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Abstract Iron homeostasis is maintained at the cellular

and systemic levels to assure adequate iron supply while

preventing iron overload. The identification of genes

mutated in patients with iron-related disorders or animal

models with imbalances of iron homeostasis gave insight

into the molecular mechanisms underlying processes crit-

ical for balancing iron levels, such as iron uptake, storage,

export, and monitoring of available iron. MicroRNAs

control genes involved in some of these processes adding

an additional level of complexity to the regulation of iron

metabolism. This review summarizes recent advances how

miRNAs regulate iron homeostasis.

Keywords Iron homeostasis � MicroRNA

Repression of gene expression by microRNAs

MicroRNAs (miRNAs) are approximately 22-nucleotide-

long, single-stranded non-coding (nc) RNAs that repress

target gene expression. MiRNA genes are frequently

localized within intronic regions [1], but are also expressed

from non-protein coding transcripts localized in intergenic

regions [2]. Most miRNAs are transcribed by RNA poly-

merase II [3] as long primary transcripts (pri-miRNA) that

are processed in two consecutive steps to generate the

functional, mature miRNA [4]. Processed miRNAs are

inserted into the RNA-induced silencing complex (RISC),

to guide the RISC to the target mRNA sequence. MiRNAs

recognize miRNA responsive elements (MREs), sequences

with partial complementary localized within the 30

untranslated region (UTR) of mRNAs. Depending on the

level of complementarity between miRNA and MRE, this

interaction either limits mRNA translation or decreases

mRNA stability. To date, more than 1,000 miRNA

sequences have been identified in the human genome

(miRBase; version 18, November 2011 [5]).

MiRNAs control cellular processes as diverse as

metabolism, cancer [6], or neurodegeneration [7]. Vice

versa, cellular signals [8, 9] and pathological conditions

[10] alter miRNA expression. Molecular networks con-

trolled by miRNAs are highly complex. Computational

analyses suggest that miRNAs may repress up to 30 % of

the protein-coding genes of each genome [11], whereby

each individual mRNA transcript may contain several

different miRNA-specific MREs. In addition, it is expected

that mRNAs containing identical MREs in their 30UTR will

co-regulate each other’s expression by competing for a

limited miRNA pool [12–14]. Likewise, MRE-containing

pseudogenes [15] and long non-coding (lnc)RNAs [16]

may act as ‘sponges’ for miRNAs. Thus, mRNAs, pseu-

dogenes, and lncRNAs form a network of transcripts

named the ‘competing endogenous RNAs (ceRNA)’. These

can control the distribution of miRNAs on their target

mRNAs [17] despite the fact that the expression of a spe-

cific miRNA remains unchanged, hence imposing an

additional layer of post-transcriptional control on gene

expression.
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Heme-mediated control of miRNA biogenesis

miRNA genes are usually transcribed from RNA Poly-

merase II promoters as long primary transcripts (pri-

miRNAs), whereby transcription factor binding sites in

miRNA promoters determine tissue- or development-spe-

cific miRNA transcription [18]. The approximately

22-nucleotide-long miRNA sequences are located within

hairpin loop structures that are recognized by a nuclear

protein known as the DiGeorge Syndrome Critical Region

8 (DGCR8) [19]. DGCR8 binds Drosha, the Rnase III that

releases the 70 nucleotide precursor-miRNA (pre-miRNA)

from the pri-miRNA [20]. The pre-miRNA hairpins are

exported to the cytoplasm where they are further pro-

cessed by the RNase III protein Dicer into 19- to 25-nt

miRNA duplex structures [21]. One of the two strands in

the duplex is incorporated into a multiple-protein nuclease

complex, the RISC, to post-transcriptionally control gene

expression. Regulation of miRNA biogenesis has emerged

as a critical mechanism to define the spatiotemporal pat-

tern of miRNA expression [22]. Although little is known

about how miRNA biogenesis is modulated, one of the

control mechanisms seems to depend on the availability of

iron-containing heme [23]. In reconstituted pri-miRNA

processing assays, heme enhances DGCR8 dimerization,

which is required for increased activity of this essential

miRNA processing cofactor [24–27]. During this process,

heme binds to DGCR8 via its ferric iron co-factor.

By contrast, ferrous heme is unable to enhance miRNA

processing [27]. It was suggested that heme exerts a

regulatory function in miRNA biogenesis, because the

heme-binding domain of DGCR8 is not required for

processing of pri-miRNAs. Thus, in conditions of heme

deficiency, the pri-miRNA cleavage rate is predicted to be

slow, which will result in a global decrease of mature

miRNA abundance. Further studies will be required to

investigate how this mechanism influences miRNA bio-

genesis in vivo, and whether miRNA biogenesis is

impaired in diseases with dysregulated heme synthesis

such as porphyrias.

Iron metabolism is controlled at the cellular

and systemic level

Iron is an essential micronutrient, which is required as a

cofactor for fundamental cellular processes such as oxygen

transport, cellular respiration, and DNA synthesis. Con-

tinued iron deficiency causes cell death. On the other

extreme, free iron excess is also toxic. If not tightly bound

to iron-carrier proteins, it will catalyze the formation of

reactive oxygen species (ROS) that damage lipid mem-

branes, proteins, and nucleic acids. Therefore, iron levels

must be tightly balanced to assure adequate iron supplies

while preventing toxicity.

The discovery that systemic iron homeostasis is largely

controlled by the antimicrobial peptide hormone hepcidin

[28, 29] paved the way to our understanding as to how

systemic iron metabolism is regulated. Hepcidin controls

systemic iron availability by interacting with its target

ferroportin, a transmembrane iron efflux channel highly

expressed on cells that release iron, such as enterocytes,

macrophages, and hepatocytes. Iron export further requires

an extracellular ferroxidase activity that is provided by the

multicopper oxidases ceruloplasmin (Cp) and/or hephaestin

[30]. Upon hepcidin binding, ferroportin is internalized and

degraded [31]. Hepcidin is produced by the liver in

response to systemic iron availability, hypoxia, erythroid

iron demand, and inflammatory cues. Although hepcidin

levels are controlled by systemic iron requirements, iron

levels are not directly sensed by hepcidin. Hepcidin

expression is balanced by upstream activator proteins, such

as Hfe [32, 33], hemojuvelin (Hjv; [34–36]), and Trans-

ferrin Receptor 2 (TfR2; [37, 38]), and inhibitors like the

transmembrane protease, serine 6 (TMPRSS6; [39]), and

Smad family member 7 [40]. Mutations in hepcidin itself

or in the genes coding for hepcidin activators cause a

metabolic disorder named hereditary hemochromatosis

(HH). HH is hallmarked by decreased hepcidin activity,

which causes increased iron uptake from the diet and iron

release from macrophages. As a consequence, tissue iron

overload develops, which leads to a clinical condition that

can result in the development of mild to serious patholo-

gies, including abdominal pain, arthritis, heart failure,

diabetes, and hepatic cirrhosis.

The hepcidin/ferroportin regulatory system controls the

availability of adequate levels of plasma iron, which is

tightly bound to the plasma protein transferrin. Transferrin-

bound iron is taken up by most cell-types of the body via

transferrin receptor (TfR) 1. The expression of genes

involved in maintaining cellular iron homeostasis is pre-

dominantly controlled post-transcriptionally by the binding

of iron regulatory proteins (IRPs) 1 or 2 to cis-regulatory

mRNA motifs termed iron responsive elements (IREs).

IREs are short, conserved RNA stem-loop structures

located in the non-coding sequence (30- or 50UTR) of

mRNA encoding proteins for iron acquisition [transferrin

receptor 1 (TfR1), and the divalent metal transporter 1

(DMT1)], transport [ferritin H (FTH1), and ferritin L

(FTL)] utilization [aconitase (ACO2), erythroid 5-Amino-

levulinate synthase (ALAS) and hypoxia-inducible factor 2

(HIF2)] and export [ferroportin (FPN1)] [41]. Past and

recent evidence suggests that additional mRNAs are reg-

ulated by the IRPs [42]. In iron-deficient conditions, IRE/

IRP complexes form within an mRNA 50UTR (e.g., FTH1,

FTL, ACO2, and FPN1) to inhibit translation, whereas IRP
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binding to IREs in the 30UTR of TfR1 and DMT1 prevents

mRNA degradation. Mice lacking both copies of the IRP1

and the IRP2 genes die at the embryonic stage, indicating

that the IRE/IRP regulatory network is essential, at least for

early development [43]. In addition to the predominant

transcriptional control of systemic iron homeostasis via

hepcidin, and the post-transcriptional regulation of genes

involved in maintaining cellular iron levels, recent studies

reveal that miRNAs play a critical role in balancing cel-

lular and tissue iron homeostasis.

Control of cellular iron uptake by miRNAs

Most mammalian cell types satisfy their iron needs by the

uptake of iron-bound transferrin (Tf-Fe2) from plasma.

Tf-Fe2 binds to the ubiquitously expressed transferrin

receptor 1 (TfR1), and the complex is internalized by

clathrin-dependent endocytosis. Subsequent acidification

of early endosomes promotes the release of iron from

transferrin, which then is reduced to Fe(II) by members of

the STEAP family of metalloreductases [44] for transport

into the cytoplasm via the endosomally expressed DMT1.

TfR1 and apo-transferrin are recycled to the cell surface.

Although TfR1 is ubiquitously expressed, the transferrin

cycle is most critical for the massive iron demand of ery-

throid precursor cells. The amount of TfR1 expressed at the

cell surface reflects upon cellular iron requirements and is

predominantly regulated at the level of transcription and

post-transcriptionally by the IRE/IRP regulatory system.

Recent data highlight that the transferrin cycle is addi-

tionally controlled by miRNAs at two different steps

(Fig. 1).

It was recognized some time ago that Tfr1 expression is

increased in neoplastic cells to satisfy their increased iron

requirements for cellular proliferation [45, 46]. Conversely,

differentiation of neoplastic cells such as the human leu-

kemia cell line HL-60 by tetradecanoylphorbol acetate

(TPA) into the monocytic/macrophage lineage [47]

represses TfR1 expression and increases levels of miRNAs

Fig. 1 microRNA-mediated control of cellular iron metabolism.

A The ubiquitously expressed transferrin receptor-1 (TfR1) controls

cellular uptake of iron-bound transferrin (Tf, iron indicated by red
dots). B The Tf-iron-TfR1 complex is taken up into the cell via

endocytosis and the iron is released from the endosome by the

nonIRE isoform of Divalent Metal Transporter 1 (DMT1). C In the

cytoplasm iron is incorporated within the cellular labile iron pool

(LIP), is stored and detoxified by ferritin or D is utilized by

mitochondria for heme synthesis and Fe–S cluster biogenesis.

E Heme is critical for the processing of miRNA primary transcripts

(pri-miRNAs) and binds to the microprocessor complex composed of

DGCR8 and DROSHA. F miRNA precursors (pre-miRNA) are

exported to the cytoplasm where they are processed to form single

stranded miRNAs that are bound by the RISC. The miRISC will

target MREs within the 30 UTR of genes to repress their translation

or to trigger mRNA degradation. Several miRNAs control genes

involved in maintaining cellular iron homeostasis, whereby miR-320

post-transcriptionally controls TfR1 expression, Let-7d targets the

DMT1-nonIRE isoform, and miR-200b regulates the expression of

ferritin
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predicted to bind to the 30UTR of TfR1 (miR-22, miR-

200a, and miR-320). Of these, miR-320 represses the

activity of luciferase reporter vectors fused to sequences of

the Tfr1 30UTR that contain the miR-320-specific MRE.

Likewise, enforced miR-320 expression in the lung carci-

noma A549 cell line decreases TfR1 surface expression

and slows down cell cycle progression and cell growth.

Because the additional treatment of cells with a soluble

iron salt reverses the growth inhibitory effect, the authors

speculate that decreased TfR1 expression in miR-320

overexpressing cells lowered iron availability and inhibited

cell proliferation [48]. It is currently unresolved whether

miR-320-mediated TfR1 regulation is confined to cancer

cells or whether the ubiquitously and highly expressed

miRNA (see http://mirnamap.mbc.nctu.edu.tw) is involved

in the control of TfR1 expression under physiological

conditions.

In addition to miRNA-dependent regulation of TfR1,

miRNAs control the transferrin cycle at a second step, the

release of iron from the endosome via DMT1. The gene

coding for DMT1 (SLC11A2) gives rise to four variant

mRNA transcripts that either differ at their 50 end as a

result of alternative promoter usage (DMT1A and 1B

protein isoforms) or at the 30 end due to alternative splicing

[49]. While the DMT1A isoform is predominantly

expressed in the duodenum, isoform 1B is ubiquitously

distributed. The alternative 30UTR sequences differ as to

whether they contain an IRE sequence motif, whereby only

the IRE-containing isoforms are controlled in response to

cellular iron levels by IRP binding [50]. All different

DMT1 isoforms are capable of transporting iron and,

except for the 1A isoform, are ubiquitously expressed [51].

Notably, the DMT1 splice variant lacking the IRE

sequence (DMT1B-nonIRE) is abundantly expressed in

erythroid cells [51], where it is responsible for iron export

across the membrane of acidified endosomes into the

cytoplasm following iron-bound transferrin uptake [52].

Although the DMT1B-nonIRE isoform plays a funda-

mental role during erythroid precursor differentiation, the

regulatory mechanism underlying its expression remained

unclear. A recent study in erythroid cells revealed that the

expression of the DMT1B-nonIRE isoform is fine-tuned by

the miRNA Let-7d, providing an alternative mode of reg-

ulation of this isoform that cannot respond to iron

availability through the IRE/IRP regulatory system [53]. In

this study, the expression of miRNAs, which were bioin-

formatically predicted to target the DMT1-nonIRE isoform

(miR-15a, miR-15b, miR-223, and Let-7d) were analyzed

during erythroid differentiation of CD34? cells. From

these, only Let-7d showed an adequate binding affinity to

the DMT1-nonIRE 30UTR, phylogenetic conservation as

well as an opposite expression trend with respect to DMT1-

nonIRE mRNA and protein expression, which was

upregulated during erythroid differentiation. Transfection

of K562 cells with luciferase reporter constructs containing

the full-length 30UTR of human DMT1?IRE and DMT1-

IRE mRNA splice variants demonstrated the specificity of

Let-7d in repressing the DMT1-nonIRE isoform only.

Furthermore, Let-7d overexpression decreases human

DMT-1-nonIRE expression at the mRNA and protein

level in K562 and HEL cells and leads to the inhibition of

erythroid differentiation due to iron accumulation in endo-

somes of K562 cells. As a consequence of iron retention in

endosomes, cytosolic ferritin levels are decreased, and TfR1

mRNA levels are increased, indicating functional cellular

iron deficiency. Let-7d is ubiquitously expressed, suggesting

that a similar regulatory mechanism might be operational in

other cell types, where the DMT1-IRE isoform is expressed.

These include cell types with critical DMT-1 functions, such

as duodenal enterocytes and neurons where Let-7d-medi-

ated control of DMT1 may play a role. Furthermore,

miRNA-controlled DMT1 expression may contribute to the

uptake of non-transferrin bound iron (NTBI) in the iron

overload disorder Hereditary Hemochromatosis [54]. How

miRNA-dependent control of DMT-1 expression is inte-

grated with additional DMT-1 control mechanisms at the

transcriptional (by hypoxia-inducible factor (HIF)2a

[55, 56]), post-transcriptional (by the IRE/IRP regulatory

system [50]), or post-translational (by Ndfips-dependant

ubiquitination and proteasomal degradation) level, requires

further investigation.

Because the processing of miRNA maturation requires

iron in the form of heme [23], the findings that miRNAs

control cellular iron uptake open the possibility that a

regulatory loop exists in which iron is required for the

efficient synthesis of mature miRNAs, while defined

mature miRNAs control cellular iron uptake.

Control of cellular iron storage by miR-200b

Ferritin heteropolymers consist of 24 subunits of heavy

(FtH1) and light (FtL) chains that bind iron from the

cytoplasmic ‘‘labile iron pool’’ (LIP) that is not utilized or

exported (see review by Arosio and Levi [77]). Only the

FtH1 subunit exerts ferroxidase activity that is necessary

for iron deposition into the nanocage, while FtL facilitates

iron nucleation and increases the turnover of the ferroxi-

dase site. Ferritin detoxifies excess iron in a redox inactive

form to prevent iron-mediated cell and tissue damage; it

also constitutes an iron store whose mobilization involves

both proteasomal and lysosomal degradation of ferritin.

A recent study showed that human breast cancer cells

with an aggressive mesenchymal phenotype (i.e. Hs578T,

BT549, and MDA-MB-231) express substantially higher

mRNA and protein levels of FtH1 and FtL and lower LIP
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compared to breast cancer cells with an epithelial and less

aggressive phenotype (i.e. MCF7, MDA-MB-361, T47D,

and HCC70). A large fraction of FtH1 in these breast

cancer cells was associated with the chromatin-bound

nuclear fraction, a finding that lacks explanation. Increased

FTH1 levels correlated with low expression of miR-200b, a

miRNA predicted to bind to the FTH1 30UTR. A functional

role for miR-200b binding to the FTH1 30UTR was dem-

onstrated by luciferase reporter assays and FTH1 western

blotting in the MDA-MB-231 cell line. Unexpectedly,

miR-200b transfection also decreased FtL protein levels,

although the FtL 30UTR is not predicted to bind to miR-

200b. Transfection of miR-200b further increased sensi-

tivity to doxorubicin, a drug commonly used to treat breast

cancer. Whether miR-200b-mediated ferritin regulation is

related to previous clinical findings, that patients with

higher circulating plasma ferritin levels show worse treat-

ment outcome compared to patients with lower ferritin

values, needs to be determined [57]. The authors speculate

that down-regulation of miR-200b in human breast cancer

could be a contributory factor to cancer aggressiveness.

Whether or not this finding may have potential therapeutic

implications remains controversial at the moment [58, 59].

Control of systemic iron regulation by miR-122

The liver is the major iron storage site and the endocrine

organ responsible for the regulation of systemic iron

homeostasis. It synthesizes the small peptide hormone

hepcidin that controls the amount of circulating iron by

interacting with the iron exporter ferroportin. The liver

senses systemic iron availability through genes mutated in

hereditary hemochromatosis (e.g., Hfe, hemojuvelin, and

TfR2), the Bone morphogenetic protein (Bmp)6, and the

Smad4 protein, which serve to regulate hepcidin tran-

scription. Inappropriately low hepcidin activity as a result

of mutations in Hfe, hemojuvelin, TfR2, or hepcidin itself

cause the iron overload disorder hereditary hemochroma-

tosis (HH). MiRNA expression analysis in mouse models

of iron overload found that miR-122, a miRNA abun-

dantly and selectively expressed in the liver, is down-

regulated in a murine disease model of Hfe-mediated HH

as well as in liver biopsies from HH patients with

homozygous C282Y mutations. A functional link between

miR-122 and iron metabolism was established in wild-

type mice subjected to a single, intraperitoneal injection

of locked nucleic acid (LNA)-modified antimiR oligonu-

cleotides, which specifically and exclusively inhibited

miR-122 in the liver. MiR-122 depleted mice are hall-

marked by decreased systemic iron levels, which result

in an inadequate iron supply to the erythron that

mildly impairs hematopoiesis [60]. Specifically, miR-122

inhibition decreases the mean corpuscular volume (MCV)

of erythrocytes, increases reticulocyte counts, and reduces

the reticulocyte hemoglobin content. Additionally, the

iron content of the liver (site of iron storage), the spleen

(site of iron recycling), and the plasma (site of iron

transport) were reduced in miR-122-inhibited mice. The

decrease in plasma iron levels resulted in reduced trans-

ferrin iron binding capacity (TIBC) 3 weeks after

antimiR-122 injection. Interestingly, disturbance of sys-

temic iron homeostasis in miR-122-inhibited mice arises

from altered mRNA expression levels of those genes that

participate in the sensing of systemic iron levels (i.e., Hfe,

Hemojuvelin, and Bmpr1a) and that transmit signals at

least in part, via the Bmp/Smad signaling pathway to

regulate transcription of hepcidin. MRNA expression of

Hfe, HJV, Bmpr1a, and hepcidin were increased in miR-

122-depleted mice, while mRNA expression of TfR2 or

other hepcidin effectors (e.g., Smad7 and Smad4) was not

affected. Furthermore, antimiR-122 transfection of murine

primary hepatocytes also increased mRNA expression of

Hfe, hemojuvelin, and hepcidin. This allowed for the

validation of the miR-122 binding sites that were bioin-

formatically predicted within the 30UTRs of Hfe (2

MREs), Hemojuvelin (3 MREs) and Hepcidin (a single

MRE) mRNAs. Cotransfection of luciferase reporter

genes bearing the full length 30-UTRs of mouse hepcidin,

Hfe, and hemojuvelin, together with miR-122 mimics

(pre-miR-122) into Hepa 1–6 (mouse) hepatocarcinoma

cells, revealed the functionality of the MREs in Hfe and

HJV. By contrast, reporter constructs containing the

hepcidin 30UTR did not reveal any specific alterations.

These data clearly demonstrate that the 30-UTRs of Hfe

and hemojuvelin are direct targets of miR-122.

In summary, these findings reveal a regulatory loop of

miR-122-dependant control of systemic iron homeostasis.

The model summarized in Fig. 2 shows that miR-122

inhibition in wild-type mice derepresses the expression of

Hfe and hemojuvelin, which then trigger the activation of

hepcidin transcription. As a consequence, elevated circu-

lating hepcidin levels enhance the degradation of

ferroportin on target cells, thus reducing iron absorption

from the diet and iron release from erythrocyte iron recy-

cling macrophages. This will result in plasma and tissue

iron deficiency and mild impairment of erythropoiesis.

Equally important, the gene Hfe mutated in patients with

HH is a critical upstream regulator of miR-122 levels. Of

note is that miR-122 levels are not regulated as a conse-

quence of iron that accumulates in the liver of HH patients,

but likely as a consequence of the signaling activities

impaired by the lack of Hfe. It is known that the lack of Hfe

attenuates the BMP/Smad signaling pathway in HH

patients and the respective murine disease model [61].

However, an increase in Smad1/5/8 phosphorylation was
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not detectable in miR-122-depleted mice, suggesting that

either BMP/Smad signaling was analyzed in an inappro-

priate time window following miR-122 depletion or that

additional signaling pathways are activated downstream of

Hfe.

The finding that miR-122 regulates systemic iron

homeostasis adds to a growing list of liver functions that

are controlled by miR-122. For example, miR-122 levels

are decreased in advanced liver diseases such as cirrhosis

[62] and hepatocellular carcinoma [63, 64], pathologies

known to be exacerbated by increased liver iron levels

[65]. Furthermore, several independent studies have dem-

onstrated that in vivo inhibition of miR-122 reduces

systemic cholesterol levels by as yet unidentified molecular

mechanisms [66, 67]. Moreover, miR-122 expression is

critical for hepatitis C virus (HCV) infection, replication,

and the response to interferon therapy [68–70], which

likewise involve alterations in iron homeostasis [71].

Concluding remarks

Iron homeostasis is controlled by miRNAs at the level of

cellular uptake of iron-bound transferrin, iron storage by

ferritin, and the hepatic control of systemic iron levels via

hepcidin. Furthermore, tissue iron overload that hallmarks

frequent disorders, such as hereditary hemochromatosis, the

thalassemias, or Alzheimer’s disease causes oxidative stress

that itself has been shown to alter miRNA expression [72,

73]. Similarly, iron deficiency activates the hypoxia-induc-

ible factors (HIF) 1 and 2, critical transcription factors

orchestrating adaptations to low oxygen pressure [74].

During hypoxia, Hif1a induces miR-210 [75, 76], which

regulates ISCU1 and ISCU2, two proteins facilitating the

assembly of FeS-clusters. These findings suggest that

miRNAs control large regulatory networks that link micro-

environmental stress, such as oxidative stress and hypoxia to

the regulation of iron metabolism. As the maintenance of

iron homeostasis is critical for many essential cellular

functions, we expect to see several more miRNAs that will

directly or indirectly control iron-related genes.
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