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Few neuropsychiatric disorders have replicable biomarkers, prompting high-resolution and large-scale molecular 
studies. However, we still lack consensus on a more foundational question: whether quantitative shifts in cell 
types—the functional unit of life—contribute to neuropsychiatric disorders. Leveraging advances in human brain 
single-cell methylomics, we deconvolve seven major cell types using bulk DNA methylation profiling across 1270 
postmortem brains, including from individuals diagnosed with Alzheimer’s disease, schizophrenia, and autism. We 
observe and replicate cell-type compositional shifts for Alzheimer’s disease (endothelial cell loss), autism (increased 
microglia), and schizophrenia (decreased oligodendrocytes), and find age- and sex-related changes. Multiple layers 
of evidence indicate that endothelial cell loss contributes to Alzheimer’s disease, with comparable effect size to 
APOE genotype among older people. Genome-wide association identified five genetic loci related to cell-type com-
position, involving plausible genes for the neurovascular unit (P2RX5 and TRPV3) and excitatory neurons (DPY30 and 
MEMO1). These results implicate specific cell-type shifts in the pathophysiology of neuropsychiatric disorders.

INTRODUCTION
Most neuropsychiatric disorders lack biomarkers that can provide 
insights into pathophysiology, inform clinical diagnosis, or guide 
management (1). High-throughput genomic profiling technologies—
applied to bulk tissue or single cells—may provide insights at scale: 

interrogating genome-wide molecular features (e.g., gene expres-
sion or DNA methylation) across large numbers of brain samples. 
Despite these technical advances, however, our understanding of the 
cell types, cell states, and molecular mechanisms contributing to the 
pathophysiology for most neuropsychiatric disorders remains lim-
ited. Most fundamentally, the impact of cell-type proportion (CTP) 
shifts has not been robustly established, despite these being impor-
tant intermediate traits that may reflect cellular vulnerability or ac-
tivation states underlying pathogenesis. In neurological disorders, 
for example, loss of dopaminergic neurons and oligodendrocytes are 
hallmarks of Parkinson’s disease (2) and multiple sclerosis (3), re-
spectively. Furthermore, when observed, it has been difficult to infer 
whether CTP changes reflect causality or consequence using cross-
sectional data. Causal inference methods from statistical genetics (4) 
may offer inroads into addressing these fundamental questions.

Leveraging the growing number of large-scale, multi-omic pro-
filing studies conducted using postmortem human brain tissue from 
donors diagnosed with neuropsychiatric disorders (5–9), methods 
have been devised to infer CTPs from bulk tissue genomic readouts, 
particularly RNA sequencing (RNA-seq) and methylomic data (10, 
11). Below, we summarize important considerations for CTP decon-
volution efforts.

The first consideration is the deconvolution algorithm method, 
which can be reference-based (supervised) or reference-free (unsu-
pervised). The success of reference-free methods [which typically 
implement variations of sparse principal components analysis (PCA) 
(12) or surrogate variable analysis (SVA) (10, 13)] reflects the fact 
that subtle differences in cell-type composition across samples drive 
substantial variance in bulk genomic datasets including DNA meth-
ylation (14) and RNA-seq (7). However, reference-based methods 
that identify specific cell types—typically implementing non-negative 
matrix factorization or similar approaches (15–17)—are necessary 
for biological inference.
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A second issue in deconvolution is the choice of omics data type 
to best inform biological inference. There is rich literature compar-
ing CTP deconvolution methods for DNA methylation (10) and 
RNA-seq data (11). Overall, DNA methylation data are more ame-
nable to deconvolution as the data are scaled between 0 and 1 
(whereas RNA-seq has a much greater dynamic range), and, unlike 
RNA, DNA content is constant across cells (two copies for diploid 
organisms) (18). Furthermore, methylation profiling captures a 
greater proportion of the genome than RNA-seq and can identify 
“upstream” regulatory elements known to drive cell-type identity 
(19). Practically, methylation has demonstrated great efficacy in dis-
tinguishing neuron populations (20, 21). In contrast, RNA-based 
deconvolution pipelines often poorly quantify CTPs as they capture 
transcriptional activity (18) and—instead of tagging nuclei—can 
also capture neuropil, which includes material originating from dis-
tant brain regions. Other approaches count brain cell types more 
directly, such as immunohistochemistry (IHC) of bulk data, and cell 
sorting methods (including single-cell approaches). However, these 
approaches can be difficult to scale. Cell sorting also induces other 
experimental biases: Physical stress from bulk tissue dissociation al-
ters epigenetic profiles, structurally fragile cell types become under-
represented, physical characteristics of cells affect library preparation 
(19), and the reliance on cell markers (or their absence) for gating 
methods may not be sufficiently specific, resulting in heterogeneity 
within sorted populations. These biases help to explain why single-
nucleus RNA-seq (snRNA-seq) appears to oversample neuronal and 
oligodendrocyte proportions (22) compared to IHC counts.

A third issue for reference-based bulk deconvolution relates to 
the quality of the reference: Whether the reference (i) captures the 
full complement of cell types (11), (ii) is appropriately matched to 
the bulk sample [e.g., cell lines may have epigenetic differences com-
pared to donor tissue (10)], and (iii) whether specific, high-fidelity 
cell-type markers have been selected (9, 10).

While DNA methylation has advantages for deconvolution (18, 
23), its uptake has been limited by the availability of high-quality 
reference datasets. Furthermore, single-cell technology is less ma-
ture for DNA methylation (compared to RNA-seq), which has re-
stricted the granularity of reference cell-type panels. On balance, 
with a high-quality DNA methylation reference dataset, results from 
bulk deconvolution may be more robust than single-cell or cell sort-
ing experiments and more scalable. Overall, it can be concluded that 
brain CTP deconvolution has not yet been optimized due to limita-
tions in omics technologies and available data.

Here, we uniformly processed and integrated bulk DNA meth-
ylation and single-nucleotide polymorphism (SNP) genotypes from 
1270 postmortem human brain samples, including from donors di-
agnosed with Alzheimer’s disease (n = 300), autism spectrum disor-
der (ASD) (n = 31), and schizophrenia (n = 186) across the life span 
(0 to >90 years; Fig. 1). Leveraging recent high-quality single-cell 
methylome profiling in the neurotypical brain (24), we developed a 
cell type–specific reference panel for CTP deconvolution, which we 
validated and contrasted with previously developed—but less spe-
cific—reference-based and reference-free approaches (Fig. 1A) (25), 
as well as with other deconvolution modalities. We observed sub-
stantial CTP shifts across diagnoses, age, and sex. Finally, integra-
tion with genetic data highlighted genetic contributions to brain 
CTP shifts [through genome-wide association study (GWAS)], while 
polygenic score (PGS) and mediation analyses facilitated causal in-
ference about diagnosis-associated brain CTP changes.

RESULTS
Deconvolution of cell types and validation
Following careful quality control, outlier removal, and normaliza-
tion (Materials and Methods), we aggregated genome-wide meth-
ylation profiling of homogenate prefrontal cortex brain tissue samples 
from 1270 unique subjects across datasets [ROSMAP (5), UCLA_
ASD (26), and LIBD (6)] (table S3). In parallel, using methylome 
data from 15,030 single cells from adult human prefrontal cortex 
(24), we assembled a cell type–specific reference panel for seven major 
brain cell types: excitatory neurons, inhibitory neurons, astrocytes, 
endothelial cells, microglia, oligodendrocytes, and oligodendrocyte 
precursor cells (OPCs) (Fig. 1). We compared and validated a vari-
ety of cell-type deconvolution pipelines, evaluating the final decon-
volution quality based on several criteria as described in note S1 
(figs. S1 to S13 and tables S4 to S6).

We ultimately selected a reference-based pipeline: the reference 
being the single-cell methylation sequencing-based panel devised 
here with marker probe selection based on “extremes” of methyla-
tion (Materials and Methods) and the deconvolution via a non-
negative matrix factorization algorithm implemented previously 
(Fig. 2, figs. S1 to S13, and table S7) (15). In validation, we found 
excellent concordance among CTP estimates from alternative 
reference profiles and deconvolution pipelines for bulk methyla-
tion, including with whole-genome bisulfite sequencing reference 
profiles from sorted cell populations [“WGBS/FACS” (fluorescence-
activated cell sorting)] (27) and with EpiSCORE RNA reference-
based deconvolution (fig. S6 and note S1) (28). The consistency of 
these results is notable as the reference profile can strongly influence 
the deconvolution (29). Our deconvolution pipeline performed 
strongly when benchmarked against external sorted cell popula-
tions (fig. S8 and note S1). We further compared our results with 
reference-free methods including smartSVA (13) and MethylNet 
(figs. S5, S9, and S10) (30) and observed strong correlations between 
surrogate variable(s) and oligodendrocyte proportion, suggesting 
that gray/white matter dissection is a major driver of variation in 
DNA methylation profiles and CTPs. Finally, we compared our de-
convolved CTPs (from bulk DNA methylation) against matched 
CTP estimates from orthogonal omics technologies (single cell, bulk 
RNA-seq, and IHC) and found modest concordance (figs. S12 and 
S13; details in note S1). These comparisons demonstrate the system-
atic differences in how different omics technologies can infer CTPs. 
Notably, bulk RNA-seq approaches provided less specific estimates 
as they also capture neuropil (which constitutes the majority of 
brain tissue), rather than nuclear material alone (23). We provide 
extensive detail on our comparison of methods and evaluation of 
the optimal method in note S1.

Associations between neuropsychiatric diagnoses and 
brain CTPs
Within each of the bulk DNA methylation datasets, we tested for 
associations between the seven brain CTPs and neuropsychiatric di-
agnoses (Alzheimer’s disease for ROSMAP, ASD for UCLA_ASD 
dataset, and schizophrenia for LIBD; Fig. 3A and fig. S14) (full data-
set subset to n = 1179 in this diagnosis-based analysis to balance 
study design by age; see Materials and Methods).

It is difficult to interpret diagnostic associations with CTPs using 
standard statistical tools—whether such an association represents a 
quantitative cell-type difference or, alternatively, shifts in other cell 
types. Hence, we employed compositionally aware methods, which 
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Fig. 1. Overview of study design and analyses. (A) An overview of the pipeline developed for reference-based deconvolution of CTPs from bulk brain methylation data. 
UMAP shows 7 major brain cell types clustered by single cell methylome profiles. (B) Bulk prefrontal cortex DNA methylation data was integrated from three studies: 
ROSMAP (ascertained for Alzheimer’s disease), LIBD (ascertained for schizophrenia), and UCLA_ASD (ascertained for ASD). Table shows the number of participants: Second 
column shows individuals with bulk DNA methylation data in each study; blue text for the number of individuals without the diagnosis of interest; red (Alzheimer’s dis-
ease), yellow (schizophrenia), and green (ASD) are for those with the diagnosis; the numbers in brackets indicates the number of people excluded for case/control analyses 
to balance study design by age and sex; third column shows the number of people with matching SNP genotypes, with individuals of European ancestry shown in brack-
ets. Density plot shows age distribution for each constituent study, and bar plots show breakdown by sex. (C) Downstream analyses involving deconvolved brain CTPs, 
phenotype and genotype data. EUR, European; Exc, excitatory neurons; Inh, inhibitory neurons; Astro, astrocytes; Endo, endothelial cells; Micro, microglia; Oligo, oligoden-
drocyte, OPC, oligodendrocyte precursor cells.
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are underused despite being necessary for correct inference. The first 
compositionally aware approach applied the centered log-ratio (clr) 
transformation to CTPs before regressing against diagnosis and 
baseline covariates [CTP (clr-transformed) ~ diagnosis + age + age2 + 
sex + batch] (Fig. 3B and tables S8 and S9). The clr-transformation 
accounts for compositionality by comparing proportions relative to 
the geometric mean; unlike other methods, it retains all composi-
tions for analysis. The second compositional approach involved gen-
erating compositionally aware principal components (CTP_PCs), 
where each CTP_PC represents a “balance” or “ratio” of the seven 
CTPs. These methods are explained in detail in note S2.

We identified diagnostic associations between Alzheimer’s dis-
ease and decreased endothelial cells (b = −0.039, SE = 0.007, P = 2.1 × 
10−7, Bonferroni significant), increased excitatory neurons (b  = 
0.04, SE = 0.01, P = 3.1 × 10−3, Bonferroni significant) and inhibi-
tory neurons (b =  0.028, SE =  0.008, P =  5.3 × 10−4, Bonferroni 
significant), ASD and increased microglia (b  =  0.06, SE  =  0.03, 
P = 2.1 × 10−2), and schizophrenia and decreased oligodendrocytes 
(b = −0.10, SE = 0.03, P = 5.4 × 10−4, Bonferroni significant). As 
expected, these associations were consistent with sensitivity analy-
ses excluding covariates (fig. S15).

We further explored the association between measures of Al-
zheimer’s disease severity and loss of endothelial cells within the 
ROSMAP dataset, as this association appeared to be particularly 
strong. We similarly found significant associations between de-
creased endothelial cells and both clinical [“final clinical consensus 
diagnosis”; analysis of variance (ANOVA) F = 6.6, P = 1.8 × 10−4, 
adjusted for baseline covariates; Fig.  3E] and neuropathological 
(Braak score; b = −0.011, SE = 0.005, P = 1.9 × 10−2, adjusted for 
covariates) measures of Alzheimer’s disease severity (Fig. 3F). As an 
indicator of biological significance, we found that endothelial CTP 
(clr-transformed) explained 3.4% of variance (Nagelkerke R2) in Al-
zheimer’s disease diagnosis within the ROSMAP dataset, which was 
comparable to the variance explained by APOE genotype (Nagelkerke 
R2 = 3.7%), greater than the effects of sex (Nagelkerke R2 = 0.4%) 
and years of education (Nagelkerke R2 = 0.02%) but less than age 
effects (Nagelkerke R2 = 10.7%; ROSMAP age range: 66 to >90).

Second, we tested whether global cell-type compositional shifts 
were associated with significant variation in diagnosis (beyond that 
explained by a model with baseline covariates including age, age2, 
sex and batch) using a likelihood ratio test. Within each dataset, 
we quantified global cell-type compositional shifts by generating 

Fig. 2. Overview of deconvolution method. (A) Single-cell methylome sequencing was performed on 15,030 single cells from postmortem human frontal cortex. 
(B) Reference panel of marker sites was created from the methylome data to capture differentially hypermethylated and hypomethylated sites for each of the seven major 
brain cell types. (C) With this reference panel, bulk methylation data from ROSMAP, LIBD, and UCLA_ASD was deconvolved using non-negative matrix factorization as 
implemented by the Houseman algorithm. (D) We applied the clr-transformation to the seven major brain CTPs. Bar plot below shows the average clr-transformed CTPs 
(± SE).
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Fig. 3. Brain cell type shifts are observed across neuropsychiatric diagnoses, age, and sex. (A) Boxplot of deconvolved brain CTPs, stratified by study. (B) Diagnosis coefficients 
(±95% CI) from linear models of brain CTP (clr-transformed) ~ diagnosis + age + age2 + sex + batch. This model was run within each study (UCLA_ASD, n = 58; ROSMAP, n = 715; 
LIBD, n = 402). Labeled results indicate nominally-significant results (P ≤ 0.05). (C) Age effect coefficients (±95% CI) from linear models of brain CTP (clr-transformed) ~ diagnosis + 
age + sex + batch; coefficients for sex from linear models of brain CTP (clr-transformed) ~ diagnosis + age + age2 + sex + batch. This model was run as a mega-analysis including all 
participants (with and without neuropsychiatric diagnoses) across all studies (n = 1270). (D) Age trajectories of brain CTPs (clr-transformed) aggregating across all studies, correcting 
for batch effects. (E) Boxplot of endothelial cell proportion (clr-transformed) by final clinical consensus cognitive diagnosis: no cognitive impairment (NCI) versus mild cognitive 
impairment (MCI) versus Alzheimer’s disease (AZD) versus other primary cause of dementia (Other). (F) Scatterplot of endothelial cell CTP (clr-transformed) versus Braak score 
(representing histopathological severity of Alzheimer’s disease), demonstrating replication across the ROSMAP and BDR datasets. (G) Increased microglia are replicated in ASD using 
snRNA-seq count data (n = 60). ASD diagnosis coefficients (±95% CI) from linear models of brain CTP (clr-transformed) ~ diagnosis + age + age2 + sex + brain region.
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compositionally-aware PCs of the CTPs (CTP_PCs; table  S8 and 
note S2), where each PC represents a ratio of cell types. We then 
took the first CTP_PCs explaining ≥95% of the variation to fit as 
additional variables in the likelihood ratio test (fig. S16 and Materi-
als and Methods). CTP_PCs (calculated within each dataset) were 
necessary to use in this analysis, as raw CTPs are correlated (by na-
ture of being a proportion), and singularity errors make it impossible 
to simultaneously include all CTPs (raw or clr-transformed) in this 
model. For Alzheimer’s disease (ROSMAP dataset: n  =  300 AZD 
and n  =  418 undiagnosed), cell-type compositional shifts signifi-
cantly improved the model fit (χ2 = 27.7, P = 1.4 × 10−5, df = 4). 
This association was driven by increased CTP_PC3 (reflecting in-
creased excitatory neurons and decreased microglia) and reduced 
CTP_PC4 (reflecting increased endothelial cells and astrocytes and 
decreased microglia and neurons) (fig.  S16C). For schizophrenia 
(LIBD dataset subset balanced for age: n = 185 SCZ and n = 217 
undiagnosed), CTP_PCs explained significantly more variance in 
diagnosis than the baseline covariate model (χ2 = 23.8, P = 8.7 × 
10−5, df = 4). This association was driven by increased CTP_PC2, 
whose loadings represent reduced oligodendrocytes, and increased 
OPCs and endothelial cells (fig. S16B). For ASD diagnosis (UCLA_
ASD dataset subset balanced for age differences: n = 31 ASD and 
n = 27 undiagnosed), including the CTP_PCs in the model demon-
strated marginal improvement in model fit (χ2 =  6.28, P =  9.9 × 
10−2, df = 4). This association was driven by increased microglia 
and decreased excitatory neurons and oligodendrocytes (CTP_PC2; 
fig. S16A). Overall, these results demonstrate that global cell-type 
compositional shifts are associated with diagnosis of these three 
neuropsychiatric conditions.

These unsupervised PCs yielded consistent CTP ratios within 
each dataset and in aggregation, indicating that they capture con-
sistent biology and not artifact. For example, the first CTP_PC 
represented ratios of neurons and astrocytes against microglia, oli-
godendrocytes, and OPCs. For each study, there was also a CTP_PC 
interpretable as the “neurovascular unit” with a ratio of endothelial 
cells and astrocytes against neurons and microglia (aggregated 
CTP_PC5, ROSMAP CTP_PC4, LIBD CTP_PC4, and UCLA_ASD 
CTP_PC3; fig. S16). Hypothesizing that Alzheimer’s disease may be 
related to this neurovascular unit, we found a significant association 
between ROSMAP CTP_PC4 and Alzheimer’s disease diagnosis 
(b = −0.036, SE = 0.009, P = 3.9 × 10−5).

We did not find that other clinical variables (e.g., comorbidities, 
medications, and cause of death) were potential confounders of 
these CTP associations (note S3).

Replication using external datasets and with orthogonal 
omics technologies
As further validation, we performed replication using external data-
sets. The independent and large Brains for Dementia Research 
(BDR) dataset—ascertained for Alzheimer’s disease—includes bulk 
prefrontal cortex DNA methylation data for n  =  597 individuals 
(31). For replication in BDR, we focused on Braak score (as there are 
relatively few controls in this dataset) and again identified a signifi-
cant association between reduced endothelial cells and increased 
Braak score (b = −0.028, SE = 0.006, P = 9.6 × 10−6) (Fig. 3F), indi-
cating that this CTP change is robust. Within BDR, the variance in 
Braak stage (R2 = 4.1%) associated with endothelial CTP was similar 
to ROSMAP, whereas age and sex had lesser associations (R2 = 0%), 
likely due to ascertainment.

We next compared diagnostic associations using matched data 
from orthogonal omics technologies, noting the inherent limita-
tions of this approach (note S1) (23). There were matched single-
nucleus RNA-seq counts for a subset of UCLA_ASD (32) and 
ROSMAP (33) participants and matched deconvolved bulk RNA-
seq CTPs for a subset of the LIBD and UCLA_ASD participants 
from PsychENCODE (7). Using the single-cell datasets, we repli-
cated the association between increased microglia and ASD diagno-
sis (b = 0.36, SE = 0.16, P = 3.0 × 10−2, n = 60) (Fig. 3g and fig. S17) 
(34). The Alzheimer’s disease single-cell RNA-seq dataset (n = 48) 
did not detect endothelial cell loss (fig.  S18), which likely reflects 
technical difficulties in capturing this very low-prevalence cell type 
in single-cell experiments without experimental enrichment or cap-
ture techniques (35). Compared to bulk methylation deconvolution, 
bulk RNA-seq deconvolution (n = 473) had weaker signal for diag-
nostic associations but consistent directions of effect: There was a 
trend-level association between increased microglia and ASD diag-
nosis (b = 0.29, SE = 0.15, P = 5.9 × 10−2) and no significant asso-
ciation between decreased oligodendrocytes and schizophrenia 
diagnosis (b = −2.1 × 10−2, SE = 4.8 × 10−2, P = 0.65) (fig. S19).

Last, we internally recapitulated the association between Al-
zheimer’s disease and endothelial cells using deconvolutions derived 
from alternative pipelines applied to the same bulk datasets (note 
S1). We focused on two pipelines: a recent WGBS DNA methylation 
atlas reference from Loyfer et al. (27) with methylation profiles from 
a total of 39 FACS-sorted cell types including some brain cell types 
(WGBS/FACS) and another from Zhu et  al. (28), which inferred 
DNA methylation cell-type profiles from single-cell RNA-seq 
(“EpiSCORE RNA based”). We again observed a significant associa-
tion between Alzheimer’s disease and reduced endothelial cells 
within the ROSMAP dataset when using both the WGBS/FACS-
based reference (β = −8.5 × 10−2, SE = 1.6 × 10−2, P = 2.4 × 10−7, 
Bonferroni significant) and the EpiSCORE RNA-based deconvolu-
tion (b = 4.9 × 10−2, b = 2.5 × 10−2, P = 4.7 × 10−2).

Mega-analysis of cell proportion shifts across the life span 
and between sexes
To investigate associations between CTPs, age, and sex, we mega-
analyzed all n  =  1270 participants across studies and diagnoses. 
With increasing age, we found Bonferroni significant patterns of de-
creasing endothelial cells (b = −1.8 × 10−3, SE = 2.1 × 10−4, P = 6.2 
× 10−18) and microglia (b = −5.1 × 10−3, SE = 3.4 × 10−4, P = 1.7 × 
10−4), increasing excitatory neurons (b  =  2.1 × 10−3, SE  =  6.0 × 
10−4, P = 4.0 × 10−4), and marked early-life increases in oligoden-
drocytes (b = 5.8 × 10−3, SE = 5.6 × 10−4, P = 1.8 × 10−23) alongside 
decreases in inhibitory neurons (b = −2.5 × 10−3, SE = 2.4 × 10−4, 
P = 2.6 × 10−23) (Fig. 3, C and D). Furthermore, age effects account-
ed for substantial proportions of variance in CTPs (fig. S20). Male 
sex was associated with increased microglia (b = 2.8 × 10−2, SE = 8.8 × 
10−3 P = 1.4 × 10−3) and reduced endothelial cells (b = −2.8 × 10−2, 
SE = 5.4 × 10−3, P = 2.9 × 10−7) after Bonferroni correction (Fig. 3C 
and fig. S21). To ensure that results were robust, we confirmed that 
mega-analysis effects were consistent across the three constituent 
studies and also confirmed that these age and sex effects persisted in 
the subset of n = 741 undiagnosed participants (fig. S22). We note 
that sex and age covaried in ROSMAP (males tend to be younger:  
b = −1.89, SE = 0.36, P = 2.4 × 10−7) and LIBD datasets (males 
younger: b = −5.5, SE = 1.9, P = 4.5 × 10−3), and this association 
likely reflects the relationship between female sex and increased 
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life expectancy. Regardless, stratification by sex did not meaning-
fully alter the age-CTP associations (fig. S23).

Brain CTPs are associated with PGSs for 
neuropsychiatric traits
These observed disorder-associated cell-type shifts could reflect 
either a causal process or simply a consequence. To begin to dif-
ferentiate these distinct interpretations, we leveraged PGSs as a di-
rectional genetic anchor. We uniformly processed genome-wide 
SNP genotypes among donors with matched brain methylation pro-
filing (n  =  1098). Focusing on individuals of European ancestry 
(n = 878; fig. S24), we calculated PGSs for multiple neuropsychiatric 
traits, including ASD (36), schizophrenia (37), Alzheimer’s disease 
(38), major depressive disorder (39), and educational attainment 
(40), as well as height (41) as a negative control (tables S8 and S9 and 
fig. S25). As a validation, we found that PGS significantly predicted 
diagnostic status for both schizophrenia and Alzheimer’s disease 
within their respective cohorts (Fig. 4A and fig. S25). This was not 
the case for ASD PGS, which likely reflects insufficient power of the 
training weights from GWAS as well as the small sample size of the 
UCLA_ASD cohort. There were weak associations for the relation-
ships for height versus ASD and schizophrenia diagnosis and educa-
tional attainment, potentially reflecting ascertainment (fig. S25).

We next estimated effect sizes for relationships between brain 
CTPs and PGS for neuropsychiatric diagnoses and traits (Fig. 4B). 
There remained significant associations between increased Al-
zheimer’s disease PGS and decreased endothelial cells (b = −0.008, 
SE = 0.003, P = 7.0 × 10−3; adjusting for baseline covariates plus 
diagnosis) and between higher schizophrenia PGS and decreased 
astrocytes (b = −0.015, SE = 0.007, P = 2.8 × 10−2; baseline covari-
ates plus diagnosis) (Fig.  4B and fig.  S26). The former result was 
particularly notable as these genetic results corroborated the pheno-
typic association between Alzheimer’s disease diagnosis and de-
creased endothelial CTP (Fig. 3, B, E, and F). In sensitivity analyses, 
we showed that the association between Alzheimer’s disease PGS 
and endothelial cells persisted when we restricted our analysis to 
undiagnosed participants (leaving n =  503 of European ancestry) 
(b = −0.008, SE = 0.003, P = 3.1 × 10−2; baseline covariates), sug-
gesting that genetic effects on endothelial cell loss in Alzheimer’s 
disease precede clinical diagnosis (fig.  S27). Alzheimer’s disease 
PGS was most predictive of endothelial cell loss among older indi-
viduals (fig. S28 and note S4). There was no significant relationship 
between Alzheimer’s disease PGS and the neurovascular unit CTP_
PC5 (in the aggregated dataset) after correcting for Alzheimer’s dis-
ease diagnosis and baseline covariates (b  =  0.003, SE  =  0.003, 
P = 0.40). In the broader context, one interpretation is that endothe-
lial cell loss may be a specific etiological factor, whereas broader 
scale neurovascular changes may occur relatively downstream.

To clarify the putative causal association between endothelial cell 
loss and Alzheimer’s disease, we performed a mediation analysis 
quantifying the contribution of endothelial cell loss to the associa-
tion between Alzheimer’s PGS and Alzheimer’s diagnosis (i.e., Al-
zheimer’s disease PGS  →  endothelial cells → Alzheimer’s disease 
diagnosis). We identified statistically significant mediation in models 
with covariates {mediating effect of endothelial cells (ACMEs) = 
8.9 × 10−3, 95% confidence interval (CI) (2.6 × 10−3, 2.0 × 10−2), 
P ~ 0; effect of Alzheimer’s PGS on Alzheimer’s disease [average di-
rect effect (ADE)] = 0.15, 95% CI (0.11, 0.19), P ~ 0)} and without 
covariates (Materials and Methods). Notably, we lacked statistical 

power to perform more stringent Mendelian randomization analy-
ses to corroborate a causal effect of endothelial cell loss on Alzheim-
er’s disease as there was an insufficient number of valid genetic 
instruments; however, we did not find evidence for the reverse caus-
al effect of Alzheimer’s disease on endothelial cell loss despite having 
adequate power (note S5).

As a form of validation, we calculated PGS for white matter hy-
perintensities (WMHs) detected on brain magnetic resonance im-
aging (MRI) (42)—this is a marker for cerebral small-vessel disease 
including endothelial dysfunction. WMHs are strongly associated 
with vascular risk factors (e.g., smoking, hypertension, diabetes, and 
hypercholesterolaemia) and are a well-known risk factor for demen-
tia and stroke (43–45). Consistently, the WMH PGS was nominally 
predictive of reduced endothelial cells (b = −6.9 × 10−3, SE = 3.4 × 
10−3, P = 0.04) (Fig. 4B).

Given this evidence for a relationship between endothelial cell 
loss and polygenic risk for Alzheimer’s disease, we investigated as-
sociations between endothelial cell loss and APOE ε4 genotypes—
the single largest genetic risk factor for Alzheimer’s disease. In this 
analysis, we included the Alzheimer’s disease cases and all undiag-
nosed controls across the three studies, with 15 of the 775 individu-
als carrying homozygous APOE ε4 alleles (Materials and Methods). 
There was a nominally significant association between endothelial 
cell loss and APOE ε4 homozygous genotype (b  =  −9.6 × 10−2, 
SE = 4.3 × 10−2, P = 2.7 × 10−2), which remained when restricting 
to only controls (b = −9.9 × 10−2, SE = 4.7 × 10−2, P = 4.3 × 10−2; 
n = 511), adjusting for baseline covariates. Together, these results 
support a potential causal relationship of endothelial cell loss in the 
progression and severity of Alzheimer’s disease that is underpinned 
by common genetic risk, including APOE ε4 alleles.

Genetic control of brain CTPs
To identify individual genetic loci underlying these cell proportion 
associations, we next performed GWAS meta-analyses—each in-
cluding more than 5 million SNPs—among the n = 873 unrelated 
participants of European ancestry (Materials and Methods). We per-
formed two sets of GWAS to aid interpretation of the proportional 
data (note S2): (i) taking the brain CTPs (with clr-transformation 
followed by ranked inverse normal transformation; the latter being 
typical in GWAS) as the phenotype (Fig. 5 and fig. S29) and (ii) as a 
secondary analysis, capturing “axes” of CTP shifts with composi-
tionally aware PCs (CTP_PCs; with inverse normal transformation) 
(fig. S30). We included as covariates age, age2, sex, batch, and five 
within-study genotyping PCs for population stratification. In addi-
tion to standard quality control (QC) procedures, we filtered out 
SNPs that were not present in all three studies, had P < 0.001 for 
Cochran’s Q test for heterogeneity, or had a minor allele frequency 
(MAF) < 0.05 (Materials and Methods). In total, we identified five 
genome-wide significant (GWS) loci (P < 5 × 10−8) that were inde-
pendently associated with specific brain CTP changes (Table 1) in-
cluding one for inhibitory neurons (rs6011327; P = 2.3 × 10−8), one 
for astrocytes (rs17025223; P = 3.3 × 10−8), and three for various 
CTP_PCs (Fig. 5, Table 1, and figs. S29 to S32).

To gain further insights into the genetic architecture of CTP 
traits in this relatively underpowered dataset, we identified indepen-
dent loci at a relaxed P value threshold (P < 1 × 10−5) in a condi-
tional and joint analysis framework using the software package 
GCTA-COJO (46, 47). We found 11 independent loci for excitatory 
neurons, 14 for inhibitory neurons, 17 for astrocytes, 9 for endothelial 
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Fig. 4. Polygenic scores for neuropsychiatric traits predict brain cell-type shifts. (A) Distributions of PGS within each study, comparing individuals with and without 
the neuropsychiatric diagnosis of interest. (B) Neuropsychiatric trait PGS coefficients (±95% CI) from linear models for brain CTP (clr-transformed) ~ neuropsychiatric trait 
PGS + age + age2 + diagnosis + sex + batch + genotyping PC1–3, subsetting for individuals with the diagnosis of interest (i.e., one of ASD, schizophrenia, or Alzheimer’s 
disease) and undiagnosed controls. Analyses included individuals with the diagnosis of interest and all controls: n = 531 for the ASD_PGS analysis, n = 591 for the SCZ_PGS 
analysis, and n = 763 for the AZD_PGS analysis. The White Matter Hyperintensity on MRI (WMH_PGS) PGS analysis included the same n = 763 individuals as for Alzheimer’s 
disease. (C) Schematic of causal analyses (mediation analysis and SMR). For the mediation analysis, statistics for effect sizes, 95% CI and P value are provided. ACME, aver-
age causal mediation effect; ADE, average direct effect.
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Fig. 5. Manhattan plots for genome-wide association studies for brain CTPs and composition. Manhattan plots correspond to GWAS meta-analyses (n = 873), with 
signficant (P < 5 × 10−8) hits: inhibitory neuron CTP, astrocyte CTP, CTP_PC2 (↓Oligo / ↑OPC + Exc), CTP_PC3 (↓Micro / ↑Oligo + OPC), and CTP_PC5 (↓Astro + Endo / 
↑Exc + Inh + Micro). Left barplots denote the relative loadings of cell types related to the CTP_PC variables. GWAS was performed in a linear model framework, including 
as covariates age, age2, sex, batch, and diagnosis. Red dotted line denotes the P < 5 × 10−8 threshold.

Table 1. Annotation of significant GWAS SNPs (P < 5 × 10−8). 

SNP CHR BP (hg38) Z P MAF Phenotype Nearest 
Gene

Region SMR associ-
ations

rs6011327 20 64182740 −5.58 2.32 × 10−8 0.06 Inhibitory neuron 
proportion

MYT1 Intronic –

rs17025223 1 109947719 −5.52 3.30 × 10−8 0.10 Astrocyte propor-
tion

CSF1 Intergenic –

rs12729264 1 232502590 −5.63 1.86 × 10−8 0.10 CTP PC2: ↓Oligo / 
↑OPC + Exc

SIPA1L2 Intronic –

rs12434457 14 95547914 −5.48 3.63 × 10−8 0.26 CTP PC3: ↓Micro / 
↑Oligo + OPC

GLRX5 Intergenic –

rs222787 17 3625320 5.64 1.68 × 10−8 0.49 CTP PC5: 
↓Astro + Endo / 

↑Exc + Inh + Micro

SHPK, SHPK-
TRPV1

Intronic P2RX5, 
TRPV3, 

SPATA22
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cells, 14 for microglia, 11 for oligodendrocytes, and 13 for OPCs 
(Fig.  5). In the corresponding CTP_PC analysis (GCTA-COJO, 
P < 1 × 10−5), we found 18 for CTP_PC1, 10 for CTP_PC2, 11 for 
CTP_PC3, 5 for CTP_PC4, and 6 for CTP_PC5. We also attempted 
to perform a multi-ancestry analysis; however, this introduced het-
erogeneity due to confounding between covariates and brain CTPs 
(note S6 and figs.  S33 and S34), and we therefore focused on the 
European subset.

To identify the putative genes underlying the loci identified by 
CTP GWAS (GWAS, P < 1 × 10−6), we performed summary data–
based Mendelian randomization (SMR) (table S10) in conjunction 
with the HEIDI test to exclude associations due to genetic linkage 
(where genetic variants influence CTP through other genes) (48). 
Figures  S35 to S41 provide LocusZoom plots for the genomic 
regions and forest plots to demonstrate consistent effects across 
studies.

We identified a relationship between the neurovascular unit 
CTP_PC5 locus on chromosome 17 (GWAS index SNP rs222787; P = 
1.68 × 10−8), with the expression of genes including P2RX5 (p_
SMR = 7.95 × 10−5, p_HEIDI = 0.31), TRPV3 (p_SMR = 3.54 × 
10−3, p_HEIDI =  0.09) and SPATA22 (p_SMR =  1.77 × 10−3, p_
HEIDI = 0.09) (fig. S42). CTP_PC5 may be interpreted as a repre-
sentation of the cerebrovascular system/blood-brain barrier (high 
ratio of astrocytes and endothelial cells relative to neurons and mi-
croglia), so it is notable that these genes have related roles. P2RX5 
encodes the P2X5 purinergic receptor, a ligand-gated ion channel 
activated by ATP, which contributes to endothelial cell differentia-
tion and autocrine regulation (49, 50), and has functional roles in 
adult mouse astrocytes (51). Common genetic variation plausibly 
contributes to P2X5 receptor function: Due to a SNV that promotes 
exon skipping, only a proportion of the human population express 
fully functional P2X5 receptors, and amino acid substitutions with-
in this gene can markedly affect the receptor’s responsiveness to its 
ATP ligand (52). TRPV3 is a nonselective cation channel, whose ac-
tivation induces endothelium-mediated vasodilation of cerebral ar-
teries (53) and cerebral parenchymal arterioles, which regulate 
blood flow from larger pial arteries on the brain surface to capillary 
beds (54). There is also evidence to suggest that TRPV3 overactivity 
exacerbates cerebral ischaemia/reperfusion injury in stroke by pro-
moting neural excitotoxicity (55).

For the top GWAS locus in excitatory neurons (GWAS index 
SNP rs13425083; P = 8.43 × 10−7), we identified associations with 
DPY30 expression (p_SMR  =  1.47 × 10−5, p_HEIDI  =  0.18)—
which has been identified as an important regulator of neural pro-
genitor cells and their proliferation and differentiation (56)—and 
MEMO1 expression (p_SMR  =  8.43 × 10−3, p_HEIDI  =  0.46), 
which mediates radial glia tiling and subsequent neuronal migra-
tion (fig. S42) (57).

For the other GWS loci (P < 5 × 10−8; Fig. 5 and Table 1), there 
was no strong evidence for underlying relationships with gene 
expression. For the GWS brain CTP SNPs, we also performed colo-
calization (58) using large-scale human brain expression and splic-
ing quantitative trait locus (QTL) resources, including MetaBrain, 
THISTLE, and a recent single-cell QTL human brain resource (59), 
but did not identify any significant associations.

Lastly, we investigated the TMEM106B locus, as previous studies 
have implicated rs1990621 (within the TMEM106B gene region) and 
nearby SNPs on neuronal proportion deconvolved from ROSMAP 
bulk RNA-seq samples (60, 61). Here, we observed a GWS association 

between rs1990621 and increased astrocyte proportion within the 
ROSMAP cohort (b  =  0.21, SE  =  0.03, P  =  8.9 ×10−8, n  =  621) 
(Fig.  6A), although these results did not remain GWS in the full 
meta-analysis. In contrast to the previous RNA-seq deconvolution 
results, this SNP was not associated with neuronal proportions in 
our dataset (Fig.  6B). We hypothesize that the specificity of this 
rs1990621/astrocyte association to the ROSMAP dataset may reflect 
a cohort-specific effect, for example, related to a gene-by-environment 
interaction in the context of neurodegeneration. 

DISCUSSION
Here, we present a comprehensive and granular investigation of 
brain cell-type composition, its developmental regulation, sexual 
dimorphism, genetic regulation, and association with neuropsychi-
atric disorders, leveraging a large-scale integrated genetic and meth-
ylomic dataset from 1270 brain tissue samples. To quantify cellular 
shifts, we constructed a deconvolution pipeline using a single-cell 
methylome-based human brain reference panel to estimate propor-
tions for 7 major brain cell types, which is available to the broader 
research community (github.com/gandallab/brain_CTP_deconv). 
We identified significant brain CTP shifts for three neuropsychiatric 
diagnoses (Fig. 3), using PGSs to aid causal inference (Fig. 4).

We identified a potential causal role of endothelial cell loss on 
Alzheimer’s disease. This result was robust: to external replication; 
multiple sensitivity analyses; and demonstrated a dose-response re-
lationship across the spectra of genetic risk, clinical progression, 
and neuropathological severity. Notably, the variance explained by 
endothelial CTP in diagnosis was comparable to APOE genotype 
status within the ROSMAP dataset. These findings are consistent 
with a recent human brain vascular atlas study which found endo-
thelial cell loss and blood brain-barrier impairment in Alzheimer’s 
disease using snRNA-seq and immunostaining approaches (35), as 
well as evidence that brain endothelial cells mediate microglial acti-
vation and cognitive decline in mouse models (62). Our results ad-
vance these findings through an orthogonal approach, extending to 
a much larger sample size, and by using clinically meaningful mea-
sures of Alzheimer’s disease severity alongside extensive sensitivity 
analyses to ensure robustness. Furthermore, we identified relation-
ships with other clinical variables related to Alzheimer’s disease in-
cluding APOE ε4 genotype and brain MRI WMHs.

We also found relative increases in excitatory and inhibitory 
cells associated with Alzheimer’s disease diagnosis but not with 
genetic risk, suggesting that this CTP shift may be associated with 
a downstream disease process (or that our PGS analysis was un-
derpowered). This seems paradoxical, as neuron death is observed 
in Alzheimer’s disease; however, it is important to note that 
these proportional data should be interpreted as a relative de-
crease in neuronal populations compared to the glial propor-
tions. In a re-analysis of snRNA-seq data (33) and IHC data with 
clr-transformation (22), we also identified similar trends, and 
these are also reflected in recent work (63). While there is a well-
established association between microglial activation and Al-
zheimer’s disease, we found no significant shift in microglial 
proportion. This stands in contrast to RNA-seq based deconvolu-
tion results in Alzheimer’s disease, which we suspect misconstrue 
microglial activation as an increase in cell proportion (64). Thus, 
Alzheimer’s disease-related microglial activation may reflect altered 
cellular state rather than a shift in microglia quantity.

http://github.com/gandallab/brain_CTP_deconv
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Schizophrenia diagnosis was associated with decreased oligo-
dendrocytes which, importantly, replicates previous findings from 
histological (65–67), neuroimaging (68) and transcriptomic stud-
ies (69). Increased schizophrenia PGS was associated with lower 
astrocyte CTP, whereas schizophrenia diagnosis was associated 
with increased astrocyte CTP although not to statistical signifi-
cance. Previous gene expression studies have also found associations 
between schizophrenia diagnosis and proxies for increased astro-
cytes (69, 70), so it is possible that astrocyte CTP changes may re-
flect a compensatory process unrelated to genetic risk.

In line with previous findings of neural-immune activation in 
ASD (70, 71), we confirmed that ASD diagnosis was associated with 
increased microglia CTP. We did not find a genetic association be-
tween ASD PGS and microglia, but cannot rule out a causal effect 
because the ASD PGS is relatively underpowered.

There were substantial shifts in brain cell-type composition with 
increasing age and between sexes (Fig. 3, C and D), and these trends 
were consistent across studies and when excluding individuals with 
a neuropsychiatric diagnosis. The striking increase in oligodendro-
cytes during the first 20 years of life fits with extensive myelination 
occuring through adolescence and early adulthood (72). The de-
creasing trajectory of inhibitory neuron CTPs was also predomi-
nantly confined to early life. In contrast, there were more gradual 

compositional shifts with aging toward increased excitatory neu-
rons and reduced microglia and endothelial cells. Regarding sex dif-
ferences, males across cohorts tended to have relatively higher 
microglia CTP (Fig. 1B), as well as reduced excitatory neurons and 
increased inhibitory neurons.

Through GWAS, we identified common genetic variants associ-
ated with brain CTPs (Fig. 5). Despite the relatively small EUR sam-
ple size (n  =  873) by GWAS standards, we identified significant 
associations for inhibitory neurons and astrocytes and for broader 
cell-type compositional shifts including one representing the neuro-
vascular unit. Some of the GWS SNPs could be fine-mapped to 
genes with credible evidence of cell type–specific expression or 
functions [e.g., excitatory neurons: (DPY30 and MEMO1) and the 
neurovascular unit (P2RX5 and TRPV3)]. We hypothesize that 
markers of cell identity may be distinct from genes that affect cell-
type composition, as they do not necessarily relate to cell prolifera-
tion and development.

Previous brain cell-type genetic analyses applied to RNA-seq 
data (primarily from the ROSMAP dataset) (60, 61) have suggested 
that neuronal CTPs are associated with variants within TMEM106B, 
a gene that is associated with frontotemporal dementia. In our anal-
ysis, SNPs proximal to TMEM106B were not associated with neuro-
nal proportions, but did exhibit trending association with astrocytes 

Fig. 6. Investigation of TMEM106B locus, focusing on the ROSMAP dataset. (A) LocusZoom plot comparing GWAS results on astrocyte CTP at the TMEM106B locus 
within the ROSMAP, LIBD, UCLA_ASD, and meta-analyzed datasets (METAL). (B) rs1990621 GWAS SNP effect size (±95% CI) in the ROSMAP dataset across the seven CTPs 
and the five CTP_PCs.
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(rs1990621; P  =  1.98 × 10−6), a signal driven entirely within the 
ROSMAP dataset (Fig.  6). The lack of association in the smaller 
LIBD and UCLA_ASD datasets may be due to limited power or may 
reflect a cohort-specific bias within ROSMAP (noting that we en-
sured that older age did not drive this association). We propose a 
few other explanations for this disparity. With respect to differ-
ences between DNA methylation and RNA-seq deconvolution, it is 
possible that TMEM106B variants may, in fact, be associated with 
increased neuronal transcriptional activity [which RNA-seq de-
convolution is sensitive to (18, 64)], rather than CTPs (which DNA 
methylation is better suited for). Compositionally aware data analy-
sis may play a role: In the Li et al. analysis (60), the predominant cell 
type was astrocytes, and analyses of overlapping datasets found that 
astrocytes and neuronal proportions generally shifted in opposing 
directions (73). Thus, without a compositionally aware analytical 
framework, the TMEM106B locus that has previously been associ-
ated with neuronal proportion may reflect astrocyte proportion, 
which would be consistent with our findings.

Our careful validation of our brain CTP estimates is a major 
strength of our study. First, DNA methylation appears to be the 
most appropriate omics data modality for robust investigation of 
brain CTPs. This is because—in addition to favorable biological 
characteristics of DNA methylation that specifically sample nuclei 
and are unrelated to cellular activity—bulk deconvolution of brain 
CTPs is cost-effective to perform at scale, which ameliorates the 
large sampling biases that accompany postmortem brain dissection 
(23). Second, to ensure that our reference-based CTP estimates are 
robust, we performed extensive comparisons of references, marker 
selection methods, and deconvolution algorithms (note S1). We 
tested five independent reference panels, motivated by previous evi-
dence that the reference is more important for accurate brain cell-
type deconvolution than the method choice (29). We were reassured 
by the consistent estimates across these pipelines and good per-
formance in external benchmarking (figs.  S4 to S11). Third, we 
found strong relationships between reference-based estimates and 
reference-free approaches (figs.  S9 and S10), which is notable as 
these approaches operate under entirely different assumptions. Last, 
we extensively compared our results to deconvolution from other 
omics modalities (bulk RNA-seq, single-cell RNA-seq, and IHC) 
(figs.  S12 and S13 and S17 to S19), noting caveats to these com-
parisons.

The quality of our analysis was also aided by multiple sensitivity 
analyses, external replication, and our careful use of compositional 
data analysis techniques, as is appropriate. We advocate for greater 
uptake of compositional analysis to avoid false positives and viola-
tion of statistical assumptions. We provide more information about 
our approach and choices in note S2.

There are also limitations to this work. First, there is a lack of 
reasonably large gold standard benchmarking datasets to compare 
deconvolved CTPs to, as all existing modalities that count or decon-
volve CTPs have limitations. Our approach to this problem was to 
triangulate an optimal cell-type deconvolution by comparing many 
different combinations of methods and modalities. However, the 
ideal dataset for comparison would benchmark multiple omics mo-
dalities derived from the exact same sample. Second, although this 
is one of the largest analyses of brain CTPs to date, it is still under-
powered to perform genetic analyses. Ideally, the genetic analyses 
would include sensitivity analyses excluding participants with a 
neuropsychiatric diagnosis; however, this was not possible here 

given our small sample size (by GWAS standards). Third, we only 
analyzed CTPs from prefrontal cortex samples; this may not gener-
alize to other cortical regions (which may also require dedicated 
reference panels). Fourth, there were substantial batch effects in the 
LIBD and ROSMAP datasets and batch-diagnosis interactions in 
LIBD. We accounted for potential batch effect confounders via sta-
tistical correction at the risk of overcorrection and losing diagnostic 
effects. Last, our conclusions are restricted to quantifications of cell 
types; it is possible that cell types may undergo diagnosis-related 
functional changes, without changes in proportions.

In conclusion, we deconvolved brain CTPs in 1270 participants 
and found changes in cell-type composition related to neuropsychiat-
ric diagnoses (Alzheimer’s disease, ASD, and schizophrenia). Leverag-
ing measures of genetic risk, we found evidence of a potential causal 
relationship between Alzheimer’s disease and loss of endothelial cells. 
We also replicate previous associations between ASD and increased 
microglia and between schizophrenia and reduced oligodendrocytes 
using orthogonal methods in larger datasets than previously. These 
results advance our understanding of the biology of neuropsychiatric 
traits, and they direct efforts to investigate and prioritize specific cell 
types as contributors to neuropsychiatric diagnoses.

MATERIALS AND METHODS
Experimental design
For the main analysis, we deconvolved brain CTPs for a total of 
n = 1270 prefrontal cortex samples after QC, aggregated from the 
ROSMAP (n = 300 diagnosed with Alzheimer’s disease and n = 419 
undiagnosed), LIBD (n  =  186 diagnosed with schizophrenia, 
n = 217 undiagnosed, and n = 72 donors under age 18 that were 
removed from the analysis for diagnosis to improve age and sex 
matching between cases and controls, but which were included in 
the analysis of age and sex), and UCLA_ASD studies (n = 31 diag-
nosed with ASD, n = 27 undiagnosed, and 18 donors removed to 
improve age and sex matching when testing for diagnostic associa-
tions but which were included in age and sex analyses). We charac-
terized brain CTP shifts associated with diagnosis, age, and sex. We 
then leveraged genetic data available for a subset of n = 873 partici-
pants of European ancestry to identify associations between brain 
CTPs and PGSs and also to perform a GWAS. A schematic of ex-
perimental design is provided in Fig. 1.

Ethics
Our analysis used publicly available de-identified postmortem hu-
man brain data, and our analysis was therefore considered exempt 
from Institutional Review Board approval.

Bulk methylation data QC
For the ROSMAP and LIBD studies, we took raw .idat files (see the 
“Data and materials availability” section in Acknowledgment) and 
performed functional normalization using the meffil (74) pipeline, 
which outputs a normalized methylation beta matrix. For the 
UCLA_ASD study, we used the normalized beta matrix from the 
prefrontal cortex samples, available at https://doi.org/10.7303/
syn8263588. All studies used the Illumina 450K DNA methylation 
array. We visualized batch effects using PCA. The ASD brain data had 
less noticeable batch effects (possibly because the downloaded data 
had already been batch corrected), but the ROSMAP and LIBD data-
sets had persisting, larger batch effects after functional normalization.

https://doi.org/10.7303/syn8263588
https://doi.org/10.7303/syn8263588
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For the reference-free approaches [such as smartSVA (13) and 
MethylNet (30)], we sought to ensure that the identified drivers of 
variance or network effects were not related to batch effects. For this 
purpose, we performed ComBat (75) normalization [implemented in 
the sva (76) R package], batch correcting by plate while protecting the 
variables diagnosis, age, and sex. In some cases, this caused some beta 
values to become negative, which induces errors in cell-type deconvo-
lution algorithms; for these values, we re-adjusted them to equal zero. 
Otherwise, for reference-based deconvolution approaches, we did not 
perform ComBat normalization on the bulk methylation data, and 
batch was instead corrected for as a covariate in the linear regression 
analyses. The rationale here was that the reference-based approaches 
were more robust to batch effects, and reference-based deconvolution 
algorithms do not handle negative methylation beta values.
Excluded probes
Using the normalized beta matrix, we subset to autosomal probes 
only and also excluded MASK probes (77).
Excluded samples
We excluded n = 32 samples (n = 16 from LIBD and n = 16 from 
ROSMAP) that failed the following meffil QC (default) filters: <0.1 of 
probes failing threshold of three beads, <0.1 of probes failing detection 
P < 0.01, <0.1 samples failing threshold of three beads, <0.1 samples 
failing detection P < 0.01, <5 SDs in determining whether the sample 
is a sex outlier, and <0.8 concordance threshold to determine whether 
the sample is an outlier. We also excluded samples to better balance 
study design in the analyses of relationships between brain CTPs and 
diagnosis. For the UCLA_ASD and LIBD study, we noted that the ASD 
and schizophrenia groups were significantly different in age from the 
within-study neurotypical groups. Hence, for analyses involving diag-
nostic comparisons, we excluded the 12 youngest participants (all in 
the ASD group) and the 6 oldest participants (all participants in the 
neurotypical group) to better balance the study design. For these same 
reasons, we also excluded n = 73 participants from the LIBD study 
(n = 72 not diagnosed with schizophrenia and n = 1 diagnosed with 
schizophrenia) using an age threshold of <18 years. However, these 
samples were still included in mega-analyses investigating the rela-
tionships between brain CTPs as well as age and sex.

Overall, with regards to sample size, we deconvolved brain CTPs 
for a total of n = 1270 individuals (n = 76 from UCLA_ASD, n = 475 
from LIBD, and n = 719 from ROSMAP). We included all individu-
als in age and sex analyses, but only 1179 were included in the diag-
nostic comparisons to match by age.

Reference-based (supervised) cell-type deconvolution with 
sequencing reference data
For reference-based deconvolution, we extensively tested a variety 
of reference datasets, marker probe selection approaches, and de-
convolution algorithms (Fig. 1B). Further details on other combina-
tions of methods that we tested are provided in note S1.
Primary deconvolution pipeline
Reference dataset: Single-cell methylome sequencing. We used single-
cell methylome sequencing data from Luo et al. (24), who applied 
single-nucleus methylcytosine, chromatin accessibility, and tran-
scriptome sequencing (snmCAT-seq) to 15,030 cells derived from 
postmortem human frontal cortex tissue from n = 2 healthy male 
donors in their 20s. This dataset identified a total of 20 major cell 
subtypes, of which 9 were excitatory neuronal, 8 were inhibitory 
neuronal, and 5 were glial or non-neuronal (astrocytes, endothelial 
cells, microglia, oligodendrocytes, and OPCs). It included counts of 

methylated and unmethylated cytosine bases across the genome. 
The cell subtypes had been identified by applying a chi-squared test 
to a multirow contingency table of the methylated/unmethylated 
cytosine base counts, as previously described (24). Using this se-
quencing dataset, we summed read counts across cell subtypes, such 
that our final dataset had methylated and unmethylated cytosine 
counts for seven cell types: excitatory neurons, inhibitory neurons, 
astrocytes, endothelial cells, microglia, oligodendrocytes, and OPCs.

We subset the methylation sequencing data to CpG sites overlap-
ping with the Illumina 450K array and then summed reads within a 
±50-bp window around these CpG sites [on the basis of methylation 
being highly locally correlated, so this approach improves genome 
coverage (78)]. Then, we took sites with coverage >10 read counts 
across all seven cell types, leaving n = 58,352 methylation sites from 
which to identify cell-type markers (Fig. 1B).

We QCed these reference data of methylated/unmethylated cy-
tosine sequencing read counts using the following steps: (i) taking 
cytosine sites with >10 read counts and (ii) excluding cytosine sites 
on sex chromosomes or overlapping with MASK probes on the Il-
lumina 450K array, which have been demonstrated to have quality 
issues including cross-hybridization (77).

Marker selection: Based on extremes. In the primary analysis, we 
identified reference cell-type DNA methylation markers based on 
how extreme their methylation profiles were relative to the other 
cell types. For this, we converted the filtered methylation sequencing 
counts into beta values (methylated read counts per total read counts). 
Marker sites were those where one cell-type had beta ≤ 0.4, whereas 
all other cell types had beta ≥ 0.6 (down-methylated marker site) or 
vice versa (up-methylated marker site). We selected this 0.4/0.6 split 
as this provided at least ~100 marker sites for each of the cell types. 
We were left with n = 983 excitatory neurons markers, n = 99 inhibi-
tory neuron markers, n = 499 astrocyte markers, n = 682 endothelial 
cell markers, n = 763 microglia markers, n = 423 oligodendrocyte 
markers, and n = 838 OPC markers. Most of the marker sites were 
unmethylated for all cell types except for inhibitory neurons (fig. S1), 
which is consistent with previous findings (20). The inhibitory neuron 
reference had fewer marker sites than other cell-type references, but 
we found that relaxing criteria to increase the number of marker sites 
destabilized the deconvolution. We additionally experimented with 
marker selection for the sequencing reference using a chi-squared 
statistic approach but found that this was inferior (fig. S7C).

Validation of marker selection. We visualized the beta values for 
these markers within the reference dataset to check that they cap-
tured differentially methylated sites between cell types (fig. S1). We 
confirmed that the probes were able to distinguish between the array 
reference of sorted cell-type populations (fig. S2). We checked that the 
probes had relatively consistent effects across all bulk DNA methyla-
tion samples and were not susceptible to strong batch effects (fig. S3).

Deconvolution: Houseman algorithm. The classic Houseman meth-
od applies non-negative matrix factorization and quadratic program-
ming to bulk methylation data to estimate CTPs (15). We used the 
minfi implementation (79).

Comparison with alternative reference-based 
deconvolution pipelines
1. methylCC
Comparison is shown in fig. S5.

Reference dataset: Single-cell methylome sequencing from Luo 
et al. 2023 (24) as described above.
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Marker selection: The methylCC algorithm models marker sites 
as being fully methylated or unmethylated (0 or 1, respectively), 
with variation around that modeled as a random variable to capture 
platform-specific effects. Hence, for methylCC deconvolution, we 
converted the reference marker probes beta values into binarized 0/1 
coding, depending on which extreme they were closest to.

Deconvolution algorithm: Deconvolving array-based bulk data 
from sequencing-based reference data may not account for cross-
platform differences (17). The methylCC package (17) was designed 
for this and extended the conventional Houseman (15) approach to 
account for cross-platform differences. It does this by selecting the 
probes with the strongest biological signal (i.e., differentially meth-
ylated) and then in the deconvolution algorithm, includes a random 
effect to model platform-specific variation. Within each study, we 
additionally deconvolved within each batch before aggregating the 
deconvolved cell types together and correcting for batch post hoc 
(explained further in note S1 and fig. S4A).
2. CelFiE
Comparison is shown in fig. S5.

Reference dataset: Single-cell methylome sequencing from Luo et al. 
2023 (24) as described above.

Marker selection. As described in the primary analysis.
Deconvolution algorithm: CelFiE (78) involves an expectation 

maximization algorithm and is optimized for sequencing reference 
and target data as well as for circumstances where the cell-type mix-
ture is highly heterogeneous (i.e., in the case of circulating cell-free 
DNA in the blood). One advantage of CelFiE is that it also models a 
specified number of unknown cell types.
3. NeuN+/− (the historical benchmark) 
To benchmark the performance of deconvolution to granular cell 
types, we estimated CTPs using the most commonly used NeuN+/− 
reference. We then compared the sum of glial cell types (astrocytes, 
endothelial cells, microglia, oligodendrocytes, and OPCs) to the 
NeuN− proportion and the sum of neuronal cell types (excitatory/
glutamatergic and inhibitory/GABAergic) to the NeuN+ proportion 
(fig. S5).

Reference dataset: Methylation Illumina 450K array data from 
Guintivano et  al. (80), available on Bioconductor as FlowSorted.
DLPFC.450k, providing n = 29 NeuN+ and n = 29 NeuN+ methy-
lome profiles. We QCed this reference dataset using the minfi (79) 
implementation of functional normalization and excluded from cell 
type–specific probe selection those that were on sex chromosomes, 
MASK_general probes [which are known to cross-hybridize and have 
other quality issues (77)], or that were also SNPs. We also confirmed 
that the methylomes clustered as expected by plotting the first three 
PCs and generating Uniform Manifold Approximation and Projection 
for Dimension Reduction (UMAP) plots.

Marker selection. Using the eBayes t test implemented in the 
TOAST package (16) to select marker probes (100 up-methylated 
and 100 down-methylated)

Deconvolution algorithm: Houseman algorithm.
4. WGBS/FACS
This reference dataset is similar to that used in the primary analysis; 
however, the deconvolution is less granular and includes non–brain 
cell types that are used as proxies. Comparison is shown in fig. S6.

Reference dataset and marker selection: Publicly-available DNA 
methylation atlas with reference markers derived from methyla-
tion whole genome bisulfite sequencing (WGBS) of FACS sorted 
cell populations (27). From this reference panel, we included both 

brain-specific cell types (neurons, oligodendrocytes), and “proxy” 
cell types (macrophages/monocytes to represent microglia, and en-
dothelial cells to represent brain endothelial cells).

Deconvolution algorithm: We used the accompanying published 
deconvolution algorithm to estimate brain CTPs, which uses a non-
negative least squares approach.
5. EpiSCORE RNA-based pipeline
The advantage of using single-cell RNA-seq profiles is that it permits 
higher cell-type resolution than what is typically possible with 
single-cell DNA methylation. This deconvolution pipeline permit-
ted deconvolution of neurons, astrocytes, endothelial cells, microg-
lia, oligodendrocytes, and OPCs. Comparison shown is in fig. S6.

Reference dataset and marker selection: Publicly available cell-
type DNA methylation markers inferred from single-cell RNA-seq 
profiles (28).

Deconvolution algorithm: EpiSCORE deconvolution algorithm (28).
6. Methylation array reference pipeline
Comparison is shown in figs. S7 and S11.

Reference dataset: We gathered Illumina 450K methylation ar-
ray profiles from seven cell types: glutamatergic neurons (n =  5, 
GSE50853) (20), GABAergic neurons (n = 5, GSE50853) (20), astro-
cytes (n = 2, GSE40699 and GSE92462) (81), endothelial cells (n = 3, 
GSE137830) (82), oligodendrocytes [n = 45; (63)] (31, 83), and OPCs 
(n = 1, GSE92462) (81). In the absence of publicly available microglia 
datasets, we used monocytes as a proxy as they share a developmental 
lineage. For this, we obtained monocyte methylome profiles from the 
FlowSorted.Blood.450k data available on Bioconductor (84).

Marker selection: We compared eBayes t test versus row t test 
marker selection for the array reference (fig.  S7), settling on the 
eBayes t test.

Deconvolution algorithm: Houseman algorithm.

Benchmarking and evaluation of deconvolution quality
Benchmarking of deconvolutions against pure cell-type 
populations
As a key benchmark for these alternative reference datasets and de-
convolution algorithms, we applied our deconvolution method to 
FACS-sorted brain cell-type populations profiled using DNA meth-
ylation array (63). Therefore, we would expect these data to represent 
“pure” cell-type populations sorted on the basis of two cell mark-
ers: NeuN positive (neurons), Sox10 positive (oligodendrocytes/
OPCs), and NeuN and Sox10 negative or “double negative” (for all 
other cell types) (fig. S8).
Comparison to reference-free deconvolution
We used unsupervised approaches as an orthogonal form of valida-
tion for the supervised approach (figs. S9 and S10).

smartSVA. We applied the smartSVA algorithm (13) to data that 
had been batch-corrected using ComBat (75, 76) (protecting the vari-
ables diagnosis, age, and sex, and zeroing any negative values induced 
by batch correction). In the smartSVA analysis, we removed probes 
with any not applicable (NA) values across the samples and protected 
the variable corresponding with diagnosis. We looked for correlation 
between sSVs and reference-based methods (fig. S9).

MethylNet. We used a variational autoencoder (VAE) deep learn-
ing method as implemented in the MethylNet package(30) to com-
press the data into salient variables (embeddings) in a nonlinear 
framework. The package trains a VAE to encode the β values of a 
sample into an embedding in a lower dimensional latent space and 
reconstructs the original β values from the embedding. Using the 
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launch_hyperparameter_search command of the package, we gener-
ated 50 models each with 2 and 10 latent variables, generating differ-
ent neural network topologies with varied hyperparameters such as 
learning rate, weight decay, disentanglement, and number of layers. 
The model with the lowest validation loss for each number of latent 
variables was chosen to generate embeddings. The VAEs were trained 
on bulk methylation datasets aggregated across the three studies. We 
looked for correlation between these embeddings and reference-based 
methods (fig. S10). The final hyperparameters were n_epochs = 700, 
best_epoch = 669, min_loss = 129526199.314208, min_val_loss = 
14275442.5, min_val_kl_loss = 9555.58544921875, min_val_recon_
loss  =  14265887, min_loss-batchsize_adj  =  131109297.305827, 
min_val_loss-batchsize_adj = 14418196.925, min_val_kl_loss-batchsize_
adj = 9651.14130371093, min_val_recon_loss-batchsize_adj = 
14408545.87, min_val_beta-adj_loss = 14265906.1111709, n_input = 
388841, n_latent = 10, hidden_layer_encoder_topology = [200, 200, 
100], learning_rate = 0.00005, weight_decay = 0.0001, beta = 500, 
kl_warm_up = 20, train_batch_size = 50, and val_batch_size = 50.
CETGYO error metric (RMSE) calculation
We calculated the CETGYO error metric (85) (a RMSE measure) for 
the Houseman deconvolutions (fig. S11). Here, the CETGYO error 
metric was calculated by multiplying the reference cell-type meth-
ylation profiles by the estimated CTP, to “reconstitute” the initial 
beta matrix. In general, CETGYO error ≤ 0.10 indicates good qual-
ity deconvolution.
Comparison to CTP representations from orthogonal omics 
technologies
We used Pearson’s correlation coefficient to evaluate associations 
between CTPs derived from different technology platforms on 
matching individuals, described in turn below. In all cases, for the 
CTP variables, we converted counts to proportions (for the single-
cell data) and then performed clr-transformation to account for 
compositionality.

1. RNA-seq WGCNA module eigengenes representing cell types 
(UCLA_ASD, LIBD) (70): We leveraged previously generated 
WGCNA network modules, which had previously been generated 
using RNA-seq data, for matching brains in the UCLA_ASD 
(n = 49) and LIBD (n = 394) studies. These network modules were 
annotated to cell types based on the presence of cell-type marker 
genes within these networks. For matching brains across the RNA-
seq and bulk methylation datasets, we then compared module ei-
gengenes (interpreted as a quantification of that cell type) to the 
methylation deconvolved CTPs (fig. S12).

2. Comparison to deconvolved proportions from bulk RNA-seq 
data (UCLA_ASD, LIBD) (7): These CTPs had previously been de-
rived from non-negative matrix factorization on bulk RNA-seq data 
using markers from single cell data. We used data from n  =  473 
samples that had matching methylation data in UCLA_ASD and 
LIBD from the PsychENCODE dataset (fig. S12).

3. Comparison to proportions from single cell counts (ROS-
MAP) (33): These CTPs were derived from counting cell types from 
single-cell data sequenced from n = 48 ROSMAP participants, in-
cluding n  =  37 individuals who were included in our bulk DNA 
methylation dataset (fig. S13). The raw cell counts were converted 
into proportions.

4. Comparison to IHC proportions (ROSMAP) (22): These CTPs 
were previously derived from IHC proportions (22) from n  =  49 
ROSMAP participants who were also included in our bulk DNA 
methylation dataset (fig. S13).

5. Comparison to proportions from single cell counts (UCLA_
ASD) (32): These CTPs were derived from counting cell types from 
single-cell data sequenced from n = 60 samples from UCLA_ASD, 
including n = 17 individuals who overlapped with our bulk DNA 
methylation dataset (fig. S13). The raw cell counts were converted 
into proportions.

We also attempted to account for variation in CTPs that could be 
due to dissection of different tissue specimens from the same brain 
donor. We achieved this by removing the oligodendrocyte propor-
tion and rescaling the neuronal cell populations to sum to 100% 
(tables S11 and S12). The rationale for this is that different depths of 
gray matter dissection would capture variable quantities of white 
matter, reflected in variable oligodendrocyte proportion. As other 
glial cells are expected to be relatively evenly distributed throughout 
white and gray matter, only the neuronal cell population was scaled, 
so that the total sum of CTPs (excluding oligodendrocytes) summed 
to 100%.
Consistency and comparison to expectation
In determining the optimal deconvolution method, we also consid-
ered whether the deconvolution was relatively consistent across 
methods and ensured that the CTPs were concordant with expecta-
tion; for example, that neurons and oligodendrocytes were the ma-
jor cell types (63) and that endothelial cells, microglia, and OPCs 
were of low abundance.

Phenotype data
Our primary variables of interest were neuropsychiatric diagnoses: 
Alzheimer’s disease, schizophrenia, and ASD. Within the ROSMAP 
dataset, we also leveraged continuous measures of Alzheimer’s dis-
ease severity based on clinical (based on final consensus diagnosis) 
and neuropathological (Braak score; corresponding to histopatho-
logical progression of neurofibrillary tangles) assessments. The final 
consensus diagnosis measure is based on a physician’s overall cogni-
tive diagnostic category following full review by a neurologist of all 
available clinical data (but no postmortem histological data). It is 
scored as 1: no cognitive impairment (NCI), 2: mild cognitive im-
pairment (MCI) and no other cause of cognitive impairment (CI), 3: 
MCI with other cause of CI, 4: Alzheimer’s dementia and no other 
cause of CI, 5: Alzheimer’s dementia with other cause of CI, and 6: 
other primary cause of dementia. We regrouped these categories 
into NCI, MCI, AZD, and other primary cause of dementia for sta-
tistical analysis and regressed against endothelial cell proportion in 
an ANOVA model.

As covariates, we focused on age, age2, sex, and batch variables in 
our analyses, as these were common across all three datasets. For 
brevity, these are referred to as baseline covariates in the main text. 
Where there were multiple batch variables, we selected the single 
batch variable with the strongest effect after careful exploration of 
the data, indicating that this was sufficient: For ROSMAP, this was 
the batch variable corresponding to a different thermocycler being 
used; for LIBD, this was plate; and for UCLA_ASD, this was the pro-
cessing batch variable. For ROSMAP, the age data were censored, 
whereby participants aged over 90 were assigned to be “90+.” For 
these individuals, we imputed age to be 90.

Testing for group differences in CTPs
We performed statistical testing to address two questions:

1. What are the effect sizes of each cell-type on diagnosis, and
2. Whether there are any global shifts in CTPs with diagnosis.
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We were careful to use compositional data analysis approaches, 
whose importance are summarized in note S2.

First, to quantify the effect sizes of each cell-type on ASD diagno-
sis, we applied a clr-transformation to the CTP data and set the low-
est value to equal 0.001 (the “offset”) to handle the log transformation. 
This analysis then becomes compositionally aware as proportions 
become interpreted relative to the geometric mean (with log trans-
formation). However, while more easily interpretable, the clr-
transformation has limitations compared to the compositional PCA 
approach (described below), including that the chosen offset value 
can affect the results.

Second, to test for global shifts in CTPs, we performed logistic 
regression for two models and tested for the contribution of CTPs 
by comparing these two models in a likelihood ratio test:

To quantify the variance in diagnosis associated with cell-type 
shifts, we performed compositionally aware PCA (using an Aitchi-
son transformation) on the matrix of estimated CTPs per sample. 
Briefly, the rationale for this is that CTPs are a form of compositional 
data; by summing up to 100%, this induces correlations between 
estimates. In contrast, PCs of compositional data are orthogonal 
variables, which can then be input as dependent variables in con-
ventional linear models. We took the first i PCs that explained >95% 
of the variance and input these as covariates in model 1 above.
Sensitivity analysis: Robustness of diagnostic associations to 
batch effects
Given that the LIBD and ROSMAP datasets had large batch effects, 
we also performed within-batch sensitivity analyses, regressing clr-
transformed CTPs against diagnosis and covariates and focusing on 
the cell types with statistically significant diagnostic associations.

For the LIBD dataset, there was confounding between plate and 
diagnosis for two plates (plate Lieber_30 had schizophrenia patients 
only, and Lieber_104 had undiagnosed individuals only), so we per-
formed these sensitivity analyses within the three batches, which 
had both schizophrenia and undiagnosed groups. For diagnostic as-
sociations with endothelial cells and oligodendrocytes, two plates 
had consistent directions of effect with nominal or trend-level sig-
nificance; for OPCs, the relationship appeared to be driven by one 
plate (plate Lieber_244).

For the ROSMAP dataset, the directions of effect were consistent 
across batches for endothelial cells, excitatory neurons, and inhibi-
tory neurons. The effects tended to be driven by batch 1, although 
this may be related to power (batch_1: n  =  453 versus batch_0: 
n = 265).

External replication of phenotypic associations
We drew upon the BDR (31) dataset to replicate the association be-
tween reduced endothelial cells and Alzheimer’s disease that had 
initially been identified in ROSMAP. The replication BDR dataset 
included DNA methylation array data for n = 597 donors of pre-
frontal cortex samples, with QC performed previously (31). We 
used Braak score as the clinical variable for replication as the BDR 
dataset was essentially ascertained for Alzheimer’s disease (and 
therefore has few controls) and has systematically collected data on 

neurohistopathology and also because these histological changes 
would be expected to be a more “biologically proximal” process to 
brain CTP shifts.

Mega-analysis for age and sex
We performed a mega-analysis to identify age and sex associations 
with brain CTPs. In this analysis, we included the n = 7 UCLA_ASD 
and n = 73 LIBD participants that had previously been excluded to 
balance the study design. For the age (and age2) analysis, we included 
sex and batch as covariates. For the sex analysis, we included age, 
age2, and batch as covariates.

Genotyping QC
General QC
In general, we applied the same QC filters to each of the datasets. 
Additional details that are specific to each dataset are described be-
low. Genotyped SNPs were removed if they fulfilled any of the fol-
lowing criteria: HWE P < 1 × 10−6, MAF < 0.01, individuals with 
missingness > 0.1, and variants with missingness > 0.05. Pre-
imputation QC was performed using the Will Rayner pre-imputation 
genotyping toolbox (www.well.ox.ac.uk/~wrayner/tools/). Autoso-
mal SNPs were imputed using Minimac4 TOPMed Imputation 
Server (86, 87). The choice of imputation panel depended on the 
ancestry make-up of the dataset. After imputation, the following fil-
ters were applied: HWE P < 1 × 10−6, MAF > 0.01, genotype miss-
ingness < 0.05, and INFO score >  0.3. We performed lift-over of 
datasets to the hg38 build.
ROSMAP
We extracted biallelic SNPs from ROSMAP whole-genome se-
quencing (WGS) data and imputed to the Haplotype Reference 
Consortium reference panel (88). We used WGS data rather than 
the ROSMAP SNP genotyping data, as there was high genotype 
missingness across samples, leading to considerable sample drop 
out among the participants with overlapping bulk methylation data. 
There were n = 6 individuals with duplicate WGS samples passing 
QC, so we excluded the following samples: SM-CTEIJ, SM-CTEMN, 
SM-CTEI8, SM-CTEN3, SM-CTED9, and SM-CTEE2. After apply-
ing the aforementioned QC filters, there were n = 633 individuals 
and n = 7,753,174 SNPs, of which n = 623 people were genetically 
inferred to be of European ancestry, and of which n = 621 had com-
plete data for all covariates.
LIBD
The LIBD genotyping data were collected across two arrays: the Il-
lumina 1M array (n = 329) and the Illumina h650 array (n = 133). 
We chose the TOPMed reference panel (89) for imputation as the 
dataset included people of both European (EUR) and African (AFR) 
ancestry. After QC and merging data from the two genotyping pan-
els together and filtering for individuals with matching bulk meth-
ylation data, there were n = 462 individuals (EUR, n = 220; AFR, 
n = 216; SAS, n = 1; and other/admixed, n = 25) and 15,518,464 
SNPs. After examining for population stratification among Europe-
ans using genotyping PCs using a genetic relatedness matrix (GRM) 
calculated using linkage disequilibrium (LD) pruned SNPs, we ex-
cluded an additional n = 3 participants. Overall, after genotyping 
QC for GWAS, there were 7,845,067 SNPs, including n = 210 indi-
viduals of European ancestry.
UCLA_ASD
This dataset had a total of n = 105 individuals, with imputation to 
the Haplotype Reference Consortium reference panel (88). There 

Model 0: Diagnosis ∼ age + sex + batch

Model 1: Diagnosis∼ age+ sex+batch+

i
∑

n=1

PCCTP
n

http://www.well.ox.ac.uk/~wrayner/tools/
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were n = 53 individuals (EUR, n = 44; AFR, n = 2; SAS, n = 2; EAS, 
n = 1; and other/admixed, n = 4) with matching bulk methylation 
data including those who were excluded in case/control analyses to 
balance the study design. For PGS analyses, we considered the 44 
individuals of European ancestry, of which n = 35 were included for 
direct comparisons of diagnostic groups to balance for age differ-
ences. For GWAS, genotyping QC was modified to avoid the MAF 
filter excluding excessive numbers of SNPs in this small study. Spe-
cifically, we applied the aforementioned QC filters to both the full 
n = 105 multi-ancestry dataset and the subset of n = 88 genetically 
inferred Europeans before filtering again to the n = 44 individuals of 
European ancestry with matching bulk methylation data. To exam-
ine for population stratification, we generated genotyping PCs using 
a GRM calculated using LD pruned SNPs and excluded n = 2 par-
ticipants. After genotyping QC for GWAS, there were 6,051,638 
SNPs, of which n = 42 people were of European ancestry.
Merged genotypes
We merged the above three datasets together, and performed addi-
tional PLINKv1.9 (90) QC on this dataset using the following flags: 
--geno 0.05, --hwe 1 × 10−6, --maf 0.01. There were n = 1113 people 
across ancestries with matching bulk methylation data (EUR, 
n = 900; AFR, n = 181; SAS, n = 3; EAS, n = 1; and other/admixed, 
n = 28). We filtered for people of European ancestry (see “Ancestry 
inference and relatedness” below; n = 885) and then subset to unre-
lated individuals (relatedness coefficient  <  0.05), leaving n  =  878 
individuals of European ancestry (ROSMAP, n  =  623; LIBD, 
n = 211; and UCLA_ASD, n = 44) and 4,857,536 SNPs.

Ancestry inference and relatedness
We built a GRM based on the merged genotypes. Ancestry was in-
ferred by projecting the samples onto the first two PCs from the 
1000G reference (filtering for common HapMap3 SNPs with 
MAF >  0.05 in the 1000G reference) (fig.  S24). Ancestry was as-
signed on the basis of being within 4 standard deviations of the 
1000G reference population.

For downstream genetic analysis, we focused on the subset with 
European ancestry (n = 877), as there were too few non-European 
participants to perform a sufficiently powered genetic analysis 
(n = 480) and also because the available GWAS summary statistics 
for polygenic scoring were from European populations and there-
fore have poorer prediction accuracy in non-European target pop-
ulations.

To capture population stratification in the European subset for 
use as covariates, we built a GRM, filtered for unrelated participants 
(relatedness coefficient < 0.05), filtered for LD pruned SNPs (flag 
--indep 50 5 2, corresponding to settings: 50-kb window, step size of 
5, and variance inflation factor (VIF) threshold of 2), and then cal-
culated genotyping PCs. For the GWAS meta-analysis, we calculated 
genotyping PCs representing population stratification for the aggre-
gated European subset across the ROSMAP, LIBD, and UCLA_ASD 
datasets (used in the PGS analysis; fig.  S24) and also within each 
dataset (used in the GWAS analysis).

Polygenic scores
We calculated PGS weights for ASD (36), schizophrenia (37), Al-
zheimer’s disease [specifically using the Marioni et al. (38) GWAS 
summary statistics for reasons described previously (91)], WMHs 
(42), major depressive disorder (39), years of education (also re-
ferred to as educational attainment) (40), and height (41) as a 

negative control. After filtering the summary statistics for HapMap3 
SNPs that were also in the target dataset, we calculated SNP weights 
using SBayesR (92) and the UK Biobank banded LD reference 
download from the GCTB website (https://cnsgenomics.com/soft-
ware/gctb/). We used the same pi and gamma settings for each phe-
notype (--pi 0.95,0.03,0.01,0.01, --gamma 0,0.01,0.1,1) but changing 
the heritability setting between traits: ASD --h2 0.5; schizophrenia 
--h2 0.7, Alzheimer’s disease --h2 0.7, major depressive disorder --
h2 0.4, years of education --h2 0.4, height --h2 0.8. For binary traits 
with odds ratio summary statistics, we took the log transformation 
as the input effect size. Using these SBayesR weights, we then calcu-
lated PGSs for each European participant by multiplying the SNP 
weights by that individual’s allele dosage using the --score function 
in PLINKv1.9 (90).

Prediction of diagnosis and CTP traits using PGS
We used linear models to identify associations between PGS and both 
diagnosis categories (for ASD, schizophrenia and Alzheimer’s dis-
ease) and brain CTP traits. For the diagnostic associations, we per-
formed analyses within each study, including as covariates age, age2, 
sex, and three genotyping PCs representing population stratification 
(fig. S25). For the brain CTP associations, we included all controls 
and cases for the PGS of interest, including covariates for age, age2, 
sex, diagnosis, and three genotyping PCs. We also explored whether 
the inclusion of 3 genotyping PCs was sufficient, finding that the in-
clusion of 10 genotyping PCs made negligible difference to results.

Mediation analysis
We performed mediation analysis for AZD PGS  →  endothelial 
CTP → AZD within the ROSMAP dataset, using the R mediation 
package. This generates two estimates: the average causal mediation 
effect (ACME)—which represents the mediating effect of endothe-
lial cells—and the average direct effect (ADE)—which represents 
the direct effect of Alzheimer’s PGS → Alzheimer’s diagnosis.

Mendelian randomization
We performed Mendelian randomization (MR) using GWAS sum-
mary statistics to test for causal associations between endothelial 
CTP → Alzheimer’s disease, and Alzheimer’s disease → endothelial 
CTP. As different methods operate under slightly different assump-
tions, we tested multiple MR methods, as is typical: CAUSE, IVW, 
MR-Egger, weighted median, weighted mode, GSMR (93–98). To 
identify instrumental SNPs for Alzheimer’s disease, we used con-
ventional P value thresholds (P  <  1 × 10−3; P  <  1 × 10−8 for all 
other methods). The endothelial CTP GWAS has no GWS SNPs 
(which violates a core MR assumption), so we used a more relaxed P 
value threshold for instrumental SNPs (P < 1 × 10−3 for CAUSE; 
P < 1 × 10−5 for all other methods). We also performed power cal-
culations using https://sb452.shinyapps.io/power/ for analyses in 
both causal directions.

 APOE genotype imputation
We imputed the APOE genotype from the SNPs rs429358 and 
rs7412, as previously described in www.snpedia.com/index.php/
APOE according to table S13.

Genome-wide association study
We took a meta-analysis approach to identify genetic variants asso-
ciated with brain CTPs. We chose meta-analysis over mega-analysis 

https://cnsgenomics.com/software/gctb/
https://cnsgenomics.com/software/gctb/
https://sb452.shinyapps.io/power/
http://www.snpedia.com/index.php/APOE
http://www.snpedia.com/index.php/APOE
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to mitigate batch effects and because each study had variable demo-
graphic characteristics that could confound results. For the pheno-
type data, we applied an inverse normal transformation (as is typical 
in GWAS) to each clr-transformed CTP or CTP_PC.

As we were performing one GWAS per study for meta-analysis, we 
also recalculated a per-study GRM and regenerated genotyping PCs 
among the European participants. In this genotyping PC-based QC 
step, from UCLA_ASD, we excluded AN01093_BA9 and AN00764_
BA9 for being genotyping PC outliers; from LIBD, we excluded Sam-
ple137/Br1878, Sample153/Br1876, Sample487/Br1113, Sample631/
Br1427, Sample541/Br2090, and Br1684/Sample664 for being geno-
typing PC outliers, and from ROSMAP, we excluded SM-CJFOM, 
SM-CJGIK, SM-CJK4S, SM-CJK5A, SM-CTDR9, SM-CTDRF, and 
SM-CTED9 based on the rel < 0.05 filter in GCTA (in addition to the 
n =  6 duplicate samples excluded earlier: SM-CTEIJ, SM-CTEMN, 
SM-CTEI8, SM-CTEN3, SM-CTED9, and SM-CTEE2). After this 
genotyping PC-based QC, this left n = 873 individuals for GWAS.

We performed a linear model GWAS meta-analysis, implemented 
in the GCTA (47) fastGWA module. We included the following co-
variates: age, age2, sex, batch, diagnosis, and five population stratifica-
tion genotyping PCs from that dataset. We used METAL (99) to 
combine the per-study test statistics and SEs and then filtered for SNPs 
that were present in all of the studies, with heterogeneity (Cochran’s Q 
test) P < 0.001 and MAF > 0.05 in all datasets. This left more than 4 
million SNPs per CTP GWAS (excitatory neurons: 4,052,158; inhibi-
tory neurons: 4,047,728; astrocytes: 4,033,521; endothelial cells: 
4,044,819; microglia: 4,057,334; oligodendrocytes: 4,017,933; and 
OPCs: 4,063,783). We then identified independent loci among SNPs 
with P < 1 × 10−5 using GCTA-COJO (46, 47), which applies condi-
tional and joint analysis to summary statistics. We used the individual-
level genotyping data as a LD reference, and used the following 
settings: --cojo-slct, --cojo-actual-geno, --cojo-p 1e-5. Manhattan and 
LocusZoom plots were visualized using GeneticsMakie v0.1.5 (100).

SMR analysis
We performed Summary-data-based Mendelian Randomization 
(SMR) analysis (48) using cis-eQTL summary statistics from the 
BrainMeta dataset (101). As SMR instruments, we selected SNPs 
with GWAS P < 1 × 10−6 and then performed SMR within the chro-
mosome for these SNPs. We used default SMR settings.

Colocalization analysis
For the GWS SNPs without a statistically significant SMR associa-
tion, we also performed colocalization analysis (102). This method 
takes a Bayesian approach, assigning posterior probabilities to vari-
ous hypotheses. We focused on PPH4 statistics, which represents 
the posterior probability that the two traits are genetically associated 
and share the same causal variant. As reference eQTL and sQTL da-
tasets, we used MetaBrain (103), PsychENCODE (7), BrainMeta 
(101), and a cell type–specific eQTL dataset (59).
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