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Abstract The establishment and maintenance of rhizo-

bium–legume symbioses require a sequence of highly

regulated and coordinated events between the organisms.

Although the interaction is mutually beneficial under

nitrogen-limited conditions, it can resemble a pathogenic

infection at some stages. Some host legumes mount

defense reactions, including the production of reactive

oxygen species (ROS) and defensin-like antimicrobial

compounds. To subvert these host defenses, the infecting

rhizobial cells can use measures to passively protect

themselves and actively modulate host functions. This

review first describes the establishment and maintenance of

active nodules, as well as the external and endogenous

attack and threat stages. Next, recent studies of ROS

scavenging enzymes, the BacA protein originally found in

Sinorhizobium meliloti, and the type III/IV secretion sys-

tems are discussed, with a focus on two legume–rhizobium

model systems.
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Introduction

Bacteria of the family Rhizobiaceae and compatible

leguminous plants establish mutualistic relationships to

exchange nitrogen and carbon fixed from the atmosphere.

The establishment of symbiosis requires multistep reci-

procal recognition with exchanges of signal molecules

and complex developmental programs, which leads to the

formation of nodules on the legume root and the differ-

entiation of rhizobial cells into bacteroids [1]. Although the

relationship is beneficial to both participants, it can

resemble a pathogenic interaction in that the eukaryotic

organism is chronically infected [2]. However, the host

plant may suppress its defense mechanisms to maintain a

successful symbiotic interaction [3]. Transcriptomic anal-

yses have revealed that many defense- and stress-related

genes are up-regulated in the legume host during the early

stage of this interaction, but most are subsequently sup-

pressed as the symbiosis proceeds [4, 5]. In addition, the

rhizobial infection can be arrested by a mechanism similar

to a hypersensitive reaction [6]. Furthermore, established

bacteroids can be eliminated in some legume–host pairings

by necrosis of the nodules [7, 8]. These indicate that

the host plant can attack the infiltrating rhizobial cells.

In addition to host threats, nitrogen-fixing bacteroids

encounter reactive oxygen species (ROS) that are endog-

enously produced from ATP-producing respiratory

oxidative phosphorylation and harmful to ROS-sensitive

nitrogenases.

Rhizobia have developed mechanisms to survive exog-

enous (host-derived) and endogenous threats during

symbiosis, from the initial contact to senescence. Some

rhizobia passively protect bacterial cells or functions,

whereas others actively interact with the host to reduce

attack. This review focuses on proteins involved in ROS

scavenging as a passive defense with an emphasis on two

legume–rhizobium model systems: Lotus–Mesorhizobium

loti, which forms determinate globular nodules without

persisting meristems [9], and Medicago–Sinorhizobium

K. Saeki (&)

Department of Biological Sciences, Faculty of Science,

Nara Women’s University, Kitauoya Nishimachi,

Nara 850-6503, Japan

e-mail: ksaeki@cc.nara-wu.ac.jp

Cell. Mol. Life Sci. (2011) 68:1327–1339

DOI 10.1007/s00018-011-0650-5 Cellular and Molecular Life Sciences

123



meliloti, which forms indeterminate cylindrical nodules

with persisting meristems [10]. This review also discusses

the significance of the BacA protein, a bacterial factor

essential for bacteroid development in Sinorhizobium

meliloti [11], and the significance of the type III and type IV

secretion systems, which inject proteins into the eukaryotic

host [12]. Non-proteinaceous factors including lipochitoo-

ligosaccharides (LCOs), lipopolysaccharides (LPSs), and

extracellular polysaccharides (EPSs) are also important for

protection and evasion [1, 13, 14] but are not discussed in

this review.

Stages of legume–rhizobium symbiotic processes

Encounter, attachment, and initial signal exchange

Because rhizobia can exist as saprophytes in the soil, the

mutual recognition of two symbionts starts when the rhi-

zobial cells perceive host-specific signal molecules (mostly

phenolic flavonoid compounds) exuded to the rhizosphere

by the legume roots (Fig. 1a). The signal molecules induce

the bacterial regulatory protein NodD to activate tran-

scription of several nod (nodulation) genes that participate

in the synthesis of species- or strain-specific signal mole-

cules [LCOs, also known as Nod factors (NFs)] [15].

Rhizobial cells attached to the tip of the emerging root

hairs secrete NFs that trigger the nodulation developmental

program, including root hair deformation and nodule

primordia formation in the cortex (Fig. 1b). Because

flavonoid compounds and NFs have specific chemical struc-

tures depending on their producers, the combinations of

these signaling molecules are the primary determinants of

the various host–rhizobium combinations. Hence, most

rhizobial species can only establish symbiosis with a few

host legumes [16].

Invasion of rhizobia into host cells and establishment

of symbiosis

Rhizobial cells on a root hair tip are entrapped in the curled

root hair, which is shaped similarly to a shepherd’s crook,

and form tubular structures known as infection threads,

which contain rhizobial cells. The infection threads elon-

gate inside the root hair, traverse multiple cell layers,

ramify and reach the developing nodule primordia

(Fig. 1c–f) [17]. The bacterial cells proliferate directionally

to the front of the growing infection threads and invade the

plant cytoplasm through an endocytosis-like mechanism

that enables encapsulation of the engulfed bacteria within

the plant plasma membrane. The bacterial cells enlarge,

differentiate to bacteroids, and initiate nitrogen fixation in

II
I

IV

III

Fig. 1 The nodule developmental and decaying process. The pro-

cesses for determinate (upper) and indeterminate (lower) nodules are

shown. Saprophytic rhizobia exist in a rhizosphere (a). The rhizobia

attach to root hairs (b), detect flavonoids from legumes and secrete

NF to induce root hair deformation (c). The deformed root hair

entraps the rhizobia and invaginates to form infection threads, which

contain entrapped rhizobial cells (d). The infection thread elongates

(e), ramifies, and penetrates the outer or inner cortex cell layers (f, g).

The rhizobial cells are then enveloped in a plant-derived membrane

and released as droplets into the plant cytosol (h). The released

rhizobia differentiate to bacteroids and begin nitrogen fixation; hence,

the droplets are called symbiosomes (i). After a period of nitrogen

fixation, the nodule cells initiate senescence (j). Most bacteroids

in determinate nodules and some undifferentiated rhizobial cells in

indeterminate nodules return to a saprophytic lifestyle (k). Zones in

mature indeterminate nodule are indicated by I–IV. I Meristematic

zone; II invasion zone; III N2-fixing zone; IV senescence zone
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the capsules, which become organelle-like structures

known as symbiosomes (Fig. 1g) [18–20]. As the bacteria

differentiate, the host genomic DNA replicates in the

invaded plant cells without mitosis, and the infected cells

become large polyploid cells harboring thousands of

symbiosomes [21]. The mature nodules actively fix nitro-

gen for a length of time that depends on environmental and

plant developmental conditions and then enter senescence.

Indeterminate and determinate nodules

The origins of the plant cells that harbor symbiosomes and

the fate of the bacteria are considerably different between

indeterminate and determinate nodule types (Fig. 1).

Indeterminate nodules originate from the nodule primordia

formed in the inner root cortex next to the xylem pole

(Table 1). Furthermore, these nodules possess a persistent

meristem and elongate to become cylindrical so that a

meristematic zone forms near the apex and successive

zones form for rhizobial invasion, active nitrogen fixation,

and senescence (Fig. 1h0–k0). Host cells in the nitrogen-

fixation zone contain mature symbiosomes, which typically

contain an enlarged, deformed bacteroid with low repro-

ductive viability, while those in the senescence zone have

decayed or disintegrating symbiosomes [21–24]. Conse-

quently, an indeterminate nodule accommodates a

heterologous population of rhizobial cells in various

developmental states in distinct zones. In contrast, deter-

minate nodules originate from the primordia formed in the

outer or middle root cortex. In contrast to indeterminate

nodules, determinate nodules do not have a persistent

meristem and thus become globular (Fig. 1h–j), and the

mature symbiosomes contain multiple bacteroids of normal

size with high reproductive viability [25–27]. In a deter-

minate nodule, the developmental stages of the host and

rhizobial cells are relatively synchronized. Senescence of

determinate nodules begins at the center of the nodule and

extends to the periphery [28]. Rhizobial cells released from

decaying and disintegrating nodules enter a saprophytic life

cycle (Fig. 1k).

Phases of host-derived and endogenous threats

to rhizobia

Observations of unsuccessful symbiosis by normal and

mutant rhizobia and host legumes indicate that there are at

least three major phases of threats to rhizobia [29, 30].

Each phase can be distinguished by nodulation efficiency,

nitrogen-fixation capacity, duration and the symbiotic stage

in which it takes place.

The initial phase threats appear to be related to the

prevention of nodulation (few nodules phenotype). The

threats at this phase occur just after rhizobial contact with

the root hair or root surface and continue during the

elongation of the infection threads (Fig. 2a). Contact

between the rhizobial cells and the host root epidermis

evokes innate immunity or basal defense responses similar

to those that occur with pathogenic infections; however, the

responses are transient and regulated during infection with

compatible rhizobia, unlike the responses against patho-

genic bacteria [4, 5]. The transient responses include the

generation of ROS [31–33] and nitric oxide [34] and the

expression of gene products similar to pathogen-related

(PR) proteins [4, 5, 34, 35]. Some S. meliloti mutants with

defective ROS scavenging enzymes have poor nodulation

capacity on Medicago sativa [36, 37], indicating that

the level of ROS produced by the host is tolerated by

wild-type, but not mutant, S. meliloti. Medicago can

use ROS and other mechanisms at this phase to interfere

with the rhizobial infection process. The accumulation of

phenolic compounds and PR proteins has been observed

Table 1 Representative differences between indeterminate and determinate nodule types

Property Indeterminate Determinate

Legume examples Medicago sativa, Pisum sativum, Astragalus
sinicus

Glycine max, Phaseolus vulgaris, Lotus japonicus

Normal nodule form Cylindrical/branched Spherical/globular

Site of initial cell division Inner root cortex Outer or middle cortex

Meristem type Persistent meristem No persistent meristem

Infection thread Broad Narrow

Infected cells Highly vacuolated Minimal vacuolation

Major bacteroid form Enlarged, branched, one per symbiosome Normal rod size, high viability, multiple per

symbiosome

Poly-hydroxybutylate accumulation in

bacteroid

Present Absent

Bacteroid reproductivity Low High
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in epidermal cells with aborted infection threads [6].

Therefore, attacks during this phase can be used by the

host plant to eliminate excessive nodulation and related to

a phenomenon known as autoregulation of nodulation

[18].

The intermediate phase threats involve the reduction of

intracellular niche formation by parasitic rhizobia (inactive

empty nodules phenotype). The threats at this phase are

mainly exerted during and just after the endocytosis-like

invasion and are mediated by the drastic change in the

bacterial environment within the intracellular encapsu-

lated structure (Fig. 2b). Although the biochemical

identities of these threats are not known, some are likely

responsible for the aberrant phenotypes of the S. meliloti

bacA and lpsB mutants, which are unable to form

bacteroids [11, 38]. Intermediate phase threats may also

be involved in the phenotypes of S. meliloti EPS mutants,

which poorly form bacteria-filled infection threads and

small nodules without bacteroids [39, 40]. Empty nodules

can be formed by some EPS mutants that escape the

initial phase threats but are unable to overcome the

intermediate phase threats. While it is difficult to distin-

guish the passive and positive roles of EPS in the host

defense mechanisms, a role for this signaling in the

suppression of host defense genes is supported by the

transcriptomic analysis of M. truncatula infected with

S. meliloti [41].

Late (maintenance) phase threats are divided into two

categories: those derived from the host attack of rhizobia

established as mature nitrogen-fixing bacteroids and those

derived from an endogenous threat from the co-existence

of aerobic respiratory energy metabolism and highly oxy-

gen-labile nitrogenase systems (Fig. 2c). An example of

the former is the host response of L. japonicus to Rhizo-

bium etli: although nodules formed by Rhizobium etli

acquire the capability to fix nitrogen, they lose this capacity

within 3 weeks of inoculation and enter early senescence

[42]. A L. japonicus mycorrhiza-inducible phosphate

transporter knockdown line exhibited nodule necrosis when

its normal symbionts M. loti (rhizobium) and Glomus

mosseae (mycorrhiza) were inoculated simultaneously,

even though the line establishes normal nitrogen-fixing

symbiosis when infected with M. loti alone [7]. The

senescence process of Medicago truncatula has been

studied in detail at the transcriptional level [43, 44] to

confirm the involvement of various genes, including some

encoding cysteine proteases that likely function in senes-

cence in a number of legumes [28, 44–48]. A recent

analysis of compartmental markers has demonstrated that

the symbiosomes in M. truncatula change over the course

of endocytotic formation to senescence [49]. Such altera-

tions may determine whether each symbiosome persists or

enters the lytic pathway, although the mechanism of the

alteration is unknown. Although G. max is reported to

sanction parasitic rhizobia [50], it has also been reported

that some inefficient rhizobia, including Rhizobium sp.

NGR234, persist for longer periods in L. japonicus nodules

[8]. Thus, it is of interest to elucidate what enables the host

to discriminate non-efficient from efficient rhizobia and

how marker alterations are triggered.

a

b

c

Fig. 2 Host-derived and endogenous threats to rhizobia and rhizobial

counter measures at the different developmental stages. Host actions

to infecting rhizobia and rhizobial counter measures in infection

threads (a), in released droplets or young symbiosomes (b), and in

mature symbiosomes (c)
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ROS scavenging enzymes

ROS production occurs during all three phases of threats to

rhizobia. Because ROS (especially H2O2) function not only

as antimicrobial agents but also as signals for nodule

organogenesis, regulation of ROS levels is required for

successful symbiosis [51–53]. The ROS level during the

initial phase must be low enough to allow the survival of

compatible wild-type rhizobium with somewhat redundant

ROS scavenging systems. The redundancy often masks

some ROS detoxification enzymes, but some mutants with

compromised systems have defective symbiotic capacities.

S. meliloti has two monofunctional catalases encoded by

katA and katC, a bifunctional catalase-peroxidase encoded

by katB [36, 54, 55], a superoxide dismutase (SOD)

encoded by sodA or sodB [37, 56, 57] and several

uncharacterized ROS scavenging enzymes [14, 19]. M. loti

has a monofunctional catalase encoded by katE, a bifunc-

tional catalase-peroxidase encoded by katG, a SOD

encoded by sodA and other enzymes [58].

Among the ROS scavenging enzymes, catalase genes

have been most extensively characterized. Mutation of any

of the three kat genes in S. meliloti does not affect H2O2

sensitivity, but a katA katC double mutant and a katB katC

double mutant are deficient in nodule formation and

nitrogen fixation [36, 55]. The katA katC double mutant

can fix nitrogen, but has low nodulation efficiency [55] and

sparsely distributed bacteroids, some of which are irregu-

larly shaped [36]. The katB katC mutant has an even lower

nodulation efficiency and is unable to form bacteroids and

fix nitrogen [36]. Because these double mutants are capable

of aerobic growth, S. meliloti likely requires both katB and

katC to overcome the initial and intermediate phase attacks

from the Medicago host before forming mature symbio-

somes. In contrast, an M. loti katE katG double mutant

forms a greater number of effective nodules, but they have

a slightly lower nitrogen-fixing capacity than wild-type

M. loti [59]. Because M. loti katG mutants are at least 30 times

more vulnerable to exogenous H2O2 than wild-type M. loti

and exhibit slower aerobic growth [59], it is possible that

the initial and intermediate attacks from the Lotus host are

not strong enough to prevent nodulation and formation of

mature symbiosomes. In M. loti, katE contributes to sur-

vival during the stationary phase; a katE single mutant has

decreased nitrogen-fixation capacity similar to the katE

katG double mutant, while the katG single mutant has

comparable capacity to wild-type M. loti [59]. This sug-

gests that the monofunctional catalase KatE but not the

bifunctional catalase-peroxidase KatG is required for

continuing nitrogen fixation or to protect bacteroids from

maintenance phase threats. In addition, the S. meliloti katC

mutant, which lacks the monofunctional catalase similar to

M. loti KatE, forms nodules with slightly decreased

nitrogen-fixing capacity [55]. It is unclear why catalase

disruption has different effects on nodulation of S. meliloti

and M. loti, but the initial and intermediate phase threats to

infecting rhizobia appear to be stronger in Medicago than

Lotus.

The requirement of rhizobial ROS scavenging proteins

to properly maintain nitrogen-fixation capacity is supported

by studies examining Rhizobium etli, which nodulates the

determinate host Phaseolus vulgaris [60, 61]. R. etli has

only one catalase, a catalase-peroxidase encoded by katG,

that is responsible for protection from exogenous H2O2

and survival during the stationary phase [60]. Like many

rhizobia, this species encodes 2-Cys peroxiredoxin, a

non-heme protein that catalyzes the reduction of H2O2 in

the presence of thiol [62]. This peroxiredoxin is encoded by

prxS and is expressed under symbiotic conditions [61].

katG and prxS single mutants both show a symbiotic

phenotype similar to wild-type R. etli, however, a katG

prxS double mutant forms nodules with a nitrogen-fixing

capacity that is approximately 50% of the capacity of wild-

type R. etli [61]. Notably, S. meliloti has another perox-

iredoxin encoded by nex1 that is primarily expressed in

nodules [63].

The heterologous over-expression of a cyanobacterial

flavodoxin in S. meliloti contributes to delayed nodule

senescence without significant side effects, although its

expression does not result in an increase of plant biomass

[64]. As neither S. meliloti nor its host Medicago encodes

flavodoxin, the excess of the FMN-containing electron

transport protein may have functioned as a sink for ROS. If

this strategy to express a ROS scavenging protein is suc-

cessful, it would be worth to control endogenous enzymes

at proper level. Monofunctional catalases, including S.

meliloti katC and M. loti katE, might be good candidates

for this strategy because they are exceptionally stable [65]

and function in a wide pH range [66] to detoxify the

membrane-permeable ROS H2O2.

SOD mutants of the same gene in different S. meliloti

strains have been reported to have different symbiotic

phenotypes. The disruption of sodA in S. meliloti strain

Rm5000 results in fewer infection events, poor nodulation

on Medicago, failure to differentiate into bacteroids and

rapid senescence, all of which result in poor nitrogen fix-

ation [37]. In contrast, disruption of the homologous gene

(designated sodB) in S. meliloti strain Rm1021 has minimal

effects on symbiosis in terms of plant growth and nitro-

genase activity [67]. Because the S. meliloti strains

Rm5000 and Rm1021 are derivatives of the same wild-type

strain SU47 (synonym of Rm2011) that were selected for

spontaneous rifampicin and streptomycin resistance,

respectively [68, 69], the phenotypic difference is per-

plexing. However, SU47 has a slower response to NF than

Rm1021 as analyzed by Ca2? spiking, probably due to the
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lower expression of nod genes [70]. We have disrupted the

sole SOD gene (sodA) in M. loti MAFF303099, and the

mutant displays markedly different symbiotic efficiencies

depending on the Lotus japonicus cultivar used (Hanyu and

Saeki, unpublished data). This suggests that the pairing of

rhizobial strains and host cultivars significantly affects the

outcome of symbiosis.

BacA protein

bacA was first described in Sinorhizobium meliloti as a

gene essential for bacteroid formation after release into the

cytoplasm of the host Medicago sativa [11]. The predicted

product of bacA is an integral membrane peptide trans-

porter that has 64% sequence similarity to Escherichia coli

SbmA [11]. SbmA sensitizes E. coli to some peptide

antibiotics including microcin B17, microcin J25 and

bleomycin [71]. S. meliloti bacA is also involved in this

sensitization and, most likely, in the uptake of peptide

antibiotics [72, 73]. Homologues of bacA are found in

M. loti MAFF303099 [58] and animal pathogens including

Brucella abortus and Mycobacterium tuberculosis [74, 75].

In B. abortus, which induces abortion in chronically

infected animals, the bacA homolog is required for

effective survival in murine macrophages [74]. In

M. tuberculosis, the causative agent of tuberculosis, the

lack of the bacA homolog results in the compromised

maintenance of persistent infection in mice [75]. Therefore,

BacA homologues in symbiotic and pathogenic bacteria

may support chronic intracellular survival in their eukary-

otic hosts by counteracting host defense reactions [14, 19,

74, 75].

Although many rhizobia have bacA homologues, genetic

studies were only recently performed in five rhizobial

species other than S. meliloti [76–78]. Gene disruption

studies revealed that the bacA homologs of Mesorhizobium

huakuii and Rhizobium leguminosarum bv. viciae are

essential for symbiosis with Astragalus sinicus (Chinese

milk vetch) and Pisum sativum (pea) [76, 77], respectively.

In contrast, similar gene disruption studies have revealed

that the bacA homologs in Rhizobium leguminosarum bv.

phaseoli and Rhizobium etli are dispensable for symbiosis

with the host Phaseolus vulgaris (bean) [77] and that the

M. loti MAFF303099 bacA homolog is dispensable for

symbiosis with L. japonicus [78]. Legume hosts that do not

require bacA in compatible rhizobia form determinate

nodules, while those that require bacA form indeterminate

nodules. The indeterminate hosts Medicago, Pisum and

Astragalus belong to the inverted repeat-lacking clade

(IRLC), whereas the two determinate hosts, Lotus and

Phaseolus, belong to the robinoids and milletioids clades,

respectively [79].

Despite their different contributions to the establishment

of symbiosis, bacA and its homologues appear to perform

similar functions under free-living conditions. BacA-lack-

ing mutants of five rhizobial species have increased

resistance to the glycopeptide antibiotic bleomycin and

some aminoglycoside antibiotics and increased sensitivity

to some membrane-disturbing reagents including deter-

gents [72, 76–78, 80–82]. The M. tuberculosis BacA

homologue is reported to be an ABC-transporter, but its

ATP-binding cassette is located in an extended carboxyl-

terminal portion that is not conserved with rhizobial BacA

homologs [75]. This suggests that rhizobial BacA homo-

logs may not function without other synergistic

components. The S. meliloti and M. huakuii bacA mutants

have abnormal LPS lacking the very-long-chain fatty acid

(VLCFA) modification [76, 83, 84]. This is in accordance

with the relatively weak but significant structural similarity

with the human adrenoleukodystrophy protein (hALDP),

and genetic disorders associated with this protein can result

in the accumulation of VLCFAs in all body tissues [85].

These properties support a role of BacA homologs as

transporters, although there is little direct biochemical

evidence.

The rhizobial requirement for BacA is determined by its

pairing to a host legume. Rhizobial species absolutely

require BacA to establish symbiosis with the IRLC inde-

terminate legumes Medicago, Pisum and Astragalus, but it

is not required for symbiosis with the non-IRLC determi-

nate legumes Phaseolus and Lotus. In nodules of

M. truncatula and P. sativum, bacteroids tend to undergo

endoreproduction with fragmented DNA and have reduced

reproductive viability [21]. A similar fragmentation of

bacteroid DNA was also observed in A. sinicus [86]. In

contrast, bacteroids in L. japonicus and P. vulgaris main-

tain quasi-normal sizes and reproductive viability [21]. The

two cultivars of R. leguminosarum have essentially iden-

tical main chromosomes, which contain bacA and differ

only in their symbiotic plasmids [87]; however, their bacA

mutants display opposite symbiotic phenotypes. Similarly,

although M. loti and M. hukuii are closely related and have

similar BacA homologs that differ by only two amino

acids, bacA mutants of these two non-IRLC legumes

display opposite symbiotic phenotypes [76, 78]. M. loti

bacA can partially complement the symbiotic defect of the

S. meliloti bacA mutant [78], suggesting that the necessity

of BacA to establish symbiosis is solely dependent on the

host properties that determine the strength of the interme-

diate, and possibly maintenance, phase attacks.

IRLC legumes have various nodule-specific cysteine-

rich (NCR) peptides that are similar to defensin-type

antimicrobial peptides, which may be responsible for the

strong attacks (Fig. 2c). The peptides are individually

expressed in distinct nodule zones, but neither Lotus nor
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Phaseolus possesses such peptides [88, 89]. Some NCR

peptides have regulatory or bactericidal effects on rhizobial

cells and attach to bacteroids in symbiosomes [43]. Nota-

bly, NCR peptides attached to bacteroids are delivered via

a nodule-specific protein secretion pathway consisting of

DNF1, a subunit of the signal peptidase complex [90].

Even if a specific NCR peptide degrades bacA-lacking

mutants of S. meliloti and R. leguminosarum bv. viciae, it

can be difficult to explain the mechanism underlying the

BacA-mediated protection due to the pleiotropy of bacA

deletions. All known BacA-lacking mutants have a com-

promised cell envelope, with the partial loss of VLCFA

from LPS, and a decreased sensitivity to some antibiotics.

In addition, R. leguminosarum species are deficient in the

ability to utilize dicarboxylic acid as a growth substrate

[77]. The lack of VLCFA modifications is not directly

related to decreased bleomycin sensitivity [82]. To fully

understand the protective mechanism of BacA, its bio-

chemical properties, including physiological substrates and

components with which it interacts, must be elucidated.

Although the requirement of BacA to establish symbi-

osis with five legume species has been investigated, it is

unclear if the studies in these IRLC and non-IRLC legumes

can be extrapolated to indeterminate and determinate

legumes. Recently, Oono et al. [91] reported additional

classification schemes of bacteroid morphology—swollen

(longer than 4 lm or wider than 1.5 lm (for spherical

bacteroids) or branched (regardless of size)) and non-

swollen (smaller than 2.5 9 1.5 lm)—together with the

conventional indeterminate and determinate nodule types.

They observed at least four classes of nodules: indetermi-

nate with non-swollen bacteroids, determinate with swollen

bacteroids, indeterminate with swollen bacteroids and

determinate with non-swollen bacteroids. Based on the

distribution of the classes within a legume phylogenetic

tree, they proposed multiple evolutionary origins for nod-

ule types and bacterial deformations [91]. It will be of

interest to investigate the response of legumes with deter-

minate nodules and swollen bacteroids, as well as legumes

with indeterminate nodules and non-swollen bacteroids, to

rhizobial cells lacking BacA. Such analyses might help

elucidation of factors used to evade host attacks during

chronic infection.

Type III and type IV secretion systems and their

effectors

The type III and type IV secretion systems (T3SS and

T4SS) are important for the virulence of many animal and

plant pathogenic bacteria. Bacteria use the T3/T4SS to

transfer effector proteins from the bacterial cytoplasm into

eukaryotic cells or the external milieu, where they can

manipulate host cellular processes to facilitate pathoge-

nicity [92, 93]. Phytopathogenic bacteria often use effector

proteins to suppress the host immune response activated by

pathogen-associated molecular patterns (PAMPs) [94]. To

counteract bacterial effector proteins, host plants use

resistance proteins (R proteins) that recognize effector

proteins and trigger resistance responses, including the

hypersensitive response (HR), which halts pathogen inva-

sion and virulence [95, 96].

T3SS and T4SS are also found in many rhizobia that use

effectors to modulate their host specificity and symbiotic

efficiency [12, 97, 98]. Rhizobial T3SS genes are often

designated nop (nodulation outer protein) [99]. Among

the rhizobia of model legumes, the Lotus symbionts

M. loti strains MAFF303099 and R7A possess T3SS and

T4SS, respectively [58, 100]. The deletion of T3SS in

MAFF303099 does not affect its symbiotic performance

with its host L. japonicus but modulates its nodulation

capacity with other species of the Lotus genus [101]. A

negative effector (Mlr6361 protein) against Lotus halo-

philus possesses a conserved multidomain that is also

found in the T3SS genes of several plant pathogens [101].

The absence of T4SS in R7A results in delayed nodula-

tion with L. corniculatus but increases the capacity of

productive symbiosis with the tree legume Leucaena

leucocephala [102, 103]. Separate insertion mutations in

two effectors (Msi059 and Msi061 proteins) have shown

that these proteins are at least partially responsible for the

positive and negative effects. Notably, it has been dem-

onstrated using the bacteriophage P1 Cre/lox-based CRAft

system [104] that these effectors can be transported via the

Agrobacterium tumefaciens VirB/D4 system into Arabid-

opsis thaliana and Saccharomyces cerevisiae [102]. The

Mlr6361, Msi059, and Msi061 effectors negatively affect

symbiosis with certain hosts and could be recognized as

PAMP or virulence factors by the host, whereas those with

positive effects might successfully evade host defenses or

reinforce symbiotic functions. The Medicago symbiont

S. meliloti strain Rm1021 also encodes a T4SS [105],

which does not affect its symbiotic capacity with M. sativa

or M. truncatula [106, 107]. Rhizobium sp. NGR234, which

has a broad host range, can establish symbiosis with

L. japonicus [108] and has several T3SS and T4SS [109];

however, experimental studies have focused on one T3SS

encoded by a symbiotic plasmid [99, 110–122].

Based on studies in which increased transcription of

T3SS genes in Rhizobium sp. NGR234 was observed

within 24 h of adding the flavonoid daidzein, T3SS have

been assumed to counteract the initial and intermediate

phase threats [121, 122]. This hypothesis was supported by

the immunocytochemical observation that Sinorhizobium

fredii NopX was detected in infection threads, but not

within mature nodules, in Glycine max (soybean) and
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Vigna unguiculata (cowpea) [123] as well as by other

omics studies [124, 125]. However, recent experimental

data have indicated that rhizobial T3SS function even in

mature nodules. Gene-fusion analyses have shown that

NopE1 of B. japonicum USDA110 is expressed in mature

nodules (4 weeks after infection) and in infection threads

[126]. This indicates that some rhizobial effectors are used

to subvert the late-phase threats, thereby enabling chronic

infection, as is the case in many T3SS effectors of animal

pathogens [127, 128].

The presence of B. japonicum NopE1 or its closely

related homolog NopE2 positively affects symbiosis with

G. max and Macroptilium atropurpureum (Siratro or Purple

Bush-Bean) but negatively affects symbiosis with Vigna

radiata (mung bean or green gram) [129]. Both NopE1 and

NopeE2 are transported into the M. atropurpureum (host)

cytoplasm, as demonstrated using an in-frame fusion [129]

to the Bordetella pertussis calmodulin-dependent adenylate

cyclase (cya gene product), which becomes active only in

the eukaryotic host cytoplasm where calmodulin is present

[130, 131]. Both NopE1 and NopeE2 become physiologi-

cally active only after autonomous cleavage [129].

Modification is also required for the activation of NopL

and NopP by phosphorylation by a plant cytosolic kinase in

Rhizobium sp. NGR234 [114]. NopP is transported to the

cytoplasm of host nodule cells, which was demonstrated

using Vigna unguiculata as a host and the fusion of a

closely related NopP from S. fredii to the Bordetella

adenylate cyclase described above [132]. These studies

indicate that some rhizobial T3SS effectors require post-

translational modifications to function in their host.

S. fredii NopP is responsible for suppressing the

expression of the host defense-related gene PR1 in G. max

[133]. It is plausible that rhizobial T3SS and T4SS effec-

tors can suppress or induce PAMP-triggered host defense

responses that might constitute the initial and intermediate

phase threats. It is also possible that during the mainte-

nance phase, in addition to defense measures that are

common in other non-leguminous plants, legume hosts

have nodule-specific attack mechanisms, as exemplified by

the expression of NCRs by IRLC legumes. Some T3SS

effectors can suppress nodule-specific plant defense mea-

sures while others can be activators that increase the

expression of nodule-function host genes. Because at least

some T3SS effectors are expressed in mature nodules and

transported to the host cytoplasm, there can be molecular

chaperones that control the timing and order of effector

transport, as observed in pathogens [134, 135]. To decipher

the function and mode of action for each T3SS or T4SS

effector, it is necessary to identify the target molecules in

the host plant and to investigate the biochemical properties

of the effectors and targets, as well as their molecular

chaperones.

Concluding remarks

Rhizobial measures to evade host-derived and endogenous

threats do not function equally during the three threat

phases (Fig. 2). Furthermore, the measures are not used in

the same manner in the model rhizobial species M. loti and

S. meliloti. To evade the initial and intermediate phase

threats, ROS scavenging enzymes seem to be more criti-

cally are required in S. meliloti than in M. loti. It is possible

that ROS scavenging subverts the maintenance phase

threats in both rhizobial models. The BacA protein is

essential to overcome intermediate threats in S. meliloti,

but not M. loti. The T3SS and T4SS in M. loti are important

for host-specific modulation of symbiotic efficiency,

mostly by evading or triggering the host defense mecha-

nisms during the initial and intermediate phases. However,

it is possible that some effectors contribute to evade threats

during the maintenance phase. The contribution of the

T4SS in S. meliloti is currently not known.

Autoregulation of nodulation is necessary for legumes to

balance energy expenditure and growth. Significant

advances, including the identification of a receptor kinase

and signaling peptide, have been made over the last decade

(see reviews [18, 136]). However, it is currently not known

how host plants arrest infecting rhizobial cells. Several

specific questions remain: (1) Do hosts use ROS or other

hazardous compounds to eliminate excess rhizobia? (2) Do

hosts simply discontinue the organogenesis program as

well as the elongation of infection threads? Combined

cytological and biochemical analyses are necessary to

address these questions.

Because the maintenance of active mature nodules for

long periods would be directly beneficial to host legumes

and ultimately to agronomy, it is important to investigate

the nature of the late-phase threats. It is also important to

determine whether they are involved in the plant sanction

of inefficient rhizobial cells. This phenomenon has attrac-

ted attention because such a selection method for rhizobia

would be beneficial for legumes and influence the

co-evolution of legume–rhizobia [137]. It has been reported

that the legume host G. max supplies less oxygen to nodule

cells containing rhizobial B. japonicum cells unable to fix

nitrogen than to those with nitrogen-fixing rhizobia [50].

However, whether this phenomenon exists is controversial

because there is supporting [138] and opposing [139, 140]

evidence. Although it is currently unclear whether the

observed sanction is caused by simple metabolic imbal-

ances or by complex surveillance machineries that detect

commensal rhizobia, studies on late-phase threats will be

useful to breed more efficient rhizobial species.
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B, Bellogı́n RA, Vinardell JM, Ollero FJ (2009) The absence of

Nops secretion in Sinorhizobium fredii HH103 increases GmPR1

1338 K. Saeki

123



expression in Williams Soybean. Mol Plant Microbe Interact

22:1445–1454

134. Brutinel ED, Yahr TL (2008) Control of gene expression by type

III secretory activity. Curr Opin Microbiol 11:128–133

135. Deane J, Abrusci P, Johnson S, Lea S (2010) Timing is every-

thing: the regulation of type III secretion. Cell Mol Life Sci

67:1065–1075

136. Magori S, Kawaguchi M (2009) Long-distance control of nod-

ulation: Molecules and models. Mol Cells 27:129–134

137. Oono R, Denison FR, Kiers TE (2009) Controlling the repro-

ductive fate of rhizobia: how universal are legume sanctions?

New Phytol 183:967–979

138. Sachs JL, Russell JE, Lii YE, Black KC, Lopez G, Patil AS

(2010) Host control over infection and proliferation of a cheater

symbiont. J Evol Biol 23:1919–1927
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Perea Á, Olivares J, Ruiz-Sainz JE, Sanjuán J (2009) An

experimental and modelling exploration of the host-sanction

hypothesis in legume–rhizobia mutualism. J Theor Biol

259:423–433

141. Yang S, Tang F, Gao M, Krishnan HB, Zhu H (2010) R gene-

controlled host specificity in the legume–rhizobia symbiosis.

Proc Natl Acad Sci USA 107:18735–18740

Rhizobial measures to counter host defense 1339

123


	Rhizobial measures to evade host defense strategies and endogenous threats to persistent symbiotic nitrogen fixation: a focus on two legume-rhizobium model systems
	Abstract
	Introduction
	Stages of legume--rhizobium symbiotic processes
	Encounter, attachment, and initial signal exchange
	Invasion of rhizobia into host cells and establishment of symbiosis
	Indeterminate and determinate nodules

	Phases of host-derived and endogenous threats to rhizobia
	ROS scavenging enzymes
	BacA protein
	Type III and type IV secretion systems and their effectors
	Concluding remarks
	Acknowledgments
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 149
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 149
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 599
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


