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Abstract Genome-wide association studies have identi-

fied a number of genes associated with human body weight.

While some of these genes are large fields within obesity

research, such as MC4R, POMC, FTO and BDNF, the

majority do not have a clearly defined functional role

explaining why they may affect body weight. Here, we

searched biological databases and discovered 33 additional

genes associated with human obesity (CADM2, GIPR,

GPCR5B, LRP1B, NEGR1, NRXN3, SH2B1, FANCL,

GNPDA2, HMGCR, MAP2K5, NUDT3, PRKD1, QPCTL,

TNNI3K, MTCH2, DNAJC27, SLC39A8, MTIF3, RPL27A,

SEC16B, ETV5, HMGA1, TFAP2B, TUB, ZNF608, FAIM2,

KCTD15, LINGO2, POC5, PTBP2, TMEM18, TMEM160).

We find that the majority have orthologues in distant spe-

cies, such as D. melanogaster and C. elegans, suggesting

that they are important for the biology of most bilateral

species. Intriguingly, signalling cascade genes and tran-

scription factors are enriched among these obesity genes,

and several of the genes show properties that could be

useful for potential drug discovery. In this review, we

demonstrate how information from several distant model

species, interactomics and signalling pathway analysis

represents an important way to better understand the

functional diversity of the surprisingly high number of

molecules that seem to be important for human obesity.
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Introduction

Tremendous progress has been made in the field of obesity

research, with academic and industrial interest growing

rapidly. During the 1980s (1981–1990) there were

approximately 16,000 publications focused on obesity [1],

while in the last year more than 20,000 articles on obesity

were published. Interestingly, twin studies showed there is

a strong genetic component to obesity [2, 3]. In accordance

with this data, Claude Bouchard and colleagues generated a

yearly human obesity genetic map between 1996 and 2005

[4], with the last report listing 176 human obesity cases

relating to single-gene mutations in 11 different genes, and

50 loci relating to Mendelian syndromes relevant to human

obesity that mapped to a specific genomic region. Their

mouse obesity gene map identified 248 genes that, when

mutated or overexpressed as transgenes in the mouse,

resulted in phenotypes affecting body weight or adiposity.

Many of these genes are expressed in the hypothalamus,

and one of the earliest discovered genes, having a strong

genetic association to human obesity, was the hypotha-

lamic MC4 receptor (MC4R). Mc4r is inhibited by the

orexigenic peptide Agrp and stimulated by the anorexic

agonists a- and b-Msh [5]. The a- and b-Msh peptide

hormones originate from the precursor protein Pomc, and

humans with a mutated POMC gene have severe obesity

[6]. Enormous resources have been put into MC4R

research, as it was shown that synthetic and selective

agonists and antagonists are very effective in reducing food

intake and bodyweight in animal feeding models [7, 8]. To
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date, this has not resulted in any promising drugs, mainly

due to the complexity of the action of the melanocortin

system, including effects on the cardiovascular system,

creating risks for severe side effects.

Genome-wide association (GWAS) studies have trans-

formed our knowledge of which genes are most important

for obesity. The first gene that was strongly associated with

obesity was fat mass- and obesity-associated (FTO) [9].

The FTO gene is expressed in many tissues of the body but,

interestingly, it is highly expressed in hypothalamic feed-

ing regions [10]. The molecular mechanism of how gene

variants of FTO may cause obesity is still unknown, it has

been suggested that it affects food intake, as carriers of the

risk allele tend to choose high energy and more palatable

food [3, 11, 12]. Fto knockout models and mutant mice

point towards a role for Fto in energy homeostasis,

metabolism and adipogenesis, and mutant mice have

clearly decreased body fat mass [13, 14]. Moreover,

transgenic mice that overexpress Fto have a higher body

weight, and hypothalamic Fto expression is regulated in

several animal feeding models [14].

Soon after the discovery of FTO as an obesity gene, six

additional loci were found to be associated with obesity [15].

Only one of these genes, SH2B1, had any prior evidence

linking it to obesity; knocking out Sh2b1 in mice resulted in

obesity, hyperglycemia, insulin resistance, and glucose

intolerance. Thorleifsson and collegues identified new

sequence variants at seven loci associated with obesity in

GWAS of more than 30,000 individuals [16]. In total, 29

variants in 11 chromosomal regions reached a genome-wide

significance threshold. These associations included the brain-

derived neurotrophic factor (BDNF) gene, which was previ-

ously associated with both BMI and eating disorders [17, 18].

Meta-analysis of several GWAS, and other association

studies involving almost 250,000 individuals, showed

association with 14 known obesity susceptibility loci, while

an additional 18 new loci were associated with BMI [19]. It

is estimated that, similar to the 37 genes linked to these 32

loci, more than 250 additional common variant loci remain

to be discovered that will have effects on BMI. It should be

mentioned that GWAS studies identify genomic regions,

rather than individual genes, and several of the genes

currently linked to obesity by associated SNPs may later

prove not be a causative agent in obesity. To date, only 8 of

the 32 loci identified by Speliotes et al. [19] are strongly

linked to an adjacent common missense SNP, and only 15

of the loci contain genes that can be biologically linked to

obesity. This lack of a causative link is a result of the

limited understanding of the biology behind obesity and

weight regulation, which calls for a comprehensive inves-

tigation of these obesity-associated genes.

Among the 32 loci that have emerged as currently the

most important ones for BMI [19], MC4R and POMC have

clearly understood physiological roles, and their functions

are well reviewed. Moreover, the research on BDNF and

FTO is very intense, and there are several recent reviews

addressing what is known about these genes. Here, we have

focused on what is known about a select group of the

additional 33 obesity-linked genes (GIPR, GPRC5B,

SH2B1, HMGCR, PRKD1, TUB, ZNF608, TFAP2B,

KCTD15, SEC16B, and MTCH2) and used the growing

number of databases to search for information that can shed

light into the functional role of these genes. These genes

were chosen because further information beyond the

GWAS studies was available, yielding possible evidences

for their involvement in obesity. We have in particular

taken advantage of model organisms that are distant to

humans, as we find that 24 of the 33 newly discovered

genes are well conserved in most bilateral species,

including D. melanogaster and C. elegans (Table 1).

A subgroup of obesity-linked genes

In this review, we introduce a select subgroup of obesity-

linked genes, including what is known about their domain

structure and possible functions in distant model organ-

isms. We also present some possible interactions between

obesity-linked genes and how this interaction may regulate

homeostasis.

Gastric inhibitory peptide receptor (GIPR): resistance

to diet-induced obesity

GIPR is a G protein-coupled receptor (GPCR) belonging to

the secretin-family that includes receptors for the peptides

GLP1, glucagon, PACAP, VIP and secretin. The GIPR

ligand, gastric inhibitory peptide (GIP), is released from

intestinal K cells and potentiates glucose-stimulated insulin

secretion by elevating cAMP levels, inhibiting the KATP

channel and increasing intracellular Ca2? [20]. GIPR is

highly expressed in the pancreas, but is also found in a wide

range of peripheral tissues. Studies using Gipr null mice

established the importance of Gipr signalling to maintain

glucose homeostasis and regulate lipid metabolism [21, 22].

In response to orally administered glucose, mice lacking

Gipr signalling exhibited mild glucose intolerance and

reduced levels of glucose-stimulated insulin secretion [21,

23]. However, mice given an intraperitoneal glucose chal-

lenge displayed normal fasting glucose levels and a normal

glycemic index [23]. These findings suggest that GIPR

stimulates insulin release, indicating that GIP functions as

an incretin hormone. One potential explanation for the mild

glucose intolerance observed in mice with a single incretin

receptor mutation, either GIPR or the related glucagon-like

peptide receptor (GLPR), is that loss of one incretin
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receptor invokes upregulation of compensatory factors,

particularly enhanced activity of the remaining incretin [24,

25]. Support for this hypothesis is derived from observa-

tions that Glpr null mice exhibit increased circulating levels

of Gip, as well as enhanced sensitivity to the insulinotropic

actions of Gip [26].

Gip has no direct effect on food intake or satiety, yet

Gipr null mice exhibited resistance to diet-induced obesity,

even after months of high-fat feeding, and when crossed

with obese (ob/ob) mice, ob/ob diet-induced obesity was

attenuated [27]. How could this be explained? It was

observed that administration of the GIPR agonist

Table 1 Evolutionary conservation of obesity-linked genes in major model organisms

Human G. gallus D. rerio D. melanogaster C. elegans S. cerevisiae D. discoideum

Receptors, ligands and signal transduction

CADM2 CADM2 Cadm2a, cadm2b

GIPR GIPR gipr

GPRC5B GPRC5B gprc5b boss

LRP1B LRP1B lrp1b Lrp1 lrp-2

NEGR1 NEGR1 Negr1 CG11320

NRXN3 NRXN3 Nrxn3 Nrx-1 nrx-1

SH2B1 SH2B1 sh2b Lnk

Enzymes

FANCL FANCL fancl Fancl fncl

GNPDA2 GNPDA2 gnpda2 Oscillin T03F6.3 gnpda1

HMGCR HMGCR hmgcra Hmgcr F08F8.2 HMG1 hmgB

MAP2K5 MAP2K5 map2k5

NUDT3 NUDT3 nudt3 Aps Y92H12BL.5 DDP1

PRKD1 PRKD1 prkd1 PKD dkf-2

QPCTL QPCTL qpctl CG5976 H27A22.1 YFR018C qpct

TNNI3K TNNI3K tnni3k C24A1.3

Transporters

MTCH2 MTCH2 mtch2 Mtch F43E2.7

DNAJC27 DNAJC277 rbj

SLC39A8 SLC39A8 slc39a8

Protein processes

MTIF3 MTIF3 mtif3 CG13163

RPL27A RPL27A rpl27a RpL27A Y37E3.8 RPL28 rpl27a

SEC16B SEC16B sec16b Sec16 F13B9.1 Sec16

Transcription factor

ETV5 ETV5 etv5 ETS96B

HMGA1 HMGA1 hmga1

TFAP2B TFAP2B tfap2b AP-2 aptf-1

TUB TUB LOC568677 king-tubby tub-1

ZNF608 ZNF608 znf608 sbb

Unkown function

FAIM2 FAIM2 faim2 xbx-6

KCTD15 KCTD15 kctd15 CG10440

LINGO2 LINGO2 lingo2

POC5 C5orf37 POC5

PTBP2 PTPB2 Ptpb2 heph ptb-1

TMEM18 TMEM18 tmem18 CG30051

TMEM160 tmem160

Using NCBI HomoloGene, EMBL-EBI databases (http://www.ebi.ac.uk/) and protein sequence similarity searches (http://hmmer.

janelia.org/search/phmmer,UniProtKB), orthologues for the obesity-linked genes in a variety of model organisms were determined. Genes are

grouped according to molecular function
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[D-Ala2]GIP increased plasma levels of the plasma

adipokine resistin in wild-type mice. This observation

confirmed that GIPR signalling is an essential component

of the adipocyte response to chronic nutritional excess [27].

Observations linking GIP action to the modulation of res-

istin and control of energy expenditure explain the

divergent effects of GIP action on pancreatic b cells and

adipocytes. Whereas loss of GIPR function in b cells

impairs the adaptive islet response to metabolic stress, the

potential deleterious effects arising from loss of GIPR

signalling, and thus impaired insulin secretion, is offset by

the persistence of insulin sensitivity, likely arising through

a combination of reduced resistin, decreased adipose tissue

mass, and increased energy expenditure [28].

Recently, it was observed that the microRNA miR-642

is upregulated during adipogenic differentiation, and in 19

out of 20 obese subjects is highly expressed in fat depots

[29, 30]. This is interesting because miR-642 is positioned

within intron seven of GIPR, and may share the same

promoter [29], leading to the possibility that at least some

of the obese phenotypes associated with GIPR may be due

to misregulation of miR-642.

G-protein coupled receptor family C group 5 member B

(GPRC5B): possible glucose sensor

GPRC5 is a member of the family-C GPCRs, this family

includes mGluRs, calcium-sensing receptors (CaRs), type

B c-aminobutyric acid receptors (GABABRs), putative

pheromone receptors (V2Rs) and taste receptors (T1Rs), as

well as Drosophila bride of sevenless (BOSS) [31, 32].

Within family-C, GPRC5B belongs to the retinoic acid

inducible gene (RAIG) subgroup, consisting of at least four

orphan receptors [31–35].

Although little is known about GPRC5B signalling in

mammals, it has been observed that Gprc5b knockout mice

had developmental and behavioural defects. Approxi-

mately 30 % of homozygous Gprc5b knockout mice died

at postnatal day 0, while a further 50 % died by 4 weeks of

age [36]. The 20 % who survived into adulthood had

behavioural defects, including reduced activity before light

onset, and in the open field test, travelled less distance and

spent more time in the centre of the field, compared to

control mice [36].

A recent report on Drosophila points to a possible

function of GPRC5B in glucose metabolism. The Dro-

sophila GPRC5B homologue, BOSS, was first identified as

a ligand for the tyrosine kinase Sevenless, involved in eye

differentiation [37]. However, as with other GPRC5B

homologues, until recently the physiological function of

BOSS as a GPCR was completely unknown. It was

observed that boss-deficient flies are reduced in size, sug-

gesting that it might be required for cell growth, cell size

and survival [38]. Further analysis determined that BOSS is

expressed in a Drosophila nutrient-sensing tissue, the fat

body, and is a glucose-responding GPCR required for the

homeostatic regulation of glucose and lipids. Boss mutants

have downregulated insulin signalling activity, demon-

strating that BOSS has a critical function regulating energy

homeostasis [38, 39]. This finding represents an example of

a glucose-responding GPRC5B homologue in a model

organism. Since GPRC5B is conserved from Drosophila to

humans, this provides evidence that GPRC5B maybe a

nutrient-sensing GPCR.

SH2B adapter protein 1 (SH2B1): signals in the insulin

pathway

Mammalian SH2B adapter protein 1 (SH2B1) belongs to a

family of adapter proteins known to regulate several dif-

ferent tyrosine kinases, including the receptors for insulin

and insulin-like growth factor-1 [40–44]. As a result of

these interactions, SH2B proteins are known to function

during glucose homeostasis, energy metabolism and

reproduction, and in humans, mutations in SH2B1 are

associated with metabolic syndrome [45–49]. Furthermore,

Sh2b1 deletions in mice produce neonatal growth retarda-

tion and infertility possibly due to impaired responses to

growth hormone or Igf-1 signalling [50]. Sh2b1 null mice

significantly increase their body mass and develop obesity

as a result of impaired hypothalamic leptin signalling [47].

Intriguingly, neuronal restoration of Sh2b1 expression

rescued leptin resistance, as well as the obesity phenotype,

suggesting that Sh2b1 is involved in regulating energy

balance and body weight by enhancing leptin sensitivity. In

this same study, it was observed that loss of Sh2b1 in

peripheral tissues induced insulin sensitivity regardless of

body mass [47]. This result indicates that Sh2b1 regulates

insulin signalling in peripheral tissues.

How might SH2B1 function to increase insulin signal-

ling? Recent evidence demonstrated that SH2B1 physically

interacts with two components of the insulin-signalling

pathway, the insulin receptor (INSR) and insulin receptor

substrate 1 (IRS1), and that this interaction is necessary to

increase phosphoinositide 3-kinase (PI3K) activation

downstream of IRS1 [40]. SH2B1 interaction with IRS1

inhibits dephosphorylation of IRS1 by protein tyrosine

phosphotase 1B (PTP1B), leading to increased PI3K acti-

vation (Fig. 1). Furthermore, it was shown that SH2B1

interaction with INSR may increase INSR auto-phosphor-

ylation, thus increasing INSR signalling.

The fact that SH2B1 signals in the insulin pathway was

substantiated in Drosophila melanogaster. The Drosophila

genome contains a single SH2B homologue, known as Lnk,

which shares a similar domain structure to its mammalian

counterparts, including the highly conserved c-Cbl binding
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motif. In Drosophila, loss-of function Lnk mutations pro-

duce phenotypes reminiscent of reduced insulin and

insulin-like growth factor-1 (IIS) signalling, including

growth reduction, developmental delay and female sterility

[46, 51]. Furthermore, classical genetic epistasis analysis

established that, upon Drosophila insulin receptor (InR)

activation during cell growth and division, Lnk signals in

parallel with the Drosophila insulin receptor substrate,

known as Chico, to activate PI3K [52].

Mutations reducing insulin/IGF-like (IIS) activity in

multiple model organisms, including C. elegans, Dro-

sophila and mouse, is known to increase lifespan. In

Drosophila, recent studies showed that loss of Lnk

increased lifespan, as well as improved survival during

oxidative stress and starvation [46, 51, 52]. Furthermore,

Lnk loss-of-function results in increased stored energy

reserves associated with transcriptional changes in genes

involved in both lipid and carbohydrate metabolism.

Finally, in Drosophila, genetic analysis indicates that Lnk

is itself a direct target for transcriptional regulation by the

dFoxo transcription factor, indicating that Lnk transcription

is regulated by insulin signalling [51].

3-hydroxy-3-methylglutaryl-coenzyme A reductase

(HMGCR): regulates cholesterol production

3-hydroxy-3-methylglutaryl-coenzyme A reductase

(HMGCR) is a transmembrane protein located on the

smooth endoplasmic reticulum (SER), necessary to cata-

lyze the production of mevalonate, the rate-limiting step

during cholesterol biosynthesis in mammals [53, 54]. Tight

control of cholesterol biosynthesis is physiologically

critical, as overproduction can induce a predisposition to

atherosclerosis [55]. In mammals, HMGCR production is

regulated by cholesterol levels in a negative feedback look,

while in mammals and Drosophila, HMGCR regulation is

linked with levels of insulin, which strongly stimulates its

production [56–59]. Insulin regulation of HMGCR

involves a family of helix-loop-helix transcription factors,

known as sterol response element binding proteins

(SREBP) [60–63].

In mammals, mevalonate synthesized by HMGCR is

required to produce cholesterol, which is used as a

precursor for corticoid production by the adrenal glands

or androgen production by the gonads [64, 65]. In

insects, cholesterol production is not generated down-

stream of mevalonate, but in the Drosophila corpus

allatum, mevalonate is used to synthesize Juvenile

Hormone (JH), in response to insulin signalling from

the Pars intercerebralis [59, 66, 67]. In adult flies, JH

is necessary to regulate sexual dimorphic behaviour,

such as variations in locomotor activity between males

and females [59]. HMGCR also regulates adult body

size in response to insulin signalling in Drosophila [59,

67].

Protein kinase D1 (PRKD1): regulates insulin secretion

PRKD1 is a member of the serine/threonine-protein kinase

family. Along with the kinase domain, PRKD1 is predicted

to contain a pleckstrin homology (PH) domain and two C1

domains. PH domains are known to possess multiple

functions, including binding to inositol phosphates, as well

as being involved in various protein–protein interactions

Fig. 1 SH2B1 signals in the insulin pathway. Insulin activates the

insulin receptor (INSR), leading to INSR autophosphorylation and

activation. Active INSR binds to and phosphorylates insulin receptor

substrate-1 (IRS1), leading to activation of the downstream PI3K

signalling pathway. Phosphorylated IRS1 is recognized and bound by

SH2B1, inhibiting IRS1 dephosphorylation by protein tyrosine

phosphatase 1B (PTP1B), thus prolonging insulin signalling pathway

activation. Glucose transporter type 4 (GLUT4), Phosphoinositol

3-kinase (PI3K), phosphoinositide-3-kinase, regulatory subunit 1

(p110), phosphoinositide-3-kinase, regulatory subunit 2 (p85), Pyru-

vate dehydrogenase kinase (PDK), v-akt murine thymoma viral

oncogene (AKT), Glycogen synthase kinase 3 (GSK3)
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[68–70], while C1 domains bind to the second messenger

diacylglycerol (DAG) [71]. Protein kinase D1 is implicated

in cancer, possibly through regulation of angiogenesis [72],

and has also been shown to be involved in Toll-like

receptor signalling in the immune response; specifically, it

is necessary for the activity of the adaptor protein Myd88

[73].

It was previously determined that PKD signals down-

stream of a Gq protein-coupled receptor (GqPCR)

activated by acetylcholine [74]. When acetylcholine binds

to the GqPCR M3-muscarinic receptor (M3R), it activates

phospholipase C (PLC), leading the production of diac-

ylglycerol (DAG), which in turn activates PKD (Fig. 2)

[75]. It has been demonstrated that glucose passing

through the SLC2A2 (also known as GLUT2) channel

also leads to the production of DAG [76, 77]. DAG-

activated PKD translocates to the trans-Golgi network

(TGN) where it is necessary for vesicle membrane fusion.

It was observed that this was also the case for insulin

secretion; blocking PKD in INS-1 cells inhibited insulin

secretion, but not insulin production [78]. In these same

cells, it has been reported that loss of p38d lead to

increased insulin secretion, and that this increase in

insulin secretion was due to hyperactivation of PKD [78].

Interestingly, a link between protein kinase D and insulin

signalling was reported in C. elegans. Loss of the

C. elegans PRKD1 orthologue, dkf-2, increases the worms

lifespan by as much as 40 % over wild-type [79]. This

increase in lifespan can be rescued in worms that also

lack the C. elegans FOXO orthologue, daf-16. FOXO

translocation to the nucleus is inhibited by insulin sig-

nalling, and the C. elegans result is further indication that

PKD is regulating insulin signalling.

Tubby (TUB): affects late-onset obesity

The mouse tubby mutation is the cause of maturity-onset

obesity, insulin resistance and sensory deficits [80]. In

contrast to the rapid juvenile-onset weight gain seen in

diabetes (db) and obese (ob) mice, tubby mice become

obese gradually as they age. This phenotype strongly

resembles late-onset obesity observed in maturing humans.

In the end, in tubby mice, excessive deposition of adipose

tissue culminates in a twofold increase of body weight.

Although this, along with the insulin resistance and sensory

deficit phenotypes, indicate a vital role for tubby proteins,

no molecular function has yet been attributed to this family

of proteins [81]. TUB belongs to the tubby-like proteins, or

TULPs, which are found in both the plant and animal

kingdoms.

Fig. 2 Protein kinase D (PKD)

is necessary for insuln secretion.

Acetylcholine (Ach) and

glucose both induce pathways

leading to PKD activation. Ach

binds to and activates the GPCR

M3R, leading to induction of

phospholipase C (PLC), or

glucose passing through the

glucose transporter (GLUT),

leading to the production of

diacylglycerol (DAG), which in

turn activates PKD. Activated

PKD interacts with the trans-

Golgi network (TGN) to

regulate the production and

transportation of vesicles,

including those which contain

insulin, to the plasma

membrane. PKD is inhibited by

the MAP kinase p38d. M3R
muscarinic acetylcholine

receptor M3
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The N-terminal portion of TULP protein is not very

conserved, but mammalian TUB contains a nuclear local-

isation signal and may have transcriptional-activation

activity. The C-terminal residues of TULP family members

are highly conserved, containing a cysteine residue that

might play an important role in the normal functioning of

these proteins. This domain is arranged as a 12-stranded,

all anti-parallel, closed beta-barrel that surrounds a central

alpha helix that forms most of the hydrophobic core.

Structural analyses suggest that TULPs constitute a unique

family of bipartite transcription factors [81]. In Drosophila,

the TULP orthologue, known as king-tubby, is highly

expressed in the developing nervous system [82]. In

C. elegans, loss of tub-1, the worm orthologue of TUB,

causes an increase in the storage of triglycerides and leads

to a significant increase in life span [83]. While the

increase in life span was rescued by removing the daf-16,

the C. elegans FOXO homologue, the increase in lipid

storage required TUB-1 interactions with the Rab GTPase-

activating protein RBG-3, the orthologue of human

TBC1D5. The results in C. elegans could mean that, sim-

ilar to PRKD1, TUB is involved in regulating insulin

secretion. On the other hand, this same group went on to

show that TUB-1 and RBG-3 signal through RAB7 to

regulate lipid storage in C. elegans [84]. In mammalian cell

lines, TBC1D5 and Rab7 are both involved in regulating

autophagy, and recently Rab7 was shown to signal down-

stream of insulin-like growth factor 1 (IGF1) to regulate

autophagy in cultured neuronal cells [85, 86]. Considering

the expression pattern of king-tubby in Drosophila, TUB

may signal in neuronal cells during development to regu-

late autophagy.

Zinc finger protein 608 (ZNF608): regulates histone

methylation for gene repression

Although nothing is known about possible molecular

mechanisms of ZNF608 function, the Drosophila homo-

logue of ZNF608, known as scribbler (sbb), is involved in

the resistance to starvation, with sbb mutants being more

susceptible to starvation [87]. Also, in Drosophila, Sbb

bound directly to Grunge [known as arginine-glutamic acid

dipeptide (RE) repeats, RERE, in humans], and together

with the nuclear hormone receptor Tailless (Tll), known as

TLX or NR2E1 in humans, they repressed the expression

of the GAP gene knirps [88]. Finally, in this same study, it

was shown that human ZNF608 and a closely related

RERE protein, known as Antropin-1, directly interact,

showing a conservation of function between the Dro-

sophila and human proteins.

RERE can recruit HDAC1 and HDAC2 and the histone

H3-K9 methyltransferase G9a [89] (Fig. 3). By directing

the activities of HDAC1/2 and G9a, RERE catalyzes

sequential molecular events, first causing deacetylation of

H3-K9 and then allowing the deacetylated residue to be

methylated by G9a [89]. As a result, chromatin regions

where RERE binds are converted to compact structures,

favouring gene silencing (Fig. 3). In Drosophila, the

Atrophin-Rpd3 (HDAC1/2)-G9a complex represses the

EGFR signalling pathway. During metamorphosis, wing

vein formation is initiated by activated EGFR [90]. A

mutation of Atro, or reduced expression of Atro using

RNAi, results in ectopic vein formation in the intervein

regions [89, 91, 92]. This ectopic wing vein phenotype is

enhanced when G9a or Rpd3 is also mutated [89]. These

Fig. 3 ZNF608 functions in the

atrophin transcriptional

repression machinery. A model

depicting the actions of the

Atrophin-protein complex on

chromosomes. Atrophin-1, or

Grunge in Drosophila,

recognizes nuclear hormone

receptors and forms a complex

with histone deacetylaces

(HDACs), histone demethylase

(Lsd1 in humans, Su(var)3-3 in

Drosophila), histone

methyltranserfase (EHMT2 in

humans, G9a in Drosophila)

and ZNF608 in humans or

Scribbler in Drosophila. This

complex induces methylation of

histone H3 leading to

transcriptional repression
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genetic data indicate that Atro, G9a and Rpd3 act together

to repress wing vein formation, perhaps by antagonizing

the activities of EGFR.

Possible interactions between obesity-linked genes

TFAP2B and KCTD15: potential interactions

in adipocytes

Transcription factor AP-2beta (TFAP2B) is a member of

the AP-2 family of transcription factors, key regulators of

various developmental processes [93–95]. AP-2 family

members can homo- and heterodimerize through a highly

conserved C-terminal helix-span-helix motif and bind to

DNA by means of a basic domain immediately N-terminal

of the dimerization domain. Potassium channel tetrameri-

sation domain containing 15 (KCTD15) belongs to a family

of potassium channel tetramerization domain-containing

proteins. Like all KCTD family members, KCTD15 con-

tains a Broad complex, Tramtrack and Bric-a-brac (BTB)

domain. To date, only one study on KCTD15 has been

performed to elucidate its molecular function. In zebrafish

embryos, Kctd15 functions to inhibit the Wnt signalling

pathway, in order to restrict neural crest formation, though

the exact mechanism of this inhibition is unknown [96].

Interestingly, in Drosophila, the Wnt responsive gene

hedgehog plays a role in adipogenesis and in mice is

involved in the determination of brown and white adipose

tissue [97].

A large-scale yeast two-hybrid screen was carried out in

Drosophila, using almost the entire proteome, in an attempt

to find all possible protein–protein interactions [98]. In this

screen, the Drosophila homologues of TFAP2B (AP-2 in

Drosophila) and KCTD15 (CG10440 in Drosophila) had a

strong interaction. Furthermore, mRNA in situ analysis in

Drosophila embryos demonstrated that AP-2 and CG10440

co-express in the developing brain [99, 100]. These two

results, and the fact that both TFAP2B and KCTD15 are

linked to obesity in multiple genome-wide association

studies, indicate a possible physical interaction in vivo. It

must be mentioned that yeast two-hybrid screens are not

definitive evidence for an interaction between two proteins,

and further experiments need to be performed to ascertain

whether or not AP-2 and CG10440 proteins actually

interact.

Taking what is known about AP-2 and KCTD family

members, we propose the following model for a possible

TFAP2B and KDTD15 interaction (Fig. 4). In adipocytes,

AP-2b is a negative regulator of insulin receptor substrate-

1 (IRS1) expression [93]. IRS1 links signalling from the

insulin receptor (INSR) to the phosphoinositol 3-kinase

(PI3K) and Akt pathways, and reduced IRS1 expression is

one of the key molecular events involved in insulin resis-

tance [101]. Also in adipocytes, Ap2a function was

inhibited by sumoylation, requiring the SUMO-conjugating

enzyme Ubiquitin carrier protein 9 (UBC9) [102]. In this

same study, UBC9 was also shown to sumoylate AP-2b.

KCTD5 and 11 interact with cullin E3 ligase (CUL3), and

this complex then binds to E2 ubiquitin ligase [103–105].

Though no interaction with the sumoylation complex has

been shown, using SUMOsp 2.0 Sumoylation Site Predic-

tion [106, 107], we found a conserved sumoylation site in

all KCTD family members. This leads to the possibility

that KCTD family members are able to interact with the

sumoylation apparatus. Furthermore, in a yeast two-hybrid

screen, the Drosophila KCTD15 homolog, CG10440, was

shown to interact directly with Lesswright (Lwr), the

Drosophila UBC9 homolog [98].

In our model (Fig. 4), high glucose levels would

potentially induce UBC9 to interact and sumoylate

KCTD15, and this complex could then bind to dimers of

AP-2b, leading to their sumoylation and inhibition. AP-2b
inhibition would allow for increased IRS1 transcription,

and thus increased insulin sensitivity. Insulin signalling, in

response to increased glucose levels, would inhibit UCB9

activation, leading to AP-2b desumoylation and activation.

Activated AP-2b would inhibit IRS1 transcription, thus

inducing insulin resistance. It has been published that AP-

2a interacts with another KCTD family member, KCTD1.

Interestingly, the domain in AP-2a required for interactions

with KCTD1 is conserved in AP-2b and in Drosophila

AP-2 [108].

SEC16B and MTCH2 may help to regulate Ca2? stores

Intracellular Ca2? is required for the proper regulation of

multiple important processes within a cell, and the for-

mation of a precise spatiotemporal Ca2? signal depends on

extensive cellular machinery. Recently, it became evident

that there is a complex interplay between the endoplasmic

reticulum (ER), a major storehouse for Ca2?, and the

mitochondria, to regulate not only cytoplasmic Ca2? but

also ER Ca2? stores [109].

ER Ca2? levels are regulated, in part, by the inositol

1,4,5-triphosphate receptor (IP3R) [110]. The amount of

Ca2? transferred from the ER to mitochondria not only

depends on the activity of the IP3R but also on the distance

between the mouth of the IP3R and voltage-dependent

anion channels (VDAC), the major protein family involved

in mitochondrial Ca2? uptake. For this interaction to occur,

the distance between the ER and mitochondria must be

regulated, too close or too far and Ca2? transfer is less

efficient. This means that the cell needs a mechanism to

maintain a stable distance between ER and mitochondrial

membranes. Heat shock 70-kDa protein 9 (HSPA9), also
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known as mortalin, is one protein implicated in bridging

this gap. HSPA9 binds to both IP3R and VDAC family

members, allowing for better transfer of Ca2? (Fig. 5)

[111, 112]. Although HSPA9 controls interactions between

IP3R and VDACs, thus helping to regulate gap distance, it

is not the major determinant of the ER–mitochondrial

bridge [110, 112].

So what is regulating the gap distance? The ER protein

Sec16 homolog B (SEC16B) and the mitochondrial protein

mitochondrial carrier 2 (MTCH2) are both linked to

obesity. The S. cerevisiae SEC16B homologue, known as

Sec16, is a peripheral membrane protein necessary for ER-

to-Golgi transport and cell viability [113]. Sec16-family

members interact with the COPII machinery, including

Sec23, Sec24 and Sec31, and are involved in the recruit-

ment of the GTPase Sar1 to the ER exit sites (tER) (Fig. 5)

[113–119].

MTCH2 shares homology with members of the mito-

chondrial carrier family, but unlike most family members,

it is located on the mitochondrial outer membrane, where

it co-localizes with a large protein complex, containing

the apoptosis regulatory proteins tBID and BCL2-associ-

ated X protein (BAX) [120, 121] (Fig. 5). MTCH2

protein is required for tBID recruitment to the mito-

chondria and plays a essential role tBID-induced cell

death [120].

In Drosophila, the COPII assembly proteins Sec16 and

Sec24C have been shown to bind to the mitochondrial

protein Tom40 [98]. Tom40 is the Drosophila homologue

of mammalian translocase of outer mitochondrial mem-

brane 40 (TOMM40), which is a channel-forming protein

in the Tom40 complex, involved in mitochondrial protein

import [122, 123]. In multiple organisms, the Tom40

complex and VDAC proteins directly interact to regulate

Fig. 4 Transcription factor AP-2beta (TFAP2B) and potassium
channel tetramerization domain containing 15 (KCTD15) may

regulate insulin receptor substrate 1 (IRS1) expression. Model

predicting a possible interaction between AP-2b and KCTD15 in

the regulation of IRS1. High glucose levels would activate the

sumylation regulatory protein Ubiquitin carrier protein 9 (UBC9).

UBC would then sumoylate KCTD15 and together they would bind to

dimers of AP-2b. UBC9 sumoylation of AP-2b would inhibit its

function, allowing for increased IRS1 transcription. Increased insulin

signalling would feedback to release AP-2b inhibition and reduce

IRS1 transcription

Fig. 5 Sec16 homolog B (SEC16B) and mitochondrial carrier 2

(MTCH2) may regulate ER and mitochondria gap distance. Depiction

of interactions between the COPII apparatus at the tER and the

translocase of the mitochondrial outer membrane 40 (Tom40)

complex in the outer mitochondrial membrane. Interactions between

the COPII machinery and the Tom40 complex would help regulate

protein transit across the mitochondrial membrane, as well as

maintain the correct distance between ER and mitochondrial mem-

branes. This would, in turn, control the transfer of Ca2? between the

ER and mitochondria, which is used as a sensor for the induction of

apoptosis. SEC24 family, member C (Sec24C), voltage-dependent

anion channel 2 (VDAC2)
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each other’s functions [124–127]. It is postulated that

MTCH2 may also interact with the Tom40 complex [128].

We suggest the following model for a SEC16B and

MTCH2 interaction in regulating cellular homeostasis

(Fig. 5). Tomm40 binding to SEC16B and SEC24C at the

tER would facilitate mitochondrial protein import. It would

also, along with HSPA9, help to anchor mitochondria close

the ER, allowing calcium to pass out of the ER, via the

IP3R, and into the mitochondria through VDAC. Mito-

chondrial calcium overload is a major inducer of apoptosis

[129, 130], and would trigger MTCH2–BH3 interacting

domain death agonist (tBid) interactions. In this way, the

cell closely links ER and mitochondrial functions, neces-

sary for the proper regulation of cellular Ca2? levels.

Disruption of this Ca2? homeostasis would induce apop-

tosis. Interestingly, in C. elegans, TOMM-40, TOMM-20

and TOMM-22 are necessary for proper insulin secretion

[131]. If SEC16B and MTCH2 interact with the TOMM

complex in humans, they could also be involved in regu-

lating insulin secretion.

Future perspectives

Current estimates suggest that there could be at least 250

genetic loci in humans important for the regulation of

obesity [19], while the number of pathways or networks

that these obesity genes participate in is likely to be much

lower. Tremendous progress has been made recently in

network biology, protein cooperatives, or modules dis-

playing interaction between proteins, i.e. interactome

networks. Many of these networks are highly conserved

biological pathways throughout evolution. We show here

that about half of the human obesity genes are highly

evolutionary conserved and likely to be present in most

vertebrates, and in some cases most bilateral species.

These obesity genes are not equally distributed through

protein classes when compared with the rest of the genome.

We see that genes involved in cell signalling, such as

receptors (9 genes), ligands (2 genes) and signal trans-

duction molecules (1 gene), corresponding to about one-

third of the obesity associated genes, are significantly

enriched (p B 0.01; hypergeometric test) when compared

to the whole human genome, where about 16 % of the

genes are annotated to have comparable functions (source:

http://www.uniprot.org, http://www.geneontology.org).

Similarly, we also identify a potential enrichment for

transcription factors according to UniProt and Gene

ontology (p B 0.02; 14 % of the obesity genes, *4 % of

genome). However, when compared with human tran-

scription factors listed in a comprehensive study by Ravasi

and colleagues (*10 % of the genome) [132] the enrich-

ment was not validated (p [ 0.92) and should be

considered as uncertain. The 9 enzymes and 2 transporters

found among the obesity genes are not more than expected

by chance.

We identified new potentially important protein inter-

actions using expression data from mouse and Drosophila

(BioGPS, Flyatlas), and other data obtained from Dro-

sophila (yeast-two hybrid, embryonic mRNA in situ), as

well as searching homologies (NCBI homoloGene) and

protein interaction maps (Interlog finder, http://www.inter

logfinder.org). We show that TFAP2B is linked to

KCTD15 and SEC16B is linked to MTCH2. For HMGCR,

we see a conservation of expression and function, as it is

necessary to make cholesterol-derived products involved in

regulating homeostasis, corticoids in the case of mammals

and Juvenile hormone (JH) in Drosophila adults. These

findings show that studies using model organisms, such as

Drosophila melanogaster, can provide a conservation of

function that, if exploited, could help in our understanding

of how these obesity-linked genes function to regulate the

homeostatic system.

Moreover, it is interesting to identify which of the genes

in each network are the most suitable against which to

develop drugs. One classical feature of drug targets

includes the ability of the protein to form a cavity that a

small molecule can lock in, and in most cases block the

activity of the proteins. Indeed, the 9 receptors (LRP1B,

NRXN3, GPRC5B, NEGR1, GIPR, CADM2, MC4R,

FAIM2 and LRRN6C) and 9 enzymes (QPCTL, HMGCR,

GNPDA2, FANCL, NUDT3, PRKD1, TNNI3 K, MAP2K5

and FTO) that together constitute about half of the obesity

genes arguably have this important drug target feature.

Also, 13 of the genes (CADM2, FAIM2, GIPR, GPRC5B,

HMGCR, LINGO2, LRP1B, MC4R, MTCH2,NRXN3,

QPCTL, SLC39A8 and TMEM18) code for transmem-

brane proteins, a highly used class of proteins in drug

development and likely to play key roles in conveying

signals over the membrane (another classical feature of

drug targets). Furthermore, 14 of the genes (MC4R, GIPR,

MAP2K4, PRKD1, TNNI3K, LINGO2, NEGR1, CADM2,

KCTD15, SH2B1, QPCTL, GPRC5B, LRP1B and

NRXN3) share protein family or protein domains with

known drug targets, and HMGCR is targeted by a number

of anticholesteremic agents, such as Lovastatin [133].

Hence, there are enormous possibilities that a considerable

part of the currently identified obesity-linked genes can be

targeted by traditional types of drugs. The recent success of

monoclonal antibodies has allowed for additional oppor-

tunities for rational target selection and high target

specificity. Among the obesity genes, there are two coding

for ligands (BDNF and POMC); such gene products are not

traditional drug targets, but may become interesting pro-

viding that an antibody could reach the intended site of

action. This is obviously complicated by the fact that these
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ligands are expressed in the CNS. In general, while our

understanding of the functional roles of obesity-linked

genes is currently very vague, no doubt distant model

species, interactomics and signalling pathway analysis

represent an important way to better understand the func-

tional diversity of the surprisingly high number of

molecules seemingly important for human obesity.
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