S (pdb code 1DKC), alo-3 
(pdb code 1Q3J), and tachystatin A (pdb code 1CIX) include a tri-
ple-stranded antiparallel β-sheet with two parallel disulfide bonds 
threaded by a third. Beta-strands are represented in cyan, random 
coils and turns are in white, and disulfide bonds are in yellow

http://knottin.cbs.cnrs.fr
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acidification of media by F. oxysporum leading to a pro-
posed inhibition of H+-ATPases or increased permeability 
of the membrane to protons [118].

Hairpinins

A novel class of antifungal peptides has recently been 
identified in the seeds of Echinochloa crus-galli [120] and  
Fagopyrum esculentum [121]. These peptides have the 
unique structure among plant defense peptides of two 
helices linked by two disulfide bonds. The mechanism of 
EcAMP1 from E. crus-galli was shown to occur via a two-
step process whereby EcAMP1 first binds to the cell sur-
face of Fusarium solani and is then internalized, without 
disruption of the membrane, and accumulates in vesicular 
structures [120].

Antifungal peptides from vertebrates

Vertebrates boast an adaptive immune system that responds 
to pathogenic attack and customizes the organism’s defense 
based on previous exposure to pathogens. While this 
response is highly effective, the delay involved and the enor-
mous level of pathogenic challenge faced requires a faster, 
more general, first line of defense. Part of this “innate” 
immune response involves the production or release of anti-
microbial peptides.

Mammalian peptides

The site of antimicrobial peptide expression in mammals 
is most often the cells of the epithelial layers and neutro-
phils. While these peptides are most often antibacterial, 
reflecting the increased level of threat faced from these 
microbes, a number also possess antifungal activity, par-
ticularly against yeast. The major groups of peptides are 
the histatins, cathelicidins, defensins, and lactoferricins. 
The defensins probably represent an ancient defense sys-
tem as they are conserved among all higher eukaryotes and 
even fungi [122]. The cathelicidins have only been identi-
fied in mammals while histatins are only found in humans 
and closely related primates. The antimicrobial activity of 
these peptides was identified some time ago, however, it is 
now becoming clear that the role of these peptides in vivo 
is probably much more complex and that a functional inter-
relationship exists between the innate and adaptive immune 
response [reviewed by 123].

Histatins

The histatins are a group of histidine-rich peptides from in 
human saliva that exhibit antifungal activity against a number  
of Candida species. Histatin 1 and 3 are gene products and 

the remaining ten members of the family are proteolytic 
cleavage products of these peptides [124].

Histatin 5, a cleavage product of histatin 3, is the most 
potent of these molecules and as such, the most well stud-
ied. Histatin 5 is a 24-amino-acid peptide containing seven  
histidines, four arginines, and three lysines [125]. In an  
aqueous environment, it adopts a random coil structure, 
however, in a non-aqueous environment the peptide adopts 
an α-helical conformation [125]. The heat shock protein 
Ssa2p, a 70-kDa cell wall protein in C. albicans, is the bind-
ing site for histatin 5 [126]. The presence of extracellular 
Ca2+ prevents binding of histatin 5 to C. albicans [127], 
presumably by disrupting the interaction between histatin 5 
and Ssa2p. The presence of the Ssa2p is required for suscep-
tibility of C. albicans to histatin 5 and the internalization of 
histatin 5 into cells [128]. Uptake of histatin 5 into C. albi-
cans cells is dependent on the presence of two polyamine 
transporters, Dur3 and Dur31 [129], which usually function 
in spermidine uptake. Internalization must occur by translo-
cation, not endocytosis, for histatin to act as an antifungal 
molecule against C. albicans [130]. Upon internalization, 
histatin 5 is localized to the mitochondria if respiration is 
underway and causes a loss of mitochondrial membrane 
integrity [131].

Movement of histatin 5 to mitochondria suggests it does 
not act simply via membrane disruption and, consistent with 
this, it is unable to cause substantial release of calcein from 
C. albicans cells or affect the cytoplasmic transmembrane 
potential [132]. Histatin 5 does not display strong amphip-
athicity, which is common in other pore-forming molecules 
[132]. Interestingly, mutagenesis of histatin 5 to increase its 
amphipathicity generates the ability to dissipate the cyto-
plasmic transmembrane potential of treated cells [133]. 
Although it does not appear to lyse cells, histatin 5 does 
induce propidium iodide (PI) uptake and ATP release [131, 
134] and this ATP release correlates with candidacidal activ-
ity [134]. Time lapse confocal microscopy has shown that 
there is a delay between histatin 5 internalization and PI 
uptake, confirming that histatin 5 does not directly permea-
bilize fungal cell membranes [130]. It appears that extracel-
lular activity of ATP that is responsible for cell death rather 
than ATP release itself, since anaerobically grown cells are 
able to release ATP upon histatin 5 treatment but are not killed 
[135]. This extracellular activity appears to be mediated 
by P2X receptors, which are nucleotide-binding receptors  
on the plasma membrane that are involved in extracellular 
signaling by ATP. P2 agonists that activate these receptors 
kill aerobically, but not anaerobically, grown C. albicans 
cells and P2 antagonists prevent histatin 5-induced cell death 
[135]. This suggests that histatin 5 causes the release of ATP 
that subsequently binds to P2X receptors on the cell sur-
face, thus inducing signaling cascades leading to cell death. 
The release of ATP in response to histatin 5 is mediated by 
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the K+ channel, Trk1p, and this release can be inhibited 
by anion channel blockers [136]. C. albicans mutants with 
decreased levels of Trk1p exhibit a normal amount of hista-
tin 5 uptake but a marked decrease in histatin 5-induced cell 
death [136]. The production of ROS in response to histatin 5 
has also been reported [133, 137]. However, the relevance of 
this has been debated and ROS is not believed to be directly 
involved in histatin 5-mediated killing [138]. In addition, 
histatin 5 does not induce programmed cell death pathways 
[137].

Cathelicidins

Antimicrobial peptides belonging to the cathelicidin family 
are extremely diverse in both sequence and structure; how-
ever their similarity lies in the N-terminal prosequence they 
all possess. This sequence of approximately 100 amino acids 
is also related to cathelin, a cystatin-like protein. Cathelici-
dins are expressed predominantly in neutrophils although 
they are also present in epithelial layers in humans [139]. 
Cathelicidins can form α-helical, β-hairpin, or extended 
conformations (Fig. 6a). They predominantly exhibit anti-
bacterial activity although several are active against fungal 
species [139]. The recent sequencing of marsupial genomes 
has led to the discovery of new cathelicidin genes, one of 
which has shown to have potent activity towards multidrug 
resistant strains of bacteria [140].

Cathelicidins have superior activity against yeast com-
pared to filamentous fungi [141], which may be an evolution-
ary response to the greater threat posed by yeast to mammals 
compared to filamentous fungi. Cathelicidins, despite their 
structural divergence, appear to kill cells via perturbation of 
the plasma membrane. A number of antifungal cathelicidins 
from sheep (SMAP-29) and cow (BMAP-27, BMAP-28) 

form amphipathic α-helices in a hydrophobic environment. 
They have C-terminal hydrophobic domains, with strong 
membrane permeabilization activities [141, 142]. SMAP-
29 concentrates on the plasma membrane of treated cells 
and causes propidium iodide uptake provided the cells are 
metabolically active [143]. In a hydrophobic environment, 
PMAP-23 (from pigs) forms two short α-helices joined by a 
flexible region [144]. This peptide binds to the plasma mem-
brane of treated cells and is active against C. albicans proto-
plasts indicating interaction with the cell wall is not required 
for inhibitory activity [145]. The β-hairpin peptide protegrin 
and the extended, tryptophan-rich peptide indolicidin (both 
from pigs), also exhibit candidacidal activity through mem-
brane permeabilization [141, 146].

So far, only one cathelicidin, LL-37, has been identified 
in humans [139]. It forms an amphipathic α-helix [147] 
(Fig. 6) and binds to the cell wall and plasma membrane of 
treated cells [148]. It disrupts the C. albicans cell membrane 
completely and allows leakage of proteins of up to 40 kDa 
into the medium [148]. The kinetics of permeabilization 
are very rapid with complete lysis occurring within 5 min, 
supporting the idea that membrane disruption is the sole 
mechanism of cathelicidin activity. Insertion of LL-37 into 
membranes is equally dependent on hydrophobic interac-
tions between the peptide and acyl chains of the membrane 
lipids as it is on electrostatic interactions with lipid head 
groups [149]. Sterols decrease the membrane association of 
LL-37 with cholesterol having a stronger effect than ergos-
terol [150] leading to the hypothesis that protection of the 
host cell against secreted AMPs may have been a significant 
selective pressure in the evolution of cholesterol. LL-37 
and the mouse equivalent, mCRAMP, are believed to act in 
vivo by creating a barrier on the skin for protection against  
C. albicans invasion [151]. Furthermore LL-37 is secreted into  

Fig. 6   NMR structures of mammalian antifungal peptides from the 
(a) cathelicidin and (b) lactoferrin-derived families. a Peptides in 
the cathelicidin family can take α helical (LL37, pdb code 2K60), 
extended (SMAP29, pdb code 1FRY), or β hairpin conformations 
(protegrin, pdb code 1PG1). b Lactoferrin-derived peptides with 

α-helix and extended loops (LfcinH, pdb code 1Z6V) and antiparal-
lel β-sheet (LfcinB, pdb code 1LFC) conformations. Beta-strands are 
represented in cyan, α-helices are in red, random coils and turns are 
in white, and disulfide bonds are in yellow
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human sweat and processed to the more active peptides,  
RK-31 and KS-30. Importantly, these peptides retain their 
activity even in the high salt conditions present in human 
sweat. These truncated variants are also able to enter the 
cytoplasm of C. albicans cells suggesting that their increased 
activity may result from access to intracellular targets [152]. 
The expression of mCRAMP is also induced in mouse 
skin upon C. albicans infection [151]. One disadvantage of 
cathelicidins as novel antifungal peptides is the toxicity often 
demonstrated toward erythrocytes. However, some synthetic 
variants exhibit decreased erythrocytic activity compared 
to antimicrobial activity [146]. A comprehensive review of 
LL-37 as an antimicrobial peptide along with other roles the 
peptide plays in innate immunity can be found in [153].

Defensins

Mammalian defensins represent a large group of peptides 
with an important role in the host’s immune system. Defi-
ciencies in various defensins have been implicated in some 
diseases such as inflammatory bowel disease [154]. Mam-
malian defensins share structural and functional similari-
ties with defensins from plants, insects and fungi. They can 
be divided into the α-defensins and the β-defensins based 
on their structural characteristics and cysteine spacing pat-
tern (Fig.  7). The α-defensins are 29–35 amino acid pep-
tides that share six conserved cysteine residues forming 
three disulfide bonds. Their structure is comprised of three 
antiparallel β-strands that form an amphipathic β-sheet. The 
β-defensins are longer than their α-counterparts, ranging 
from 34 to 42 residues in length. They contain the signa-
ture triple-stranded, antiparallel β-sheet as well as a short 
α-helix.

The α-defensins      These defensins were first identified 
in rabbits and have since been found in guinea pigs, rats, 
hamsters, macaques and humans [155]. In humans, a num-
ber of these proteins are expressed in neutrophils [human 
neutrophil defensins 1–4 (HNP 1–4)] and their combined 
concentration can be up to 1.5 mM [155]. Three of these 
(HNP 1–3) are identical apart from one N-terminal amino 
acid. Interestingly, only HNP-1 and HNP-2 display candi-
dacidal activity while HNP-3, which has an acidic amino 
acid at the N-terminus, is completely inactive on C. albicans 
[156]. HNP-4 is also toxic to C. albicans cells [157]. The 
antibacterial activities of α-defensins have been attributed  
to their ability to permeabilize membranes [155, 158]. 
The candidacidal activity of the rabbit neutrophil defensin  
(NP-1) is also attributed to this ability [159]. HNP-1, like 
histatin 5, causes C. albicans to release ATP but does not lyse 
cells [160]. Additionally, the antifungal activity of HNP-1, 
in contrast to NP-1, is dependent on the metabolic activity 
of the target cell [156], supporting a different mechanism of 

action for the human and rabbit α-defensins. While C. albi-
cans cells treated with HNP-1 remain metabolically active 
after 2 h, they are not able to form colonies [160], which 
indicates a fungistatic mode of action.

Fig. 7   Sequence alignment and structural comparison of mammalian 
(a) α-defensins and (b) β-defensins. a Six cysteine residues which 
form three disulfide bonds are conserved in the three stranded β-sheet 
fold characteristic of mammalian α-defensins. Cysteine resides 
are highlighted in black with solid black lines denoting disulfide 
bonds. Residues highlighted in grey are highly conserved among the 
sequences HNP4 (pdb code 1ZMM) and cryptdin4 (pdb code 2GW9) 
form a triple-stranded anti-parallel β-sheet. b β-defensins contain six 
conserved cysteines that form three disulfide bonds although the con-
nectivity of these disulfides differs to that of α-defensins. β-defensins 
also contain an additional short α-helix (HBD1, pdb code 1E4S and 
HBD2, pdb code 1E4Q). β-strands are represented in cyan, α-helices 
are in red, random coils and turns are in white, and disulfide bonds 
are in yellow



3557Properties and mechanisms of action of naturally occurring antifungal peptides

1 3

The β-defensins    While only a few mammalian β-defensins 
have been characterized in any detail, they are mainly found 
in the epithelial layers, consistent with a role in host defense. 
The antibacterial activity of β-defensins, as with α-defensins, 
is attributed to their membrane permeabilizing properties. 
Studies on the antibacterial activity along with other general  
features of human β-defensin 2 (hBD-2) and hBD-3 have 
been reviewed in [161] and [162]. In addition to their 
antibacterial activity, hBD-2 and hBD-3 are potent inhibi-
tors of Candida species [163] and hBD-2 is up-regulated  
in response to exposure to C. albicans and Trycophyton 
rubrum in keratinocytes [164] and in response to Asper-
gillus fumigatus in lung epithelial cells [165]. Exposure of 
lung epithelial cells to A. fumigatus also induces expression 
of hBD9. The mechanism underlying the antifungal activ-
ity of hBD2 and hBD3 has only recently been elucidated 
and, similar to human α-defensins, does not appear to result 
from simple membrane disruption. Both peptides require 
the presence of Ssa2p, the histatin 5 binding protein in the 
fungal cell wall, for activity [166]. However, their activity 
is not dependent on Trk1p, the second mediator of histatin 
5 activity, indicating that they act via related but different 
mechanisms to histatin 5 [166]. Deletion of genes involved 
in the high osmolarity glycerol (HOG) pathway in C. albi-
cans increased sensitivity to hBD-2 and hBD-3 [167]. This 
pathway has also been implicated in histatin 5 tolerance 
[168]. This is likely to be indicative of the role of the HOG 
pathway (for review see [169]) in a wide variety of stress 
responses as opposed to a common mechanism between 
histatin 5 and the human β defensins. The exact mecha-
nisms by which hBD-2 and hBD-3 act remain unknown. 
However, evidence from calcein release assays suggests 
that antifungal activity is unlikely to involve membrane dis-
ruption. Additionally, beta defensin activity was found to 
require target cells to be metabolically active [170]. As a 
strong positive charge is a feature common to many anti-
fungal molecules the presence of high concentrations of 
cations often decreases efficacy. The antibacterial activity 
of hBD-3 is salt insensitive, however, its antifungal activity 
is abolished by low concentrations of both monovalent and 
divalent cations [170], pointing to differences between the 
antibacterial and antifungal mechanisms of action.

Lactoferricins

Lactoferrin is a multifunctional, 80-kDa protein, first iso-
lated from bovine milk and later identified in a number of 
species including humans, pigs, and mice. Lactoferrin is a 
member of the transferrin family of proteins all of which 
share characteristic iron binding properties. The antimi-
crobial activity of lactoferrin was originally attributed to 
the high affinity iron binding function [171] as iron is an 

essential nutrient for virtually all organisms and sequester-
ing iron from microorganisms would inhibit their growth. 
Additional functions for lactoferrin were revealed when 
proteolytic cleavages of lactoferrin produced several pep-
tides with antifungal activity equivalent to or better than the 
whole protein [172–176]. Further studies on the antifungal 
activity of intact human lactoferrin revealed that the pro-
tein causes slight K+ efflux from C. albicans cells, but does 
not allow Na+ release and does not disrupt the membrane 
[177]. This indicates that non-specific membrane permea-
bilization is not the mechanism of action. Spheroplasts are 
more resistant to killing by lactoferrin and the peptide is 
known to induce changes in the cell wall of C. albicans, 
suggesting that cell wall interactions are probably central 
to the mechanism of action. However, lactoferrin also depo-
larizes the plasma membrane and leads to acidification of 
the cytoplasm, suggesting additional targets beyond the 
fungal cell wall. Cellular respiration is also required for its 
cytotoxic activity [177], which again supports the notion 
that lactoferrin does not act via non-specific membrane 
permeabilization.

Aside from the activity of lactoferrin as a full protein, 
peptides from the N-terminus of the protein have antibacte-
rial and antifungal activity. One of these is lactoferricin B 
(LfcinB), which comprises the region spanning residues 17 
to 40 of the bovine lactoferrin protein [178]. Peptides span-
ning the equivalent region of the N-termini of the human 
[172], murine [179] and porcine [176] proteins have also 
been assayed for antimicrobial activity; revealing the bovine 
peptide as the most active of any species tested [180]. Vari-
ations in antimicrobial activity are not surprising as there is 
only 41 % sequence identity between the human and bovine 
peptides. Structures of both the bovine (LfcinB) and human 
(LfcinH) derived peptides have been solved (Fig. 6b) and 
they adopt different folding patterns which also likely con-
tributes to differences in activity. LfcinB adopts an antipar-
allel β-sheet [181] while LfcinH, which is 17 amino acids 
longer, forms an α-helix followed by an extended region 
[182]. Both peptides are stabilized by disulfide bonds but 
these disulfide bonds are not essential for antimicrobial 
activity [183].

Neither LfcinB nor LfcinH are likely to act by non-spe-
cific permeabilization of membranes as they do not lyse bac-
teria or cause calcein release from artificial liposomes [184, 
185]. However, both peptides dissipate the proton gradient 
across the plasma membrane suggesting some interaction 
with the membrane [172]. Antibacterial activity of LfcinB 
involves binding to lipopolysaccharide (LPS) on the surface 
of Gram-negative bacteria [186]. The peptide is also found 
at a high concentration inside treated E. coli cells [187]. 
The slow killing kinetics displayed by this peptide supports 
the role of an intracellular target [188]. Phosphorylation of 
response regulators in the two-component system in E. coli 
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is inhibited by LfcinB, which in turn inhibits growth [189]. 
Lfpep is a truncated version of LfcinH from the equivalent 
region that LfcinB is derived from full-length lactoferrin. 
The mechanism of Lfpep differs from Lfcins as it causes 
propidium iodide uptake and almost total release of intracel-
lular K+ from treated C. albicans cells indicating that mem-
brane permeabilization is a component of antimicrobial 
activity [174]. Lfpep is also able to permeabilize artificial 
liposomes [185].

Truncated versions of the LfcinB have been produced 
synthetically to identify the region of the molecule respon-
sible for antifungal activity. The smallest active peptide was 
a hexapeptide comprising amino acids 20–25 of bovine 
lactoferrin (RRWQWR–NH2) [175]. This peptide inhibited 
the growth of filamentous fungi but had no activity against  
E. coli or S. cerevisiae [175]. This may be explained by the loss  
of ability to translocate into the cytoplasm. A slightly longer 
peptide (residues 17–31) was more active against filamen-
tous fungi and was active against E. coli and S. cerevisiae 
[175]. Interestingly, while both peptides permeabilized the 
membrane of Penicillium digitatum hyphae, the hexapep-
tide was fungicidal while the longer peptide was not. Vari-
ability indicates that the two peptides act by are different 
mechanisms and that each peptide has different mechanisms 
against bacteria as well as different types of fungi.

Amphibian peptides

Many diverse antimicrobial peptides have been isolated 
from non-mammalian vertebrates such as reptiles, amphib-
ians, and fish. These creatures often inhabit environments 
that are rich in pathogens yet they are generally disease free. 
The skin secretions of various frog and toad species are 
one of the richest sources of antimicrobial peptides found 
to date [reviewed by 190]. The antibacterial properties of 
antimicrobial peptides from these species remain the main 
focus and it is only relatively recently that their antifungal 
activities have been investigated in any detail. Fungi are sig-
nificant pathogens of many amphibious species and some 
fungi have even been associated with a decline in worldwide 
amphibian numbers [191].

Temporins

The temporins are 10–14-amino-acid peptides originally 
identified in the skin secretions of the European red frog, 
Rana temporaria [192]. While they were initially thought 
to be limited to this species, they have since been isolated 
from several other frog species as well as wasp venom 
[191]. Their antifungal properties have been harnessed for 
the production of transgenic potato plants resistant to late 
blight and pink rot, caused by Phytophthora species [9]. 
Temporins are not as basic as other cationic antimicrobial 

peptides although in the most potent, temporin A, the one 
basic residue is essential for activity [193]. The peptides are 
also amidated at their C-termini, increasing the overall posi-
tive charge by one [192].

The mechanism underlying the antifungal activity of 
temporins has not been investigated, although the antibac-
terial activity has been attributed to efficient permeabiliza-
tion of bacterial membranes [193]. Permeabilization alone 
may not be sufficient for cell death as permeabilization of  
E. coli was observed at sub-lethal concentrations of temporin  
L [194]. However, an interaction between temporins and 
specific biological molecules on the cell surface is unlikely 
as temporins permeabilize artificial liposomes with the size 
of molecules released increasing with increased concentra-
tion of temporin [195]. Discrimination between anionic and 
zwitterionic membranes was not observed for permeabiliza-
tion by temporins. However, temporins do not lyse human 
erythrocytes, which suggests there are additional factors 
involved in the mechanism of action on different cell types 
[194].

Brevinin-1 family

Another class of proteins isolated from frog skin secretions 
belong to the brevinin-1 family. Brevinin-1BYa, from the 
foothill yellow-legged frog, is the most effective member 
of this class at inhibiting the growth of Candida species 
[126]. This 24-amino-acid peptide carries a charge of +4 
and adopts an α-helical conformation in a hydrophobic 
environment [126]. The C-terminal region contains two 
cysteine residues that form a single disulfide bond and cre-
ate a loop of five amino acids. A variant containing a single 
amino acid change (Phe12 → Leu) has four-fold less activity 
against Candida, whereas activity against the Gram-posi-
tive bacterium, Staphylococcus aureus decreased only two-
fold and its activity against the Gram-negative bacterium,  
E. coli, was not altered [126]. In contrast, substituting the two  
cysteines with serines abolished the antifungal activity and 
greatly reduced the activity against E. coli but did not affect 
the activity against S. aureus [196]. This implies that not 
only does the peptide’s mechanism of action differ between 
bacteria and fungi, it also differs between Gram-positive 
and Gram-negative species of bacteria.

Antifungal peptides from invertebrates

Invertebrates, like plants, lack an adaptive immune response 
and as such rely heavily on antimicrobial proteins for pro-
tection. Invertebrate species are thus a rich source of antimi-
crobial peptides. Again, the focus has been on discovery of 
antibacterial peptides, although many with antifungal activ-
ity, and some exclusively so, have been reported. Some of 
these, such as insect defensins, share sequence identity with 
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peptides from other organisms, while others have no obvi-
ous homologues.

Insect peptides

Antimicrobial peptides from insects are expressed in the fat 
body (equivalent of liver), and secreted into the hemolymph 
(equivalent of blood) in response to bacterial or fungal 
infections [197]. In Drosophila, two separate pathways are 
involved in this response: Gram-negative bacteria initiate 
the Immune-deficiency (IMD) pathway, while Gram-pos-
itive bacteria and fungi activate the Toll-receptor pathway 
[198]. Antimicrobial peptides from insects are often isolated 
after bacterial challenge, this may explain why fewer anti-
fungal molecules have been identified.

Insect defensins

Defensins have been identified in every insect for which 
they have been screened. Three of these, heliomicin, from 
Heliothis virescens [199], termicin, from Pseudacantho-
termes spiniger [200] and drosomycin, from Drosophila 
melanogaster [201], display potent antifungal activity. 
Drosomycin is a 44-residue protein with a high degree of 
similarity to plant defensins. Interestingly, it also shares 

the same cysteine spacing pattern; one of the major deter-
minants for classification of these families of proteins 
(Fig.  8). Drosomycin also displays a similar three-dimen-
sional structure, comprised of a triple-stranded anti-parallel 
β-sheet tethered to an α-helix (CSαβ motif, Fig. 8) [201]. 
Heliomicin (44 amino acids) shares a similar structure to 
drosomycin and plant defensins, although it lacks the fourth 
disulfide bond that joins the N- and C- termini [202]. Ter-
micin (36 amino acids) is smaller than drosomycin and heli-
omicin, lacking the first β-strand of the antiparallel β-sheet 
[203]. As such, it is more similar to the antibacterial insect 
defensins and a defensin from mussel (MGD-1). Termicin 
is expressed constitutively and is believed to play a role in 
protecting the termite against invasion by the symbiotic fun-
gus that lives on fecal pellets in termite nests and predigests 
lignocellulose to aid food digestion in termites [200].

The range of target pathogens towards which specific 
insect defensins are active varies considerably. Drosomy-
cin is active against filamentous fungi, but not against yeast 
or bacteria. Heliomicin is active against filamentous fungi 
and yeast, but not bacteria [199] and termicin is most active 
toward filamentous fungi, although it also inhibits the growth 
of yeast at moderate concentrations and bacteria at high con-
centrations [200]. The effects of these insect defensins on 
their target cells has not been well characterized, although 

Fig. 8   Sequence alignment and structural comparison of insect 
defensins with the plant defensin NaD1. a Six cysteines that form 
three disulfide bonds are conserved in the insect defensins Helio-
mycin and Termicin. Drosomycin has two additional cysteine resi-
dues that form an extra disulfide bond with the same connectivity 
as observed in plant defensins such as NaD1. Cysteine residues are 

highlighted in black with solid black lines denoting disulfide bonds.  
b The insect defensins drosomycin (pdb code 1MYN), heliomicin 
(pdb code 1I2U) and termicin (pdb code 1MM0) share the common 
CSαβ-fold with the plant defensins (NaD1, pdb code 1MR4). Beta-
strands are represented in cyan, α-helices are in red, random coils and 
turns are in white, and disulfide bonds are in yellow
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structure–function studies have been undertaken to identify 
regions of the molecules involved in activity. Mutation of 
the four N-terminal amino acids of heliomicin to alanine 
resulted in a 15-fold reduction in antifungal activity [202]. 
Intriguingly, only a two-fold reduction in antifungal activ-
ity occurred when the two basic residues at the beginning 
of β-strand two were substituted with leucines, which are 
present in antibacterial insect defensins. Heliomycin with 
these substitutions has an overall charge of −1 yet gains 
antibacterial activity. Site-directed mutagenesis of drosomy-
cin led to identification of five cationic (R6, K8, R20, R21, 
and K38) and two anionic (D1 and E25) residues located in 
different secondary structures that are involved in antifun-
gal activity [204]. It was also suggested that the location 
of these charged residues, as opposed to the overall charge 
of the protein, is important for activity, possibly through an 
electrostatic interaction with target molecules. Although 
specific residues do not seem to be conserved between the 
antifungal defensins, one common feature is the presence 
of a basic residue buried in a hydrophobic patch [205]. This 
may be essential for activity.

Thanatin

Thanatin is a peptide that is induced upon challenge by 
microbial pathogens from the spined soldier bug Podisus 
maculiventris. It inhibits the growth of bacteria and fila-
mentous fungi, but is not active against yeast species and is 
not hemolytic [206]. It is similar in sequence to brevinin-1 
although the N-terminus is seven amino acids shorter and 
structural analysis revealed that it lacks the α-helix formed 
by the N-terminus of the brevinin-1 peptide [206, 207]. 
Rather, the N-terminus forms a long extended arm (residues 
1–7). The remainder of the peptide forms a cysteine-stabi-
lized β-sheet loop as observed in brevenins [207].

Thanatin does not permeabilize bacterial membranes but 
instead causes rapid agglutination of bacterial cells. An all 
D-enantiomer of the peptide has no antibacterial activity 
yet activity against filamentous fungi is unchanged [206] 
implying that, like many of the peptides discussed thus far, 
the peptide differs in its mode of action against bacteria and 
fungi. While the peptide is fungicidal to spores at a high 
concentration [206], the effect on hyphae has not been inves-
tigated. Thanatin also has a basic residue (Arg) in the center 
of a hydrophobic patch [207] as reported for drosomycin 
and other antifungal peptides although its significance has 
not been investigated. Transgenic rice expressing thanatin is 
resistant to the rice blast fungus Magnaporthe oryzae [208].

Glycine-rich peptides

Three glycine-rich peptides with antifungal activity have 
been isolated from insects, namely, AFP, holotricin-3 and 

tenecin-3 [209–211]. Of these, only tenecin-3 has been 
studied in detail. This peptide is 78 residues long and Gly, 
His and Glu residues represent 80 % of its amino acid com-
position [211]. The peptide has no cysteine residues and it 
adopts a random structure even in a hydrophobic environ-
ment . Non-specific membrane permeabilization is probably 
not responsible for the antifungal activity of tenecin-3 as 
it does not cause calcein release from artificial liposomes 
[212]. Furthermore, uptake of tenecin-3 into the cytoplasm 
of treated C. albicans cells is required for cell death indicat-
ing involvement of an intracellular target may be involved. 
Interestingly, only C. albicans cells in the log phase of 
growth were able to internalize tenecin-3 [212]. Uptake 
requires cellular processes and is inhibited at 0 °C and by 
the presence of the oxidative phosphorylation inhibitor, 
sodium azide.

Cecropins

Cecropins are 35–39-amino-acid peptides that were origi-
nally isolated from the cecropin moth (Hyalophora cecro-
pia) and have since been found in other insect species, 
including Drosophila. They form two α-helices separated 
by a flexible hinge region in a hydrophobic environment 
[213]. In Drosophila, cecropins are induced in response to 
both bacterial and fungal pathogens and may reach concen-
trations between 25 and 100 μM in the hemolymph, [213]. 
Cecropin A is lethal to germinating and non-germinating 
Fusarium but only to germinating Aspergillus. Further-
more, fluorescently labeled cecropin A only bound to par-
ticular hyphae and this binding resulted in cell death. That 
is, cecropin A bound to germinating Aspergillus hyphae 
to induce death whereas binding and cell death was not 
observed with non-germinating hyphae [214]. This selectiv-
ity relates to changes in the cell wall composition that occur 
at various stages of growth. The mode of action of cecropins 
against fungi has been reported to involve disruption of the 
plasma membrane [215] although this has not been studied 
in great detail.

Spinigerin

A 25-amino-acid peptide with both antibacterial and anti-
fungal properties is expressed constitutively and stored in 
hemocyte granules of the termite P. spiniger [200]. This 
peptide adopts a random coil structure in an aqueous envi-
ronment but forms a stable, amphipathic α-helix in a hydro-
phobic environment [216]. The α-helix is slightly bent and 
shares characteristics with magainin 2, an antimicrobial 
peptide from Xenopus [202]. These similarities have led to 
the hypothesis that spinigerin acts via membrane permeabi-
lization in a similar manner to magainin 2 [217], although 
this hypothesis has not been tested.



3561Properties and mechanisms of action of naturally occurring antifungal peptides

1 3

Insect knottin-type peptides

Three peptides from the insect Acrocinus longimanus have 
activity against Candida glabrata. They are members of the 
knottin-type family [218] and the most potent of these pep-
tides, Alo-3, is very similar in sequence to the other two 
peptides (Fig. 4). It has two additional basic amino acids at 
its C-terminus that form part of a cationic pole at the base of 
the molecule [218]. The three peptides share sequence simi-
larity with the plant peptide MjAMP; but the mechanism of 
action for these peptides has not yet been investigated.

Moricin-like peptides

Screening of hemolymph from immune-stimulated Galle-
ria mellonella revealed a number of novel peptides simi-
lar to the antibacterial moricin peptides from lepidopterans 
[219]. These peptides are activity against the plant pathogen 
F. graminearum, but not fungi that infect insects. Moricins 
adopt a helical structure with an amphipathic N-terminal 
region that is thought to be crucial for antibacterial activity 
[220].

Marine invertebrates

Marine invertebrates have also proved to be a source of 
many novel antimicrobial peptides. Unlike in insects, where 
peptides are expressed in the fat body in response to infec-
tion, antimicrobial peptides in marine invertebrates are pro-
duced constitutively in hemocytes. The peptides are stored 
in granules and released via exocytosis upon bacterial or 
fungal infection.

Penaeidins

The penaeidins are 47–63 residue peptides first isolated 
from the tropical shrimp Penaeus vannamei and have since 
been found in a number of other shrimp species [221, 222]. 
The N-terminal domain of the peptide is proline-rich and 
does not have a well-defined structure. The C-terminal 
domain forms an α-helix with loop regions either side con-
nected by three disulfide bonds [223, 224]. Penaedin-3 and 
-4 bind chitin in vitro, however, this is believed to be related 
to their ability to bind to the gill cuticle, which is composed 
largely chitin and not to their antifungal activity [225, 226]. 
The N-terminal proline rich domain of penaeidin-4, but not 
penaeidin-3, has similar antifungal activity to that of the 
whole protein [225, 227] further supporting the notion that 
chitin binding by the C-terminal domain is for localization 
in the gill cuticle as opposed to binding to fungal chitin. The 
effect of penaeidins on filamentous fungi has been examined 
by microscopy, which revealed increased hyphal branching 
and a lack of sporulation after exposure to the penaeidins 

[221]. Penaeidins and other shrimp antimicrobial peptides 
are of particular interest to aquaculture, a billion dollar 
industry, because of potential control of microbial infections 
which can have a significant impact on production [228].

Crab β-hairpin peptides

Several small (17–18 amino acid) β-hairpin peptides known 
as tachyplesins and polyphemusins have been isolated 
from Japanese and American horseshoe crabs, respectively 
(Fig. 9) [229]. Tachyplesin II and polyphemusins I and II, 
are active against fungi while tachyplesins I and III are 
not. The three antifungal peptides have an arginine at their 
N-terminus while the two without antifungal activity have a 
lysine at this position [230]. In fact, this amino acid change 
is the only difference between tachyplesins II and III. Once 
again, the mechanism of action for their antifungal activ-
ity has not been investigated; although it is known that they 
enter the cytoplasm of treated E. coli cells [231].

Tachystatins

The tachystatins are another group of antifungal peptides 
from the hemocytes of the Japanese horseshoe crab. They 

Fig. 9   Sequence alignment and structural comparison of β-hairpin 
peptides. a Conservation of the four cysteine residues that form two 
conserved disulfide bonds in β-hairpin peptides. Cysteine resides are 
highlighted in black with solid black lines denoting disulfide bonds. 
Conserved arginine and tyrosine residues are also highlighted. b The 
β-hairpin structure of tachyplesin I (pdb code 1MA2), polyphemusin 
I (pdb code 1RKK) and Gomesin (pdb code 1KFP) is stabilized by 
the two conserved disulfide bonds. β-strands are represented in cyan 
with disulfide bonds in yellow
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are 41–44 amino acid peptides and are members of the 
knottin-type family of proteins with sequence and struc-
tural similarities to neurotoxins from spider venom, as well 
as plant and insect antifungal peptides [232]. The structure  
of tachystatin A has been solved by NMR and consists of 
a triple-stranded, anti-parallel β-sheet with a long loop 
connecting β-strands 1 and 2 [233] (Fig.  4). Tachystatin  
A, along with tachystatin B and C, bind chitin, and a causal 
relationship exists between this binding and antifungal 
activity [232]. Tachystatin C binds to the periphery of 
Pichia pastoris cells and is able to lyse these cells [232], 
indicating the antifungal activity of these peptides may 
result from membrane disruption.

Big defensin

A 79-amino-acid peptide produced by horseshoe crab 
hemocytes is active against Gram-negative and Gram-posi-
tive bacteria as well as fungi [234]. The protein is composed 
of two domains, an N-terminal hydrophobic domain of 42 
amino acids and defensin-like domain corresponding to 
amino acids 43 to 79 with homology to rat neutrophil defen-
sin 2 (NP-2). The N-terminal, hydrophobic domain is toxic 
to Gram-positive bacteria while the C-terminal, defensin-
like domain is active against Gram-negative strains [234]. 
The activity of these individual domains on fungi and the 
mechanism of action of the intact protein have not been 
investigated.

Hemocyanin-derived peptides

Peptides from the C-terminal region of hemocyanin, a shrimp 
respiratory protein, have broad-spectrum antifungal activity 
[235]. They accumulate in the hemolymph relative to intact 
hemocyanin in response to fungal immune challenge, sug-
gesting a novel mechanism for production of antimicrobial 
peptides upon infection in invertebrates. A number of other 
antimicrobial peptides are proteolytic cleavage products of 
larger proteins, including the lactoferrin-derived peptides 
discussed previously. Another novel feature of these pep-
tides is their acidic nature; they carry a negative charge of 
between −2 and −8. [235]. They do not share sequence 
identity with any other antimicrobial peptides identified to 
date, and their structure has not been elucidated; thus, no 
hypothesis regarding their mechanism of action has been 
put forward.

Cenchritis muricatus peptides

Cm-p1, a small hydrophillic peptide from the marine snail 
C. muricatus, is active against a broad spectrum of fungal 
species but has no activity against bacteria or mammalian 
cells. Modeling studies demonstrated that this peptide could 

form a helical conformation with exposed basic residues and 
a hydrophobic region essential for antifungal activity [236].

Spiders

Gomesin

In the context of evolution, spiders are not-too-distant rela-
tives of crabs. This is evident in the similarity of the previ-
ously described crab tachystatins with spider venom toxins. 
It is not surprising, therefore, that an antifungal peptide that 
is closely related to the crab β-hairpin peptides, tachyplesin 
and polyphemusin, has been identified in the spider Acan-
thoscurria gomesiana [237]. This 18-amino-acid peptide, 
gomesin, has the same cysteine spacing as the crab β-hairpin 
peptides (Fig. 9) and forms the common β-hairpin structure 
as determined by NMR [238].

Gomesin is expressed constitutively in spider hemocytes 
[239] and inhibits the growth of filamentous fungi and yeasts 
at low concentrations. The mechanism underlying its activ-
ity has not been elucidated. However, it displays an amphip-
athic nature with positively charged poles and a hydrophobic 
patch in the center. Mutagenesis of this hydrophobic region 
leads to substantial reduction in activity [240]. This is con-
sistent with the ability of gomesin to lyse giant unilamellar 
vesicles [241] and supports membrane permeabilization as 
a mechanism of action. Studies on the antitumor activity of 
gomesin revealed a mechanism that involved an increase in 
cellular calcium levels, induction of MAPK/ERK, PKC, and 
PI3 K signal transduction pathways, and generation of reac-
tive oxygen species [242].

Antifungal peptides from fungi

Filamentous fungi and yeast secrete antifungal peptides into 
the extracellular environment, presumably to provide them-
selves with an advantage over competing species. Most of 
these peptides are not related to antifungal peptides from 
other species, reflecting the ancient divergence of these 
organisms from the other eukaryotes. However, a number of 
fungal defensins have been isolated recently, indicating that 
this family of proteins may predate this divergence [122, 
243].

Peptides from filamentous fungi

AFP and PAF are 51- and 55-amino-acid peptides secreted 
by Aspergillus giganteus and Penicillium chrysogenum, 
respectively. They share 47 % amino acid sequence iden-
tity. The structure of AFP has been solved and displays a 
β-barrel-like fold, a conformation that is not shared by any 
other antimicrobial peptides [244]. The modes of action of 
both of these peptides have been investigated. When the rice 
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blast fungus Magnaporthe grisea is treated with AFP, the 
peptide permeabilizes the membrane before entering the cell 
and moving to the nucleus [245]. AFP has an oligonucleo-
tide-binding fold and the peptide binds to DNA and causes 
DNA condensation in vitro [246]. This property could be 
responsible for the toxicity of the peptide. AFP is expressed 
as an inactive precursor with six additional amino acids at 
the N-terminus that are cleaved following secretion [246]. 
This process of activation after secretion prevents interac-
tion with DNA and hence toxicity to the host cell.

Despite 47 % sequence similarity with AFP, PAF appears 
to act via a different mechanism. PAF also causes mem-
brane permeabilization [247] and enters hyphae [248], but 
it does not travel to the nucleus. PAF induces hallmarks of 
apoptotis-like cell death in treated hyphae, which include 
production of reactive oxygen species, exposure of phos-
phatidylserine on the outer leaflet of the plasma membrane, 
and disintegration of subcellular organelles [249]. PAF 
uptake is an active process and is blocked by the oxidative 
phosphorylation inhibitor sodium azide and by the oxida-
tive phosphorylation uncoupler carbonyl cyanide m-chloro-
phenyl hydrazone (CCCP). Inhibition of endocytosis blocks 
uptake of PAF [248]. Resistance to PAF is imparted by the 
inactivation of G-protein signaling cascades [249].

Killer toxins

Yeast killer toxins

Yeast killer toxins are an interesting class of antifungal mole-
cules because they are often not encoded by the host genome, 
but rather by dsRNA viruses that infect yeast species. As a 
consequence of this, the genes required for immunity are 
also virally encoded and the toxins are, therefore, active 
against non-infected cells of the same species [250]. Virally 
encoded proteins are produced as preproproteins containing 
a signal domain, followed by α-, γ- and β-domains. Dur-
ing folding, the α- and β-domains are brought together and 
linked via a disulfide bond. The γ-domain is then cleaved at 
its N- and C- termini to release the mature protein for secre-
tion [251]. The mechanism that protects the toxin-producing 
cells from the secreted toxins is not well understood but the 
γ-domain is presumed to be involved.

Two toxins produced by S. cerevisiae, K1 and K28, have 
been studied in detail and exert their effects via different 
mechanisms. One common feature is that the initial interac-
tion between the toxin and the target cell involves binding 
to the cell wall. For K1, this interaction is mediated through 
(1 → 6)-β-glucan binding, while K28 binds to mannopro-
teins [251]. Following cell wall binding, K1 is transferred 
to the plasma membrane where it forms cation-selective ion 
channels. The mechanism of this cation-channel formation 
is not understood. Following binding to the cell wall, the 

K28 toxin is endocytosed and transported to the cytoplasm 
via a retrograde transport pathway [252]. Once in the cyto-
plasm, the protein diffuses into the nucleus and interacts 
with proteins to block the cell cycle.

A killer toxin WmKT, from the yeast Williopsis mrakii 
(formerly known as HM1 and Hansenula mrakii, respec-
tively) is chromosomally encoded and expressed as a prepro-
protein with a signal domain and an N-terminal propeptide 
that is cleaved to release the mature 88-amino-acid peptide 
[253]. This peptide forms a Greek key β-barrel structure that 
displays strong similarities with the plant antifungal peptide, 
MiAMP1, from macadamia. WmKT binds to the cell wall, 
probably via interaction with (1 → 6)-β-glucan [253]. The 
peptide then inhibits the activity of (1 → 3)-β-glucan syn-
thase, an enzyme responsible for synthesis of the β-glucan 
network of the cell wall, and leads to cell lysis [253–255].

Filamentous fungi killer toxin

The killer toxin, KP4, is one of three produced by the only 
filamentous fungus that has been reported to express killer 
toxins to date. It is expressed by Ustilago maydis cells after 
infection with a dsRNA virus that encodes the toxin, as 
described for the S. cerevisiae toxins [256]. The KP4 peptide 
is 105 amino acids in length and displays an α/β sandwich 
structure. Unlike other killer toxins, KP4 does not seem to 
require cell wall binding since spheroplasts are equally sus-
ceptible to growth inhibition as intact cells. It inhibits Ca2+ 
uptake into cells by blocking Ca2+ channels, leading to inhi-
bition of Ca2+-regulated pathways required for cell growth 
and division. KP4 is fungistatic rather than fungicidal [256] 
and transgenic expression of KP4 in maize provided protec-
tion against Ustilago maydis infection [257].

Biotechnological potential for antifungal peptides

Emerging resistance to conventional antifungal strategies 
has created a requirement for novel methods for protection 
against fungal pathogens in both agriculture and medicine. 
Antifungal peptides from natural sources are an important 
resource for the control of fungal infections. Transgenic 
expression of a number of AFPs in a variety of crops has pro-
vided protection against fungal pathogens with no reported 
effect on the plant or crop yield [258, 259, 260, 261]. This 
has been limited to a research environment but the poten-
tial for use in agriculture has been established. AFPs have 
also been shown to control mammalian fungal infections in 
a laboratory setting [262, 263]. Based on promising data a 
number of AFPs have undergone pre-clinical and clinical 
trials yet none has yet gained acceptance for clinical use. 
As our understanding of the biology and biochemistry of 
AFPs increases it is anticipated that the potential for AFPs 
in agriculture and medicine will be achieved.
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Concluding remarks

As the number of antifungal peptides identified increases 
and more information regarding their activities becomes 
available, one thing is becoming clear. These peptides have 
evolved to act via a number of different mechanisms, and 
a single peptide is often capable of more than one mode of 
action, depending on the target cell type. Very few peptides 
that demonstrate both antibacterial and antifungal activity 
appear to exert these effects via the same mechanism and 
for this reason the antifungal activities of peptides cannot be 
inferred from studies on their antibacterial activities.

Particularly in relation to antifungal peptides from plants, 
the multitudinous activities demonstrated by various mem-
bers of these peptide groups indicate that their structural 
similarities may merely represent advantageous, stable scaf-
folds which plants use for a variety of activities. In addition, 
the similarities seen between antimicrobial peptides from 
diverse species indicates these peptides developed early in 
the evolutionary process. It is also possible that some pep-
tides have evolved to display similar characteristics via con-
vergent evolution. The wide variety of features and activi-
ties identified for various peptides makes them extremely 
promising for use as therapeutics and for crop protection in 
agriculture. In order for these peptides to be used to their 
full potential, their modes of action must be understood as 
well as the mechanisms employed by resistant strains to 
avoid or counteract their toxic effects.
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