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Abstract The field that links immunity and metabolism

is rapidly expanding. Apparently, non-immunological dis-

orders such as obesity and type 2 diabetes have been linked

to immune dysregulation, suggesting that metabolic alter-

ations can be induced by or be a consequence of an altered

self-immune tolerance. In this context, a key role is played

by signaling systems acting as metabolic ‘‘sensors’’ linking

energy/nutritional status to regulatory T (Treg) cell func-

tions. We propose that a dynamic/oscillatory activity of

intracellular metabolism, through mTOR modulation,

might represent a shift in understanding the molecular

mechanisms governing Treg cell tolerance. In particular,

the decision between Treg cell proliferation and hypore-

sponsiveness arises from their ability to probe the

extracellular milieu and, modulating the metabolic intra-

cellular signaling, to determine different qualitative and

quantitative functional outcomes.
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Immune system and metabolism: a common route

in the control of immune tolerance

The question of self-non-self discrimination, and thereby

immunological tolerance, is as old as our appreciation of

the receptor diversity in the immune system. Initially,

negative selection of self-reactive lymphocytes by clonal

deletion in primary lymphoid organs, enhanced by pro-

miscuous expression of ectopic antigens in these organs,

attracted attention. It became clear, however, that such

central deletion mechanisms were some of many used to

achieve hyporesponsiveness. Additional ‘‘recessive mech-

anisms’’, such as deletion and/or anergy in the periphery,

were also discovered, but it became clear that even these

additional mechanisms were insufficient to account for

self-tolerance and that ‘‘dominant immune regulation’’

played a major role. The discovery of the transcription

factor forkhead box P3 (FoxP3), as the master switch

enabling regulation, has lead to the identification of regu-

latory T (Treg) cells, whose role is suppression of the

functions of other adaptive and innate immune cells [1, 2].

These cells play a central role in the control of autoreactive

clones and the major characteristic of Treg cells is that they

are naturally anergic in vitro to T cell receptor (TCR)-

mediated activation and their suppressive function is clo-

sely related to this state [3, 4]. For these reasons, Treg cells

are difficult to expand in vitro, an aspect that limits their

potential clinical application in autoimmunity and

transplantation.

Recent evidence has shed fundamental insights con-

cerning the emerging frontier of immunometabolism in the

context of self-non-self discrimination. It has emerged that

certain supposedly non-immune disorders such as obesity,

type 2 diabetes, metabolic syndrome, and atherosclerosis,

implicate the pathological involvement of the immune
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system in their pathogenesis; indeed a key role of adipo-

kines and both innate and adaptive immune cells in the

regulation of fat inflammation and glucose homeostasis has

been recently proposed.

Further evidence for a pivotal role of inflammation in met-

abolic disturbances comes from clinical studies using either

anti-inflammatory approaches or biological agents (i.e.,

blockade of IL-1R1 activation, inhibition of the NF-jB path-

way with salicylate derivatives, metformin, thiazolidinediones,

and statins) [5–10] that target specific pro-inflammatory cyto-

kine pathways to improve parameters of glucose control, thus

reducing evidence of systemic inflammation.

For example, metformin, which activates the AMP-

activated protein kinase (AMPK), has anti-inflammatory

properties as it inhibits T cell-mediated immune responses

and the production of Th1 or Th17 cytokines, while

inducing generation of IL-10-secreting Treg cells [7].

Statins—inhibitors of the 3-hydroxy-3-methyl-glutaryl-

CoA (HMG-CoA)-reductase—inhibit cholesterol synthesis

and thus lower cholesterol levels but, more interestingly,

they also dampen autoreactive immune responses by pro-

moting the release of Th2 cytokines and by reducing pro-

inflammatory cytokines such as leptin and TNF-a [10]. For

these reasons, statins are widely utilized in type 2 diabetes

and insulin resistance, and have been found highly effec-

tive as therapeutic agents for autoimmune disorders, such

as experimental autoimmune encephalomyelitis (EAE).

On the one hand, it has emerged that these supposedly

non-immune pathologies result in the involvement of reg-

ulatory T cells (Treg), on the other hand, Treg cell function

is also controlled at different levels by internal metabolic

processes. Since the local environment reflects the meta-

bolic state of the host, Treg cells might need to be able to

rapidly adjust their activity depending on what would be

most expedient for the overall economy of the host. In this

context, the adipocyte-derived hormone leptin, which

reflects the metabolic/nutritional status of the host, can

provide a ‘‘prototypic’’ example of the link among Treg

cell metabolism, ‘‘external/environmental signals’’ (i.e.,

nutrient availability) and regulation of T cell tolerance [11–

16]. In more recent times, dissection of the molecular

underpinnings of the immune tolerance/metabolic cross-

talk has become a priority, as testified by the growing

number of reports related to this issue. Indeed, molecules

known to be involved in the metabolic processes have been

shown to be key players in the control of T cell tolerance.

Of particular interest is the mammalian-Target-of-Rapa-

mycin (mTOR), which together with the AMP-activated

protein kinase (AMPK) and the Foxo-family proteins have

been described as the dominant elements linking metabo-

lism and self-tolerance at intracellular level [17–19].

Analyses of transcripts from particular immune sub-

populations and cell-specific inactivation or overexpression

of the proteins controlling these pathways should yield

exciting discoveries in this emerging field and it is

imperative to define whether mechanisms initiated by such

metabolic shifts might serve as important therapeutic tar-

gets for the treatment of metabolic disorders.

Metabolic control of T cell functions

T cells switch between highly proliferative states (i.e.,

developing thymocytes and antigen-activated T cells) and

quiescent states (i.e., naive, memory, and anergic T cells).

These conditions are finely regulated by signals that, once

delivered through T cell receptor (TCR) and cytokine

receptors, induce the activation of different intracellular

metabolic pathways [20]. For example, during T cell

receptor (TCR) stimulation, signals from growth factors

and cytokines such as Interleukin (IL)-2 or IL-7, together

with ligation of co-stimulatory molecules, such as CD28,

lead to an increase in glucose uptake and glycolysis

through induction of phosphoinositide-3-kinase (PI3K)-

dependent activation of Akt [21, 22]. This kinase promotes

glucose metabolism by stimulating the localization of the

glucose transporter Glut1 to the plasma membrane of T

cells, thus facilitating glucose uptake. Overexpression of

Glut1 leads to increased glucose uptake and glycolysis, and

transgenic expression of Glut1 specifically in T cells

determines increased T cell proliferation, survival, and

cytokine production [23]. On the contrary, failure of

effector T cells to properly upregulate glucose metabolism

results in decreased cytokine production, proliferation, and

can lead to apoptosis of these cells [24–26]. Finally, if T

cells survive to this condition of metabolic stress, inhibition

of metabolism during T cell activation can induce cell

anergy [27]. Interestingly, the effects of Akt on glucose

metabolism in lymphocytes are antagonized by the inhib-

itory receptor CTLA-4, suggesting that antagonists of T

cell activation may function in part by disrupting glucose

metabolism [20, 28, 29]. In this context, it is important to

remind that T cells use glucose as their primary fuel source

for generation of adenosine triphosphate (ATP) and it

appears to be particularly necessary for cell survival, size,

activation, proliferation, and cytokine production [30, 31].

T cell activation is also accompanied by an increased

rate of protein synthesis, which supports cell growth and

effector functions. Downstream of TCR and CD28, Akt

controls the activation of the mammalian Target of Rapa-

mycin, mTOR, a key regulator of protein synthesis in T

cells [32, 33]. mTOR modulates the rate of protein syn-

thesis by regulating both the availability of amino acids and

the process of cap-dependent translation. Phosphorylation

of the components of the translational machinery (i.e., the

translation inhibitor 4E-BP1, the translation initiation
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factor EIF2B, and the ribosomal p70 S6 kinase) by mTOR

promotes the initiation of cap-dependent translation [34]

and all these events are inhibited by rapamycin, a specific

inhibitor of mTOR pathway (Fig. 1). The importance of the

mTOR pathway for T cell activation is testified also by the

finding showing that rapamycin induces a condition of

immunosuppression, through the induction of a G1 cell

cycle arrest in proliferating T lymphocyte. Although

altered metabolic needs and activity certainly follow

changes in signaling and proliferation rate, evidence is now

emerging that the regulation of T cell metabolism is also

intimately linked to T cell function and differentiation. In

each stage of the life of a T cell, whether it is naive,

activated, antigen-experienced, or anergic, cell metabolism

must be matched to the function of that particular T cell. Is

now evident that in addition to mTOR, several other met-

abolic pathway have been demonstrated to be involved in T

cell function and in the control of T cell tolerance.

In this context several cytokines/hormones, such as leptin

or adiponectin play a central role in the modulation of

immune responses. Indeed, the latter induces the secretion of

some anti-inflammatory cytokines, such as IL-10 and IL-1RA

(receptor antagonist), by human monocytes, macrophages

and dendritic cells and suppress the production of INF-c [35].

Several data suggest that adiponectin is a negative T cell

regulator. In particular, although a small percentage of T cells

express adiponectin receptor (ADIPOR) on their surface, a

great amount of T cells store ADIPORs within clathrin-

coated vesicles and these receptors colocalized with Cyto-

toxic T-Lymphocyte Antigen 4 (CTLA4) molecules. After

stimulation of T cells, the expression of both ADIPORs and

CTLA-4 was upregulated. Interestingly, it was observed that

the addition of adiponectin results in a significant diminution

of antigen-specific T cell proliferation and cytokines pro-

duction [36]. A paper by Tsang et al. [37] suggests that the

immunomodulatory effect of adiponectin on immune

response could be at least partially mediated by its ability to

alter dendritic cell functions. Indeed, adiponectin-treated

dendritic cells show a lower production of IL-12p40 and a

lower expression of CD80, CD86 and histocompatibility

complex class II (MHCII). Moreover, in co-culture experi-

ments of T cells and adiponectin-treated dendritic cells, a

reduction in T cells proliferation and IL-2 production and an

higher percentage of CD4?CD25?FoxP3? Treg cells was

observed [37], suggesting that adiponectin could also control

regulatory T cell homeostasis.

mTOR role in the orchestrating of lymphocytes

functions

mTOR is an evolutionarily conserved 289-kDa serine/

threonine protein kinase inhibited by rapamycin [17, 38,

39], that directly influences T cell differentiation and pro-

liferation by integrating environmental cues including

nutrients, energy stores and growth factors [40–42].

Briefly, mTOR is activated in response to growth factors

and cytokines and can modulate cellular metabolic path-

ways. This kinase operates in two distinct signaling

complexes [43, 44]; mTORC1 contains the scaffolding

protein Raptor, as well as the subunits mLST8, proline-rich

AKT substrate (PRAS40) and Deptor [33]. Its activation is

achieved through signaling by the kinases PI(3)K,

3-Phosphoinositide-dependent kinase 1 (PDK1) and Akt.
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Fig. 1 Schematic model of the effects of mammalian target of

rapamycin (mTOR) signaling in T cells. Environmental cues,

including TCR and costimulatory molecule engagement (CD28),

nutrients, growth factors, amino acids, insulin and different cytokines

(IL-1, IL-2, IL-12, leptin) stimulate the activity of the phosphatidyl-

inositol 3-kinase (PI3K) signaling cascade, promoting the activation

of mTOR complex. mTOR exerts pleiotropic effects: acting through

downstream S6K, it induces protein synthesis, survival, proliferation.

mTOR sustains mitochondrial function, thus supporting the increase

in the cellular metabolic function and inhibits the autophagic process.

More interestingly in T cells, mTOR activity promotes both CD8?

and CD4? effector T cell generation, activation and proliferation.

Sufficient mTOR activity induces effector CD4? T helper subsets. On

the contrary, a complete or strong block of the signaling (through

rapamycin) prevents the generation of these effector cells, while it

promotes Treg differentiation and the generation of memory cells in

CD8? T cell compartment
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This complex promotes phosphorylation of the translational

regulators S6 Kinase (S6K1) and Eukaryotic translation

initiation factor 4E-binding protein-1 (4E-BP1) and is

believed to have a central role in regulating cellular growth

and proliferation, by modulating metabolic intracellular

pathways, including glycolysis, the oxidative arm of the

pentose phosphate pathway, and de novo lipid biosynthesis.

This is also achieved through the activation of a transcrip-

tional program affecting expression of the gene encoding for

the transcription factor HIF1-a, and the sterol regulatory

element-binding proteins (SREBP1 and SREBP2) [45, 46].

On the other side, mTORC2 consists of mLST8, the scaf-

folding protein Rictor, a critical adaptor protein for

mTORC2, the subunits mSIN1 and Protor and regulates actin

cytoskeleton, activating Akt through phosphorylation of

Ser473 [44, 47]. mTORC2 has been shown to function as an

important regulator of the cytoskeleton through its stimula-

tion of F-actin stress fibers, paxillin, RhoA, Rac1, Cdc42,

and protein kinase C a (PKCa) [44] and it appears to be

regulated by insulin, growth factors, serum, and nutrient

levels [47]. Originally, mTORC2 was identified as a rapa-

mycin-insensitive entity, as acute exposure to rapamycin did

not affect mTORC2 activity or Akt phosphorylation [44].

However, subsequent studies by Sarbassov et al. [48] have

shown that, at least in some cell lines, chronic exposure to

rapamycin, while not affecting pre-existing mTORC2s,

promotes rapamycin inhibition of free mTOR molecules,

thus inhibiting the formation of new mTORC2.

Besides its well-established role in T cell activation and

proliferation, mTOR has recently been shown to serve a

crucial function in the induction of anergy and recent data

have reinforced this notion by showing that the anergic

status in T cells is critically due to a failure of the Akt-

mTOR pathway to upregulate nutrient transporters and

activate glycolytic pathways, in the absence of an appro-

priate costimulus [33].

Data from literature suggest that there are multiple lin-

eages of CD4? T cells that include helper subsets (Th1,

Th2, Th17) and a regulatory subset (Treg) [49, 50] and

emerging evidence suggests that mTOR activity regulates

development and differentiation of these CD4? T cell

subsets (Fig. 1). Delgoffe et al. have shown that mTOR-

deficient CD4? T cells fail to differentiate into Th1, Th2

and Th17 subsets upon activation and this phenomenon

was due to a decreased phosphorylation of STAT, as well

as an insufficient induction of lineage specific transcription

factors [51]. On the other hand, mTOR-deficient CD4? T

cells rather differentiate towards a FoxP3? regulatory

(Treg) phenotype [51] (Fig. 1). Moreover, another recent

study by the same group has shown that mTORC1 and

mTORC2 differentially regulate the generation of CD4? T

helper subsets. More in detail, abrogating mTORC1

activity by deletion of Rheb, an upstream activator of

mTORC1, resulted in a failure of CD4? T cells to develop

to either Th1 or Th17 cells, while differentiation into Th2

remained intact upon in vitro stimulation. On the contrary,

Rictor-deficient T cells, with the consequent block of

mTORC2, differentiated into Th1 and Th17 cells but lost

their ability to differentiate into Th2 cells [52].

During the past few years, considerable progress has

been made in understanding the role of the mTOR pathway

also in CD8? T cell responses. Indeed it has been shown

that mTOR activity regulates trafficking of these cells by

altering expression of cell surface receptors (CD62L and

CCR7), which are important for the ability to home to

secondary lymphoid tissues [53, 54]. Moreover, it is now

well established the central role played by mTOR in

memory CD8? T cell differentiation [55–61] (Fig. 1).

Rapamycin has long been considered an immunosup-

pressive agent due to its antiproliferative effects on immune

cells, and it is currently used as a component of antirejection

regimens in transplantation. Nevertheless, several para-

doxes concerning rapamycin immunobiology still remain

unsolved. In particular, emerging evidence suggests that

under certain circumstances, rapamycin can exert immuno-

stimulatory effects. Recently Araki et al. [60] have

demonstrated that rapamycin treatment during the T cell

expansion phase increased the quantity of memory CD8? T

cells by increasing the number of memory precursor effector

cells and by reducing apoptotic cell death during the con-

traction phase. These discoveries have implications for the

development of novel vaccine regimens. The explanation for

this phenomenon could be linked to the ability of rapamycin

to enhance fatty acid oxidation (FAO) in responding T cells,

thereby enhancing memory T cell differentiation, as the

transition from glycolysis to FAO was recently shown to be

critical for effector to memory transition in CD8? T cells

[61]. Another possible mechanism by which rapamycin may

augment the generation of T cell memory is decreasing the

expression of T-bet, which is highly expressed in effector T

cells, and promotes expression of Eomesodermin [59],

which is highly expressed in memory T cells.

Recent reports have also shown that rapamycin can also

enhance immune responses by modulating cytokine pro-

duction. Macrophages and myeloid DCs (mDCs) treated

with rapamycin produce larger amounts of IL-12 and less

IL-10 upon stimulation with Toll-like receptor (TLR)

ligands or bacteria compared with cells without rapamycin

treatment [62, 63]. In addition, mTOR appears to regulate

antigen presentation in macrophages and DCs by modu-

lating autophagy [64], a lysosomal degradation pathway.

Rapamycin-induced autophagy of DCs enhances the ability

of the DCs to prime T cells in vitro [64]. Taken together,

these data suggest that exposure to rapamycin may produce

different outcomes depending on the cell cycle and meta-

bolic state of a given cell or population.
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Several groups have shown that the mTOR pathway is

required for development and maturation of B cells, as well

[65–67]. Indeed inhibition of mTORC2-dependent Akt

activity, due to genetic Sin1 deletion, prevents B cell

development [66] and similar results were obtained by

Zhang et al. [65] who showed that inhibition of mTOR

transcription increased the number of peripheral B cells with

altered phenotypes and impaired function. Interestingly,

hyperactivation of mTOR signaling also impairs B cell

maturation, as indicated by the accumulation of immature B

cells and the loss of marginal zone B cells in TSC1 (inhibitor

of mTORC1) conditional knockout mice [67].

Unsolved issues in Treg cell biology: a key role

for metabolism?

Regulatory T cells (Tregs) that express the transcription

factor forkhead box P3 (FoxP3) are essential for the

maintenance of dominant self-tolerance and the immune

homeostasis [68, 69]. Tregs dysfunction (for example,

owing to FoxP3 gene mutation) can cause fatal autoim-

mune disease, immunopathology, and allergy [70–73].

FoxP3? Tregs, most of which are CD4? T cells that

express high levels of CD25 (the interleukin-2 (IL-2)

receptor a-chain), can suppress the activation, proliferation,

and effector functions, such as cytokine production, of a

wide range of immune cells, including CD4? and CD8? T

cells, natural killer (NK) and NKT cells, B cells, and

antigen-presenting cells (APCs) such as dendritic cells

(DC) in vitro and in vivo [74–79]. This unique ability to

control immune responses makes FoxP3? Tregs central

players in keeping at bay autoimmune disease, immuno-

pathology and allergy, as well as in maintaining allograft

tolerance and fetal–maternal tolerance during pregnancy

[1, 80–84]. In humans and mice, naturally occurring Tregs

show classical surface markers of activated T cells and

possess a highly proliferative profile in vivo. In striking

distinction, Tregs are anergic in vitro as they fail to pro-

liferate in response to T cell receptor (TCR) ligation.

Classically, this in vitro condition is reversible upon TCR

stimulation in presence of high doses of interleukin-2 (IL-

2) in cultures. Rapamycin is an immunosuppressive drug

that also promotes the expansion of Tregs in long-term

cultures in the presence of supraphysiologic concentrations

of IL-2 (1,000–2,000 IU/ml) [85, 86] (Fig. 1). This

approach carries apparently an inherent paradox, since IL-2

activates mTOR, while rapamycin selectively inhibits

mTOR [39]. Despite that Treg cells are hyporesponsive to

antigenic stimulation in vitro, they have an intact prolif-

erative potential, as testified by their highly proliferative

profile in vivo. This dichotomous capacity has raised a

number of unresolved issues as summarized below:

1. Why do Treg cells have a highly proliferative profile in

vivo but are hyporesponsive/anergic to TCR-induced

proliferation in vitro?

2. Why do Treg cells show an activated surface pheno-

type and why are they hyporesponsive?

3. Why do current strategies to improve their in vitro

expansion need the addition of high doses of interleu-

kin-2 (IL-2) (which mTOR kinase pathway) together

with rapamycin, a specific inhibitor of mTOR kinase;

4. How can it be explained that rapamycin, which is a

strong inhibitor of cell growth and proliferation

(commonly used to block tumor cell growth and

kidney transplant rejection), is used for expansion of

already-hyporesponsive cells such as Treg cells?

These specific aspects of Treg cell biology can be partly

explained in light of metabolic regulation.

The current view on Treg cell metabolism in the control of

their anergic state has been considered often in a ‘‘static’’

manner, as a series of recent studies support a ‘‘conventional’’

and not ‘‘dynamic’’ view of Treg cell biology. More in detail,

the definition of ex vivo ‘‘Treg cell anergy’’ must be clearly

distinguished by that condition of T cell anergy artificially

inducible in vitro (i.e., by TCR ligation in the absence of

costimulation). Indeed, while an anergic T cell is character-

ized by functional inactivation and reduced mTOR activity

(in line with what is known from the literature) [27], Treg

cells, even though are in vitro hyporesponsive to TCR-stim-

ulation, at the same time show an activated surface phenotype

(i.e., high expression of activation surface markers such as

CD25, CD39, CD71, CTLA-4), an active metabolic

machinery as suggested by high amounts of ATP, cAMP, and

leptin, an adipocyte-derived cytokine. Also, most of the

knowledge on Treg cell biology comes from studies on either

specific knock-out or transgenic models for intracellular

molecules involved in the control of T cell metabolism.

Despite that this approach is of great value, it shows intrinsic

limitations, which are mainly ascribed to the possibility to

activate ‘‘compensatory loops’’ related to the constitutive

ablation of such metabolic-related pathways and to the lack of

a ‘‘dynamic’’ control of different metabolic processes, which

are strictly connected with Treg cell functions. From these

considerations comes the need of simply more physiologic

systems able to study how modulation of metabolic functions

impacts the control of T cell tolerance.

The metabolic demands of Treg cells functions:

a role for mTOR

Data emerging from the literature has revealed that Treg

cells are characterized by a specific metabolic signature

that governs their responsiveness to antigenic stimulations

Regulatory T cells, mTOR kinase, and metabolic activity 3979
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[13, 15, 51, 87, 88]. It has recently been shown that effector

T cells and Treg require distinct metabolic programs to

support their specific functions. More specifically, Th1,

Th2, and Th17 cells express high surface levels of the

glucose transporter Glut1 and are highly glycolytic. Treg,

in contrast, express low levels of Glut1 and have high lipid

oxidation rates in vitro, thus suggesting that CD4? T cell

subsets require distinct metabolic programs that can be

manipulated in vivo to control Treg and Teff development

in inflammatory diseases [89]. A very recent paper has also

shown that blocking glycolysis promoted Treg cell gener-

ation, through the transcription factor hypoxia-inducible

factor 1a (HIF1a), whose induction required mTOR path-

way activation [90]. Confirming these results, Dang et al.

[85] have shown that HIF-1 enhances Th17 development

through direct transcriptional activation of RORct, and

concurrently, it attenuates Treg development, by binding

FoxP3 and targeting it for proteasomal degradation. In

addition, mice with HIF-1a-deficient T cells are resistant to

induction of Th17-dependent experimental autoimmune

encephalitis associated with diminished Th17 and

increased Treg cells [91], thus suggesting again the

importance of metabolic cues in T cell fate determination.

Recent data have also shown the involvement of mTOR in

the differentiation of Treg cells. In this cellular subset, mTOR

represents a negative regulator of TCR-dependent FoxP3

expression [92], of de novo Treg cell differentiation [93], and

of Treg cell lineage commitment [51]. Several other reports

provided further evidence for the key role of mTOR signaling

in the control of Treg differentiation, by showing that PD1/

PD-L1 interaction can, through inhibiting the Akt-mTOR

axis, sustain the generation of Tregs [94], or that sphingosine

1-phoshate (S1P)-mediated activation of the Akt-mTOR axis

impairs Treg cell suppressive activity [95].

The link between mTOR signaling and Treg cell dif-

ferentiation and function has recently been extended in

studies using rapamycin, which inhibits mTOR activity. As

previously mentioned, Treg cells are in vitro anergic to

TCR-mediated stimulation and their suppressive capacity

is related to this state of hyporesponsiveness [3, 4]. Thus,

Treg cells are difficult to expand in vitro, condition which

limits their potential clinical application in autoimmunity

and transplantation. However, Battaglia et al. [85] have

shown that chronic addition of rapamycin, an inhibitor of

mTOR, together with high-dose IL-2, was able to expand

murine Treg cultures and consistently increases the yield of

FoxP3-expressing cells with suppressive function. Similar

findings were reported in studies using human Treg culture

systems and in vivo administration of rapamycin prefer-

entially preserved suppressive function in mice Treg cells

[86].

Several hypotheses for the mechanism by which rapa-

mycin regulates the expanding capability of Tregs have

been developed. Strauss et al. [96] reported that Treg cells

are resistant to rapamycin-induced apoptosis, since they

upregulate the anti-apoptotic (bcl-2, bcl-xl), downregulate

the pro-apoptotic (bad) proteins, and increase the expres-

sion of phosphatase and tensin homolog (PTEN). In

another paper, Zeiser et al. [97], have also shown that Treg

cells are more resistant than Teff to rapamycin treatment

and the authors linked this condition to an increased usage

of the signal transducer and activator of transcription 5

(STAT5) pathway over the PI3K pathway in response to

IL-2 by Treg cells. This is in line with recent data indi-

cating that STAT5 activation is sufficient to promote the

IL-2Rb-dependent development of CD4?FoxP3? Tregs

and that Stat5a/b directly regulate FoxP3 [98, 99]. More

recently, it has been proposed that Tregs might be selec-

tively expanded in the presence of rapamycin through the

up-regulation of particular proteins such as Pim2, a serine/

threonine kinase that overlaps functionally with Akt and

mTOR, [100]. A different study suggested that rapamycin

is able to induce a transient Treg phenotype in T effector

cells [101]. However, these strategies to improve Treg

expansion in vitro expansion are puzzling because they

require high-dose IL-2 (which activates the mTOR path-

way) together with rapamycin, which inhibits mTOR

kinase activity. How can rapamycin, a strong inhibitor of

cell growth and proliferation (commonly used to block

tumor cell growth and kidney transplant rejection), induce

Treg cell expansion in vitro?

Leptin-mTOR activity in the control of Treg

responsiveness

There is a growing understanding of how host metabolism

can affect the immune system. A recent study has descri-

bed another important link between host energy status and

immune function by showing that leptin, a hormone that is

mainly produced by adipocytes and controls food intake

and energy expenditure, can affect the generation and the

proliferative capacity of Treg cells, acting as a negative

signal for their own homeostasis [15]. Freshly isolated Treg

cells produced leptin and expressed high amounts of the

long-signaling form of the leptin-receptor (LepR); in vitro

leptin neutralization during anti-CD3 and anti-CD28

stimulation resulted in marked Treg cell proliferation, thus

confirming the negative control that leptin exerts on this

cellular subset. Indeed chronic leptin- and leptin-receptor

deficiency, are characterized by increased percentage,

absolute number, and suppressive function of Treg cells

that return to levels comparable to wild-type mice only

after leptin replacement [15]. In an experimental model of

atherosclerosis, supplementation of Treg-cell-deficient

lymphocytes with Treg cells from db/db mice induces a

3980 C. Procaccini, G. Matarese

123



significant reduction of lesion size and a marked inhibition

of interferon (IFN)-c production, compared with supple-

mentation by Treg cells from wild-type mice [102, 103].

Interestingly, in relapsing-remitting multiple sclerosis

(RRMS) patients an inverse correlation between serum

leptin and percentage of circulating Treg cells was also

observed. Moreover, treatment of WT mice with soluble

LepR fusion protein (LepR:Fc) increased the percentage of

Tregs and ameliorated the clinical course and progression

of disease in relapsing-experimental autoimmune enceph-

alomyelitis (R-EAE), an animal model of RRMS [104].

Taken together, all these findings confirm an inverse cor-

relation between leptin secretion or adipose tissue amounts

and the frequency of Treg cells in physiologic and patho-

logic conditions. Taken together, these data indicate that

leptin could be considered the molecular link between

obesity and reduced number and probably impaired func-

tion of Treg cell observed in this condition.

Other recent evidence has suggested that leptin can

activate the mTOR pathway to regulate the proliferative

capacity of Treg cells [13]. In initial experiments con-

ducted in vitro, which authors showed that freshly isolated

human Treg cells, displayed higher mTOR activity and an

increased metabolic rate compared to purified effector T

cells. Although Treg cells do not normally proliferate in

response to in vitro TCR stimulation, transient inhibition of

mTOR, through pre-treatment with rapamycin, led to

robust proliferation of Treg cells following culture with

CD3- and CD28-specific antibodies, while rapamycin has

opposite effects on effector T cells. Extending these find-

ings in vivo, the authors found that a single injection of

rapamycin promoted Treg cell proliferation in resting and

immunized mice. Additionally, in a model of experimental

autoimmune encephalomyelitis (EAE), mice treated with

rapamycin before EAE induction showed increased fre-

quencies of Treg cells and decreased disease severity [13].

Interestingly, although decreased mTOR activity appeared

to be necessary for the initial phases of Treg cell prolif-

eration, Treg cells that were actively proliferating in vivo

expressed high levels of phosphorylated mTOR. In other

words, early/transient inhibition of mTOR activity over-

comes Treg cell anergy, by reducing the threshold required

for a Treg cell to engage the molecular machinery required

for proliferation (increased activity of mitogen-activated

protein kinases [MAPKs], degradation of cell cycle inhib-

itors, recruitment of transcription factors), mTOR activity

appears necessary to sustain Treg cell proliferation [13].

Indeed, continuous treatment with rapamycin or shRNA-

mediated silencing of mTOR expression failed to reverse

Treg cell anergy in vitro. As previous work showed that

leptin can be produced by and inhibits the proliferation of

Treg cells [15], the authors predicted that this molecule

might interact with the mTOR pathway. In support of this,

the addition of leptin to cultures of TCR-activated, rapa-

mycin-treated Treg cells led to increased activation of the

mTOR pathway and prevented Treg cell proliferation. In

addition, neutralization of leptin markedly reduced mTOR

activity in cultured Treg cells, suggesting that autocrine

production of leptin by Treg cells may promote their high

mTOR activity in vitro. Finally, the authors examined the

effects of acute starvation (which markedly reduces cir-

culating levels of leptin and immune function) on the

mTOR pathway and Treg cell function. Strikingly, star-

vation led to increased proportions of Treg cells in

peripheral lymph nodes. Furthermore, Treg cells from

starved mice showed markedly reduced mTOR activity and

increased rates of proliferation in vitro compared with Treg

cells from control animals [13]. Taken together, this study

describes the leptin–mTOR signaling pathway as an

important link between host energy status and Treg cell

activity. The authors conclude that oscillating mTOR

activity is necessary for Treg cell activation and suggest

that this may explain why Treg cells are unresponsive to

TCR stimulation in vitro, where high levels of leptin and

nutrients may sustain mTOR activation [13]. In conclusion,

these findings may help to explain why Treg cells prolif-

erate in vivo but are anergic in vitro, and why for the

expansion of Treg cells in vitro there is the need of high

doses of IL-2 (which activates mTOR kinase) together with

the inhibitor of mTOR kinase rapamycin for long-term

cultures [105]. As the nutrient/energy sensing leptin-

mTOR pathway sets the threshold for responsiveness of

Treg cells, we hypothesize that the proliferating Treg cells

in vivo [106] can sense changes in the microenvironment

when cultured in vitro, through the leptin-mTOR pathway,

which makes Treg cells unresponsive to TCR-mediated

stimulation. More specifically, the authors hypothesize that

the high proliferative rate in vivo of Treg cells would

associate with continuous dynamic, ‘‘oscillatory’’ changes

in mTOR activity depending on the fluctuations in the

composition of the extracellular milieu—including

amounts of leptin and nutrients such as amino acids, glu-

cose, and lipids. Alternatively, in vitro-cultured Treg cells,

after isolation, would be exposed to a ‘‘static’’ milieu of the

culture media characterized by constantly high concentra-

tion of leptin and nutrients [107], which could sustain

mTOR activation and thus inhibit its dynamic, ‘‘oscilla-

tory’’ changes required for Treg cell proliferation. The

acute, transient inhibition of mTOR (either with rapamycin

or nutrient starvation) in culture would reset in vitro the

‘‘oscillatory’’ fluctuations in mTOR activity rendering Treg

cells able to respond to TCR stimulation. This would

explain why constant mTOR inhibition, either with chronic

rapamycin treatment or mTOR gene silencing, does not

allow these dynamic changes and inhibits Treg cell

expansion. When IL-2 at very high concentration is
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provided in vitro, the lowering of mTOR activity would be

reversed and allow the dynamic changes required for Treg

cells to expand.

Metabolic overload and autoimmunity

It is well established from literature that in more affluent

countries, where increased metabolic overload and obesity

are more frequent, chronic inflammation, obesity, cancer and

autoimmunity are more common [108–113]. In this context,

we focused our attention on the processes which lead to break

of self-tolerance associated with metabolic overload. A pri-

mary link has been provided by the notion that obesity and

type 2 diabetes are now being considered closed to autoim-

mune/chronic inflammatory disorders rather than classically

metabolic/endocrine dysregulation. This is because of the

presence of abundant immune cell infiltrates in the adipose

tissue of obese individuals is considered a classical patho-

logic lesion in obesity. Although, the significance of these

infiltrates is currently unknown, they result directly or indi-

rectly from the attraction of immune cells towards

adipocytes, particularly those immune cells belonging to the

natural immune system (macrophages, neutrophils, natural

killer cells and dendritic cells) [114, 115]. Attraction of

immune cells by adipose tissue mainly relies on the pro-

duction of adipocytokines and chemokines by adipocytes.

Recent data in mice suggest that T cells in the adipose tissue

can clonally expand locally [116], while macrophage infil-

tration and Th1 cytokine secretion account for insulin-

resistance and chronic inflammation. Moreover, also Treg

cells have been found preferentially localized in the adipose

tissue of normal individuals. Their role in this context is still

object of extensive investigations, but interestingly they

appear massively reduced in obesity, further suggesting their

possible role to control an autoimmune attack against adi-

pose tissue [117]. Furthermore, adipose tissue Treg cells

express (and are thought to secrete) an unusually high

amount of the anti-inflammatory cytokine IL-10, which in

lean mice could help to suppress adipose tissue inflamma-

tion. Winer et al. [118] have also shown that Treg cells are

able to protect against insulin resistance and hyperglycemia.

Several studies have shown that calorie restriction (CR)

without malnutrition prevents many age-associated, chronic

diseases and prolongs the lifespan of mammals. Indeed

dietary restriction causes metabolic and physiologic chan-

ges that have beneficial effects against obesity, insulin

resistance, inflammation, oxidative stress and cardiovascu-

lar diseases [119–122]. A recent study by Galgani et al.

[123] shows that nutritional status, through leptin, directly

affects survival and proliferation of autoreactive T cells,

modulating the activity of the survival protein Bcl-2, the

Th1/Th17 cytokines secretion, and the nutrient/energy-

sensing AKT-mTOR pathway. This is in line with the epi-

demiological evidence that susceptibility to autoimmune

diseases, in some circumstances, correlates with increased

body fat mass and higher body weight at birth [124, 125].

Moreover, other studies published by Piccio et al. [126] and

our group, have shown that either nutritional deprivation or

CR are able to profoundly modulate and reduce magnitude

and disease score during EAE and the survival of chroni-

cally food restricted mice is higher than ad libitum fed mice,

suggesting that nutritional and metabolic state influence the

break of self-immune tolerance. Similar results have also

been obtained in mice where, chronic rapamycin treatment,

increased significantly their overall survival [127]. The

precise mechanisms for these results are still not fully elu-

cidated but it is well known that rapamycin treatment is able

to induce pharmacologically a ‘‘frugal phenotype’’ similar

to that observed in CR animals. Indeed, rapamycin, through

mTOR inhibition, is able to dampen the metabolic overload

through reduction of absorption of amino acids, glucose and

also, to dampen the level of a series of pro-inflammatory

adipocytokines produced by adipocytes, including leptin

[128]. Recent reports have also confirmed this evidence in

mouse models of autoimmunity in which rapamycin has

been shown to improve disease curse and progression,

particularly EAE and type 1 diabetes, by dampening Th1/

Th17 responses and increasing regulatory T cell responses

[129–131]. The fact that chronic leptin deficiency (ob/ob

mice) or rapamycin-induced leptin deficiency can reduce

the survival of autoreactive CD4? T cells indicates that the

nutritional status can control survival of potentially auto-

reactive CD4? T cells—through leptin/mTOR.

Drugs that target nutrient-sensing pathways to obtain the

health benefits of dietary restriction are realistic, but the

effects of chronic administration require further study. For

instance, rapamycin, the TOR inhibitor that extends mouse

life span, is an immunosuppressant and may not produce an

overall health benefit in humans living in an environment

with pathogens. More testing of potential disadvantages is

required and many open questions remain, but these seem

really promising drug targets. Notably, in consideration

that nutritional deprivation or CR reduce EAE, it could be

suggested that manipulation of the leptin axis and in gen-

eral of the nutritional status, could represent a new means

to modulate T cell tolerance in autoimmunity.

Concluding remarks

Living cells continuously adjust gene expression patterns

in response to the changing environment. A simple way of

encoding the presence of a stress or stimulus is to shift the

concentration of a signaling molecule from one steady-

state level to another. In this context, leptin and nutrients
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(i.e., amino acids and glucose) show intermittently periodic

behaviors and pulsatile secretion in vivo associated with an

oscillating energy status. These changes are able to activate

intracellular metabolic sensors such as mTOR and conse-

quently control the in vivo homeostatic proliferation of

Treg cells. A recent report has indicated a new mechanism

of cross regulation of metabolism and immunity by which

immune-related genes can be activated by Foxo under

normal physiological conditions in response to the oscil-

lating energy status [132] and therefore mTOR kinase

activity represents a novel target in the context of meta-

bolic regulation of Treg functions.

Accelerating interest in the area of immunometabolism is

being fuelled by the finding that obesity affects the immune

system and promotes inflammation, and that obesity-induced

inflammation potentially promotes a variety of chronic

conditions and diseases. Moreover, drugs that have long been

considered to affect metabolism or insulin actions are also

strong immune modulators that reduce proinflammatory

cytokines and increase the number and function of Treg cells

and Th2/regulatory-type cytokine release, all important in

the control of autoimmunity. Drugs like rapamycin (a potent

inhibitor of the mammalian target of rapamycin, mTOR),

able to induce reduction of effector T cell function and Th1/

Th17 cytokine secretion as well as increase in the number of

regulatory T cells, has been shown to control not only

immune cell reactivity but also blunt the leptin-induced

hypothalamic responses, thus further suggesting an

involvement of immune response in the pathogenesis of

obesity. Therefore it is conceivable to hypothesize that

oscillations of mTOR activity could be considered the result

of a wider network of interactions between intracellular

signals and mTOR pathway itself in response to physiolog-

ical adaptations to environmental changes. The multilevel

interactions between the metabolic and immune systems

suggest pathogenic mechanisms that may underlie many of

the downstream complications of obesity. In this context, the

study of such connections and of the possibility to modulate

the energy status of Treg cells, might offer substantial ther-

apeutic promise in the control of immune tolerance.
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