Skip to main content
. 2012 Sep 6;69(21):3543–3559. doi: 10.1007/s00018-012-1125-z

Table 1.

microRNA dysregulation in Alzheimer’s disease (AD) patients and animal models obtained from profiling experiments

Samples analyzed De-regulated microRNAs Trend Target mRNAs identified Ref
Human: hippocampus of 5 AD patients, 5 age-matched controls and 5 fetal brains miR-9, miR-128 Up None [57]
Human: hippocampus and superior temporal lobe of 23 AD patients and 23 controls miR-146a Up CHF (miR-146a) [58]
Human: temporal cortex of 6 AD, 6 MCI patients and 11 controls miR-107 Down BACE1 [59]
Human: anterior temporal cortex of 5 AD patients and 5 age-matched controls

miR-9, -15a, -19b, -22, -26b,

-29a/b-1, -93, -101, -106b, -181c,

-210, -363, Let7i,

Down BACE1 (miR-29a/b-1, -15a, -9, -19b); APP (Let7i, miR-15a, -101, -106b) [60]
miR-197, -320, -511 Up None
Human: hippocampus of 15 AD patients and 12 controls

miR-9, -30c, -132, -146b,

-210, -212, -425

Down None [61]

miR-26a, -27a/b, -30e-5p, -34a, -92,

-125b, -145, -200c, -381, -422a, -423

Up None
Human: cerebellum of 15 AD patients and 12 controls miR-9, -98, -132, -146b, -212, -425 Down None

miR-27a/b, -34a, -100, -125b, -381,

-422a

Up None
Human: medial frontal gyrus of 15 AD patients and 12 controls

miR-9, -26a, -132, -146b, -200c,

-212, -425

Down None

miR-27a/b, -29a/b, -30c/e-5p, -34a,

-92, -100, -125b, -145, -148a, -381,

-422a, -423

Up None
Human: CSF from 10 AD patients and 10 controls

Various—including miR-15b,

-142-5p, -146b, -181a

Down None
Human: white blood cells from 16 AD patients and 16 controls Various—including miR-34a, -181b, -200a, Let-7f Up None [62]
Human: anterior temporal cortex of 19 AD patients and 11 controls miR-106b Down APP (miR-106b) [63]
Human: temporal lobe cortex of 6 AD, 13 non-AD and 6 controls miR-9, miR-125b, miR-146a Up None [64]
Human: parietal lobe cortex of 5 AD patients and 5 controls

Variousincluding miR-15a, -20b,

-29b/c, -30e-5p, -95, -101, -148b,

-181c, -368, -376a, -374, -582

Down None [65]

Various—including miR-134, -188,

-320, -572, -575, -601, -671, -765

Up None
Human: frontal lobe of 7 AD patients and 4 controls miR-29a Down NAV3 (miR-29a) [66]
Human: temporal cerebral cortex–white matter vs. gray matter

Various—including miR-9, -15a/b,

-20a, -21, -30, -106a/b, -107, -29,

-30, -34, -128, -181a/b, Let-7i

Down None [135]
30 miRNAs up-regulated Up None
Mouse: cerebral cortex from 3- and 6-month old APPSwe-PS1M146L and WT controls Various—including miR-22, -29a/b/c, -101a/b, -106b, -125b, -181a Down None [69]

Various—including miR-28, -34a,

-92a/b, -98, -346, Let-7b/c/d/e

Up BCL-2 (miR-34a)
Mouse: 4-month old Tg19959 miR-103, -107 Down Cofilin (miR-103, -107) [142]
Mouse: primary hippocampal neurons treated with Aβ42 miR-9, -20b, -21, -148b, -181c, -361, -409, Let-7i Down SIRT1, TRIM2, BTBD3, TGFBI [72, 132]

miRNAs in bold indicate those repeatedly dysregulated in several studies. mRNAs identified to be regulated by miRNAs (shown in brackets) show either up-regulation (bold italic) or down-regulation (italic) in a subset of AD patients

CHF complement factor H; BACE1 beta-site APP-cleaving enzyme 1; APP amyloid precursor protein; NAV3 neuron navigator 3; SIRT1 sirtuin 1; TRIM2 tripartite motif-containing 2; BTBD3 BTB (POZ) domain containing 3; TGFBI transforming growth factor, beta-induced, 68 kDa