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Abstract The human intestinal mucosa is constantly

exposed to commensal microbiota. Since the gut microbi-

ota is beneficial to the host, hosts have evolved intestine-

specific immune systems to co-exist with the microbiota.

On the other hand, the intestinal microbiota actively reg-

ulates the host’s immune system, and recent studies have

revealed that specific commensal bacterial species induce

the accumulation of specific immune cell populations. For

instance, segmented filamentous bacteria and Clostridium

species belonging to clusters XIVa and IV induce the

accumulation of Th17 cells in the small intestine and

Foxp3? regulatory T cells in the large intestine, respec-

tively. The immune cells induced by the gut microbiota

likely contribute to intestinal homeostasis and influence

systemic immunity in the host.
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Abbreviations

APRIL A proliferation-inducing ligand

AID Activation-induced cytidine deaminase

AMM Antimicrobial molecule

ASC Apoptosis-associated speck-like protein

BAFF B cell activating factor

CSR Class switch recombination

DC Dendritic cell

DSS Dextran sulfate sodium

EAE Experimental autoimmune encephalomyelitis

Fut2 Fucosyltransferase 2

GF Germ-free

GALT Gut-associated lymphoid tissue

IKK IjB kinase

IL-10R IL-10 receptor

Ig Immunoglobulin

iTreg Inducible Treg

IBD Inflammatory bowel diseases

ILC Innate lymphoid cell

IECs Intestinal epithelial cells

ILFs Isolated lymphoid follicles

LPS Lipopolysaccharide

LTi Lymphoid tissue inducer

MHC Major histocompatibility complex

MOG Myelin oligodendrocyte glycoprotein

nTreg Natural Treg

NOD Non-obese diabetic

NLR Nucleotide-binding oligomerization domain-like

receptor

PRR Pattern recognition receptor

PP Payer’s patche

pIgR Polymeric Ig receptor

PSA Polysaccharide A

RAG Recombinase-activating gene

RegIIIc Regenerating islet-derived IIIc
Treg Regulatory T

RORct Retinoic acid receptor-related orphan receptor

gamma t

rDNA Ribosomal DNA

SIgA Secretory IgA

SFB Segmented filamentous bacteria

STAT3 Signal transducer and activator of transcription 3

SHM Somatic hypermutation

SPF Specific pathogen-free

TCR T cell receptor
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TD T cell-dependent

TI T cell-independent

Th T helper

TSLP Thymic stromal lymphopoietin

TLR Toll-like receptor

TGF-b Transforming growth factor-b
TACI Transmembrane activator and calcium

modulator and cyclophilin ligand interactor

T1D Type 1 diabetes

VRE Vancomycin-resistant Enterococcus

Introduction

The intestinal mucosa is constantly exposed to the micro-

biota, which is composed of more than 100 trillion

commensal bacteria comprising more than 1,000 species.

These bacteria are more than coincidental companions. We

provide the microbiota with a secure habitat and a constant

source of nutrition. In turn, the gut microbiota helps our

digestion and metabolism and protects us from intestinal

intrusion by foreign pathogenic microorganisms via com-

petition for space and nutrition. Therefore, the host–

microbiota relationship is mutually beneficial. To utilize

the benefits, the gut mucosa has evolved a multi-compo-

nent system to co-exist with the microbiota. Intestinal

epithelial cells (IECs), which directly interface with the

microbiota, form tight junctions and constitutively produce

mucus gels and antimicrobial agents to form a physical

barrier [1, 2]. IECs also constitutively produce immune

regulatory cytokines. Consequently, IECs have critical

roles in sequestering the microbiota in the lumen and in

achieving immunological tolerance toward the microbiota.

Beneath the epithelium, the intestinal mucosa is equipped

with multiple lineages of cells, including innate and

adoptive immune cells, that also cooperate to establish a

robust symbiotic system with the microbiota [3–6].

An accumulating body of evidence suggests that the

commensal microbiota actively regulates the host immune

system. Using germ-free (GF) and/or gnotobiotic tech-

niques and metagenomic approaches by massive parallel

sequencing, it is becoming clear that the composition of the

gut microbiota affects the structure of gut-associated lym-

phoid tissues (GALTs) and the activation/differentiation

status of immune cells and IECs [7, 8]. Furthermore, spe-

cific commensal bacterial species induce the accumulation

of specific immune cell populations [9–14]. Therefore, the

alteration of the bacterial composition may result in a

disruption of immune homeostasis between the host and

the microbiota.

In this article, we summarize the host immune system by

discussing several important cell subsets and then discuss

the interactions of the microbiota with the host mucosal

immune system and the consequences of these interactions

(although many are still unknown). In particular, we focus

on how the host immune system is adapted to co-exist with

the commensal microbiota and how the commensal mic-

robiota regulates the host immune system. A variety of cell

populations and mechanisms appear to be involved in the

establishment of these complicated but sophisticated

relationships.

Features of the host immune system to allow

co-existence with the gut microbiota

Multiple different lineages of cells in the intestines,

including IECs and innate and adoptive immune cells, have

their own roles to allow co-existence with commensal

bacteria while protecting the host from invasion by path-

ogenic microbes. Recent advances have elucidated the

roles of each cell population and, further, have identified

several new cell populations.

Intestinal epithelial cells (IECs)

IECs are located at the interface between the host and the

commensal microbiota. Accordingly, they have a critical

role in sensing physical and molecular stimulation by the

microbiota. IECs express multiple pattern recognition

receptors (PRRs), including Toll-like receptors (TLRs),

nucleotide-binding oligomerization domain-like receptors

(NLRs), and C-type lectin receptors, to sense pathogenic

bacteria and commensal bacteria, both of which contain

microorganism-associated molecular patterns in their

structures. TLRs are expressed at low levels in normal

IECs, but are upregulated in inflammatory bowel diseases

(IBD) patients. Inflammatory cytokines induced by TLRs,

such as interferon (IFN)-c and tumor necrosis factor-a, can

act as precipitating factors for IBD by modifying tight

junction function in IECs and increasing flux across the

leak pathway [15]. Therefore, a dysregulated expression

and function of TLRs in IECs may be involved in IBD

pathogenesis.

On the other hand, PRR signaling in IECs has been

shown to contribute to the enhancement of tight junctions,

epithelial cell proliferation, and antimicrobial peptide

production, leading to the enhancement and maintenance

of the mucosal barrier system [1]. For example, when mice

kept in specific pathogen-free (SPF) conditions are treated

with broad-spectrum antibiotics, they become highly sus-

ceptible to dextran sulfate sodium (DSS)-induced intestinal

inflammation [16]. This is, at least in part, due to reduced

constitutive TLR signaling in response to the microbiota, as

oral administration of lipopolysaccharide (LPS, a TLR4
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ligand) or lipoteichoic acid (a TLR2 ligand) restores

resistance of antibiotic-treated mice to DSS-associated

injury of the colonic epithelium [16]. Consistently, mice

lacking either TLR2, TLR4, TLR9, or MyD88 are highly

susceptible to DSS colitis [16]. TLR2 activation redistrib-

utes the tight junction protein zonula occludens-1 (ZO-1) in

IEC cells, resulting in the enhancement of tight junctions

[17, 18].

The production of antimicrobial molecules (AMMs),

such as a-defensins, b-defensins, cathelicidins, C-type

lectins, and lipocalin-2, is one of the pivotal roles of IECs

in protecting the host from pathogenic microbiota. The

expression of the C-type lectin regenerating islet-derived

IIIc (RegIIIc) is induced in the mouse small intestine,

particularly in Paneth cells, by commensal bacteria, such as

Bacteroides thetaiotaomicron, whereas it is downregulated

by Bifidobacterium longum [19]. This commensal-medi-

ated induction of RegIIIc depends on MyD88-dependent

TLR activation. Indeed, IEC-specific MyD88-deficient

mice have impaired production of RegIIIc, and the trans-

genic expression of MyD88 specifically in Paneth cells

restores the expression of RegIIIc [20]. The antibacterial

function of RegIIIc is dependent upon binding bacterial

targets through interactions with peptidoglycan, which is

expressed on the surface of Gram-positive bacteria but is

buried in the periplasmic space of Gram-negative bacteria

[21]. Therefore, RegIIIc has a critical role in the host

defense against pathogenic Gram-positive bacteria, includ-

ing vancomycin-resistant Enterococcus (VRE) [21, 22].

Furthermore, RegIIIc is critical for generating the ‘mic-

robiota-free zone’, which is filled with mucus gels

containing AMMs, including RegIIIc, that physically sepa-

rate IECs from the luminal microbiota in small intestine

during steady-state conditions [23]. Therefore, TLR and

RegIIIc have critical roles in maintaining intestinal

homeostasis by preventing unnecessary direct contact

between IECs and commensal bacteria.

It is interesting to note that IECs also produce other

families of soluble-type lectins, including galectins. The

production of some galectins, such as galectin-9, is up-

regulated by TLRs. Galectins bind luminal b-galactoside

containing glycans and modulate the mucosal and systemic

immune response. Interestingly, dietary supplementation

with prebiotic galacto- and fructo-oligosaccharides and

Bifidobacterium breve enhances galectin-9 expression by

IECs, which associates with the prevention of allergic

symptoms [24].

The production of AMMs in IECs is also indirectly

regulated by TLRs via cytokines, such as IL-22 [25].

Systemic injection of flagellin stimulates TLR5 on hema-

topoietic cells, which leads to an increase in the

concentration of IL-22 in the intestine. IL-22 then stimu-

lates IECs to produce RegIIIc and lipocalin-2, resulting in

resistance to infection by pathogens such as VRE [25].

IECs have also been shown to produce IL-17C, which is a

member of the IL-17 family of cytokines. IL-17C signals

through the IL-17RE and IL-17RA complex, which is

expressed on IECs, in an autocrine manner, leading to the

induction of AMMs, such as RegIIIb, RegIIIc, lipocalin-2,

S100A8, and S100A9, during Citrobacter rodentium

infection and DSS-induced colitis [26, 27]. IL-17C func-

tions in synergy with IL-22 to induce these AMMs [26]. In

the DSS-induced colitis model, IL-17C mRNA is induced

soon after DSS administration [27], suggesting that IL-17C

production is critical for the rapid production of AMMs to

cope with a massive bacterial burden.

IECs have another important role as messengers that

relay the signal from bacteria to the immune cells that

reside underneath the IECs. For instance, IEC-conditioned

intestinal dendritic cells (DCs) drive Th2 response in both

human and mouse [28], suggesting that a Th2-skewed

response might be required for intestinal homeostasis. IECs

constitutively express thymic stromal lymphopoietin

(TSLP), which prevents DCs from producing IL-12 and

differentiating naı̈ve T cells into Th1 cells [28]. Consis-

tently, mice with the IEC-specific ablation of IjB kinase

(IKK)-b exhibit decreased expression of TSLP by IECs and

consequently increased production of IL-12/IL-23p40 and

TNFa by intestinal DCs, which is accompanied by severe

colitis characterized by increased numbers of T helper (Th)

1 and Th17 cells [29]. In addition to TSLP, IECs express

IL-25 and promote the accumulation of an innate lym-

phocyte population in the GALT that promotes Th2

cytokine responses [30]. IECs also constitutively produce

transforming growth factor-b (TGF-b) and retinoic acid,

which were reported to convert human CD103- DCs into

CD103? DCs to induce de novo generation of Treg cells

with gut-homing properties [31].

TLR stimulation in IECs contributes to the production of

IgA, which is secreted into the lumen to directly neutralize

bacteria. IECs express a proliferation-inducing ligand

(APRIL) upon stimulation with TLR ligands, such as

lipopolysaccharide and flagellin, or with whole bacteria

[32]. APRIL is functionally related to CD40L and can

promote activation-induced cytidine deaminase (AID)

expression in B cells. Thus, APRIL expression by IECs

induces IgA class switching in B cells in a CD40L-inde-

pendent manner. In addition, IECs promote IgA class

switching by producing TSLP in response to TLR ligands

or whole bacteria. TSLP activates DCs to produce APRIL

and IL-10, which together promote switching to IgA [33].

NLR proteins, including NLRP1, NLRP3, NLRC4, and

NLRP6, form cytoplasmic multiprotein complexes called

inflammasomes. Upon sensing bacterial components, one

of the NLRPs forms the inflammasome by associating

with apoptosis-associated speck-like protein (ASC) and
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pro-caspase-1 in cytoplasm. Inflammasome formation

triggers the activation of caspase-1, which cleaves pro-IL-

1b and pro-IL-18 to generate the effector inflammatory

cytokines IL-1b and IL-18. Recently, NLRP3 and NLRP6

in IECs have emerged as critical regulators of intestinal

homeostasis. Several groups have shown that NLRP3-/-

mice are susceptible to DSS-induced colitis [34–36]. Mice

deficient in ASC or caspase-1 are similarly susceptible to

experimental colitis [34–37]. NLRP6 is thought to form

inflammasomes on the basis of the similarity of its

molecular structure to NLRP3, although its ligands have

yet to be identified. A recent report showed that deficiency

in NLRP6 in mouse IECs results in a colitogenic-skewed

commensal microbiota that is characterized by expanded

Prevotellaceae and TM7 [38]. Indeed, the abundance of

Prevotellaceae and TM7 have been implicated in human

IBD [39, 40]. Mice deficient in ASC, caspase-1, or IL-18

also exhibit a significant increase in Prevotellaceae in their

intestinal commensal microbiota, indicating the impact of

NLRP6 and other inflammasome components on the

commensal microbiota. More importantly, wild-type mice

co-housed with NLRP6-/- mice acquire susceptibility to

DSS-induced colitis characterized by the alteration of the

microbiota toward a profile that is similar to the co-housed

knockout mice, suggesting that the colitogenic microbiota

of the NLRP6-/- mice is horizontally transmissible [38].

NLRP3 or NLRP6 deficiency in IECs lead to reduced IL-

18 production by the IECs, and IL-18- or IL-18 receptor-

deficient mice are susceptible to DSS-induced colitis [41,

42]. IEC-specific IL-18-deficient mice also display high

susceptibility to DSS-induced colitis accompanied by col-

itogenic-skewed microbiota. However, the commensal

microbiota profile in these mice is distinct from that of

NLRP6-, ASC- or caspase-1-deficient mice [38], suggest-

ing an additional NLRP6-mediated and IL-18-independent

pathway of microflora regulation. Although the link

between NLRP6 deficiency in IECs and the shift toward a

colitogenic community is currently unknown, the studies

above showed that host’s microbiota-sensing NLRPs have

a critical role in maintaining the balance of commensal

components.

Dendritic cells (DCs)

DCs are specialized antigen-presenting cells that have a

critical role in activating T cells by presenting bacterial or

food-derived antigens in both steady-state and infectious/

inflammatory conditions. Although different groups dif-

ferently classified intestinal lamina propria DCs according

to the use of different surface markers, at least two popu-

lations (CD103? DCs and CX3CR1?CD103- DCs) are

consistent among the different classification methods.

These two populations are differentiated from different

precursors [43, 44], localize differently in the intestinal

lamina propria, and have been reported to have different

functions [45, 46]. The CX3CR1?CD103- DCs are

derived from circulating Ly6Chi monocytes [44], and

extend their dendrites to penetrate the IEC layer and to

sample antigens from pathogenic and commensal bacteria

[45, 47]. The extensions of the CX3CR1? DCs markedly

increase upon infection with pathogens, such as Salmo-

nella, and MyD88-dependent TLR signaling by non-

hematopoietic (epithelial) elements has an important role in

the DC extension response [48]. Several studies show that

intestinal lamina propria CX3CR1? DCs induce Th17 cells

[49, 50]. CD70?CD11c?CX3CR1? DCs expresses ATP

receptors, and can differentiate naı̈ve T cells into Th17

cells in the presence of ATP [50]. On the other hand,

intestinal CX3CR1high CD11b? CD11c? cells have

recently been shown to inhibit CD4? T cell proliferation in

a cell contact-dependent manner and prevent T cell-

dependent colitis [51]. Therefore, CX3CR1? cells include

several functionally distinct subsets.

The CD103? DCs arise from pre-DCs [44], localize in

the core of the villi and migrate to the draining mesenteric

LNs [46], where they induce the gut-homing receptor

CCR9 and a4b7-integrin on the responding T cells [52]. As

discussed later, the CD103? DCs may contribute to the

accumulation of Treg cells induced by the gut microbiota

in the steady-state colon. Indeed, CD103? DCs express

retinal dehydrogenase to synthesize retinoic acid, which in

cooperation with TGF-b induces the development of Treg

cells [53, 54]. In addition to CD103? DCs, mucosal mac-

rophages have been shown to drive the generation of

Foxp3? Treg cells within the lamina propria [55]. On the

other hand, the CD103? DCs from colitic mice exhibit

impaired induction of Treg cells and instead favor the

induction of IFN-c-producing CD4? T cells [56]. Further-

more, a recent study showed that mice with the DC-specific

ablation of Notch2 exhibit a loss of CD11b?CD103? DCs

in the intestinal lamina propria and fewer Th17 cells than

wild-type mice, indicating that CD103? DCs are involved

in the development of Th17 cells in the intestine [57].

These reports suggest that CD103? DCs functionally adapt

to different environmental conditions.

Interestingly, GF mice exhibit reduced CX3CR1?

CD103- DCs in the colon lamina propria compared with

SPF mice, although the number of CD103? DCs remains

unchanged [58]. Moreover, the number of extended den-

drites on CX3CR1?CD103- DCs is greatly decreased in

GF mice or antibiotic-treated mice [58]. Therefore, the

presence of the gut microbiota affects the populations and

functions of DCs, thereby affecting the adaptive immune

system in the intestine.
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IgA-producing cells

More than 80 % of the body’s effector B cells are known to

reside in the intestinal mucosa. B cells develop in the bone

marrow and subsequently migrate to the peripheral lym-

phoid organs, including GALT such as Payer’s patches

(PPs) and isolated lymphoid follicles (ILFs). In these

organs, the B cells mature through two processes, somatic

hypermutation (SHM) and class switch recombination

(CSR). The B cells acquire further diversity, and, subse-

quently, high-affinity immunoglobulin (Ig) mutants are

selected. IgA is the dominant Ig isotype in the intestinal

mucosa. Oral administration of cholera toxin induces spe-

cific IgA with high affinity; thus, this experimental system

has been frequently used to study IgA responses in vivo

[59]. The induction of cholera toxin-specific IgA is T cell-

dependent (TD) because T cell- or MHC class II-deficient

mice have a defect in the specific IgA response [60, 61]. In

contrast, mice with a deficiency of T cells or MHC class II

and CD40-deficient mice still have relatively abundant

intestinal IgA [60], suggesting the existence of T cell-

independent (TI) IgA. Upon TLR stimulation, myeloid and

epithelial cells produce B cell activating factor (BAFF, also

known as BLyS) and/or APRIL, which promote CSR to

IgA by binding the receptors, BAFF-R and transmembrane

activator, and calcium modulator and cyclophilin ligand

interactor (TACI), which are expressed on B cells [32, 33,

62]. Given that IgA production via the TD pathway takes

several days following antigen encounter, a faster, TI IgA

response may be required to compensate for the temporal

gap in the intestinal mucosa, which is constantly exposed

to the microbiota. Intestinal IgA-producing plasma cells are

10- to 100-fold lower in GF mice than in SPF mice, indi-

cating that the gut microbiota promotes the generation of

IgA-producing cells [7].

IgA is secreted as a dimer or oligomer, and this dimer/

oligomer binds the polymeric Ig receptor (pIgR) expressed

on the basolateral surface of IECs, resulting in basolateral-

to-apical transcytosis of secretory IgA (SIgA) to directly

neutralize microbial toxins or pathogens [63]. PIgR-defi-

cient mice, which lack the ability to transport IgA into the

intestinal lumen, display low-grade enteropathy [64, 65],

implying that IgA contributes to mucosal protection from

commensal bacteria. Furthermore, the lack of activation-

induced cytidine deaminase (AID), which results in a

defect in CSR and thereby a lack of IgA-producing plasma

cells in the intestine, leads to the excessive proliferation of

anaerobic bacteria in the small intestine, particularly the

segmented filamentous bacteria (SFB), accompanied by the

hyperplasia of ILFs [66, 67]. The addition of IgA prevents

the aberrant SFB expansion and ILF hyperplasia in the

small intestine in AID-deficient mice. Importantly, mice

expressing AIDG23S, which have normal levels of IgA but

have a defect in SHM, have large amounts of intestinal

bacteria, particularly anaerobic bacteria, that is accompa-

nied by germinal center B cell hyperplasia in gut lymphoid

tissues [68]. Therefore, TD high-affinity IgA production in

GALTs is indeed required for gut homeostasis.

IL-17-producing cells, including Th17 cells and innate

lymphoid cells

Th17 cells are characterized by the production of IL-17A

(also referred to as IL-17), IL-17F, and IL-22. Both the

small and large intestines of SPF mice harbor far more

Th17 cells under steady-state conditions compared with

other lymphoid or non-lymphoid organs [50]. GF mice

have markedly fewer Th17 cells than SPF mice, suggesting

a specific and important role of Th17 cells in intestinal

mucosa immunity in the context of co-existence with

commensal bacteria. In addition to Th17 cells, cd T cells

and several different innate lymphoid cell (ILC) popula-

tions are producers of high levels of IL-17 in the intestines.

These cells share many characteristics with Th17 cells: the

cytokines they produce, triggers for activation, and tran-

scription factors required for their development.

Upon encountering antigens, naı̈ve CD4 T cells are

activated through the T cell receptor (TCR) and undergo

differentiation into different types of effector Th cells in

the presence of specific cytokines that are produced by

innate cells. Th17 cells are differentiated in the presence of

TGF-b and IL-6. TGF-b and IL-6 activate the signal

transducer and activator of transcription 3 (STAT3), which

induces the retinoic acid receptor-related orphan receptor

gamma t (RORct). RORct is a master regulator that is

essential for Th17 differentiation [69]. Other transcription

factors, such as aryl hydrocarbon receptor (Ahr) and basic

leucine zipper transcription factor ATF-like (BATF), also

contribute to IL-17 differentiation [70, 71]. During differ-

entiation, Th17 cells proliferate in response to IL-21, which

is produced by the Th17 cells themselves [72]. IL-21 also

induces the IL-23 and IL-1 receptors, which allow Th17

cells to be responsive to IL-23 and IL-1b [73]. Therefore,

in the presence of highly proinflammatory cytokines (such

as IL-23 and IL-1b), Th17 cells are activated to become

fully inflammatory cells.

cd T cells are constitutively activated and have the

potential to produce IL-17 [74]. Mice deficient in fully

functional Treg cells develop spontaneous colitis accom-

panied by an expansion of cd T cells, including an IL-17-

expressing population [75, 76]. The disease is abrogated in

cd T cell-deficient and antibiotic-treated mice, suggesting

that the activation of cd T cells by commensal bacteria is

responsible for the colitis [76]. Therefore, Treg cells

restrain the excessive activation of cd T cells so as not to

lead to damage of the host tissue. On the other hand,
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TCRd-/- mice exhibit more severe colitis induced by DSS

or 2,4,6-trinitrobenzene sulfonic acid (TNBS), suggesting

that cd T cells also have an important role in immuno-

regulation [77, 78]. Therefore, cd T cells are likely

constitutively activated by commensal bacteria to prevent

the invasion of intestinal bacteria and to maintain the front-

line mucosal barrier system.

Several ILCs have been identified as another important

source of IL-17 in the intestines. When an agonistic anti-

body against CD40 is injected into recombinase-activating

gene (RAG)-deficient mice, which lack lymphocytes,

including Th17 cells and cdT cells, the mice develop colitis

accompanied by a local elevation in IL-23 and IL-17 [79].

IL-23p40 and RAG double-deficient mice do not develop

colitis upon the same treatment, suggesting that ILCs other

than Th17 cells and cdT cells produce IL-17 upon IL-23

stimulation in the intestine. Following this report, several

new IL-17-producing ILC populations have been identified

in the lungs, skin, and intestines, i.e., the organs that are

continuously exposed to the environment [80]. New pop-

ulations of IL-17-producing ILCs, including CD4?

lymphoid tissue inducer (LTi) cells and Thy1?S-

CA1?CD3-CD4-c-KIT- cells, have been characterized.

These IL-17-producing ILCs share common characteristics

with differentiated Th17 cells. All the IL-17-producing

ILCs require RORct for their differentiation [69, 81–83].

Aryl hydrocarbon receptor is also expressed in cd T cells,

CD4? LTi cells, and Thy1?SCA1?CD3-CD4-c-KIT-

cells [70, 81, 84]. Many IL-17-producing ILCs constitu-

tively express the IL-23 receptor and the IL-1b receptor,

both of which allow them to produce IL-17 or IL-22 rap-

idly in the presence of IL-23 or IL-1b [81, 85, 86].

Thy1?SCA1?CD3-CD4-c-KIT- cells accumulate and

express IL-17 in the colon lamina propria in RAG-deficient

mice infected with Helicobacter hepaticus, an innate colitis

model [83]. The cells markedly expand and express IL-17,

IL-22, and IFN-c during inflammation [83]. As a similar

cell population to mouse Thy1?SCA1?CD3-CD4-

c-KIT- cells, CD3-CD19-CD14-CD16-CD56-CD127?

cells have been reported to be increased in the inflamed

ileum and colon of patients with Crohn’s disease [87].

CD3-NKp46? cells, which are another RORct-expressing

ILC population, are present in high numbers in the intestine

and express IL-22, but not IL-17. Currently, how these

newly discovered IL-17- and IL-22-producing ILCs con-

tribute to intestinal inflammation or homeostasis remains

largely unknown.

Th17 cells, IL-17-producing ILCs, and their associated

factors (such as IL-23, IL-17, IL-17F, IL-22, or RORct)

have been implicated in autoimmune diseases such as

rheumatoid arthritis, multiple sclerosis, uveitis, and IBD.

Indeed, inflamed colon tissues in IBD patients highly

express IL-23 [88], and a genome-wide study has revealed

that IL23R gene is a susceptibility gene for IBD [89].

However, many studies have also shown that IL-17-pro-

ducing cells have a critical role in protection rather than

inflammation in the context of infection [90]. Furthermore,

the transfer of IL-17A-deficient CD45RBhi CD4? T cells

has been shown to elicit a more aggressive colitis in

lymphopenic mice than the transfer of wild-type cells [91],

suggesting that IL-17 mediates a protective effect in

intestinal inflammation. Although IL-17 has been the most

intensively studied of the Th17 cytokines, the functions of

other cytokines, including IL-17F and IL-22, are becoming

apparent. IL-22 receptor expression is exclusively restric-

ted to non-hematopoietic cells, particularly IECs, such that

IL-22 promotes the host defense and tissue protection

activities of IECs, such as the secretion of AMMs. IL-22

has protective roles in T cell transfer-induced colitis and

DSS-induced colitis; transfer of IL-22-deficient naı̈ve T

cells induces more severe colitis than wild-type T cell

transfer, and IL-22-deficient mice are more susceptible to

DSS-induced colitis than wild-type mice [92]. During

infection with the enteric pathogen C. rodentium, IL-22

protects the host by promoting the production of RegIIIb
and RegIIIc by IECs [93]. IL-23p40-deficient mice are

severely impaired in IL-22 production, leading to high

susceptibility to C. rodentium infection [93]. These find-

ings suggest that IL-22 has a more protective than pro-

inflammatory role in the intestinal mucosa. In contrast,

IL-17F-deficient mice exhibit milder DSS-induced colitis

than wild-type mice, whereas IL-17-deficient mice have

more severe colitis than wild-type mice [94], suggesting

that IL-17F and IL-17 are pro-inflammatory and anti-

inflammatory, respectively, during DSS-induced colitis.

The individual cytokines associated with Th17 cells and

IL-17-producing ILCs are probably produced at different

levels and with different kinetics, which are dependent on

the conditions of the mucosa, i.e., whether it is in a steady,

inflammatory or bacteria-intruded state.

Regulatory T (Treg) cells

Multiple regulatory lymphoid and myeloid cell subsets are

present in the intestinal mucosa. Among them, Foxp3?

Treg cells are essential for maintaining peripheral tolerance

and for preventing autoimmune and inflammatory diseases.

Foxp3 is a key transcription factor that is required for the

development, maintenance, and function of Treg cells

[95, 96]. Human IPEX (immune dysregulation, polyendo-

crinopathy, enteropathy, X-linked) patients and scurfy

mice, which harbor mutations in the Foxp3 gene on the

X-chromosome, exhibit multi-organ inflammation via

massive infiltration of immune cells [97–99]. The two

subsets of Foxp3? Treg cells differ in terms of the location

of their differentiation: natural Foxp3? Treg (nTreg) cells
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are differentiated in the thymus, and induced Foxp3? Treg

(iTreg) cells are differentiated in the periphery. Although a

small fraction of Foxp3? Treg cells are thought to be iTreg

cells according to TCR sequence analysis [100–103], their

role in physiological conditions is still unclear. The in vivo

conversion of naı̈ve cells has been observed in only a

limited number of models [104–107]. Most of the models

utilize foreign antigen-specific TCR-transgenic mice, such

as OVA-specific TCR-transgenic mice crossed to RAG-/-

mice. These mice have TCRab? T cells that express only a

single clonotype TCR but have no Treg cells because of the

lack of an endogenous antigen. When the antigen is

administered by feeding, injection, or transplantation,

antigen-specific iTreg cells emerge from naı̈ve CD4? T

cells. For example, when OVA-specific TCR transgenic

RAG-/- mice are fed with OVA, Foxp3? Treg cells appear

in the mesenteric lymph node or the small intestine lamina

propria [104, 107]. iTreg cells are found in lymphopenic

mice, such as RAG-/- or TCRa-/- mice, after naı̈ve T

cells are transferred because the lymphopenic animals have

an empty niche for Treg cells and, therefore, allow the

conversion of naı̈ve T cells into Treg cells to fill the niche

[108].

Among several mechanisms for the regulation of other

immune cells by Treg cells [109], IL-10 production by

Treg cells has a critical role in maintaining intestinal

immune tolerance. This role is demonstrated in IL-10-

deficient or IL-10 receptor (IL-10R)-deficient mice, which

exhibit spontaneous colitis, but not systemic autoimmune

diseases [110]. The blockade of IL-10 signals skews

intestinal CD4? T cells toward the Th1 and Th17 lineages

in commensal bacteria-colonized mice [111], suggesting

that IL-10 restrains the basal activation of these Th cell

subsets in the steady state. On the basis of the report that

the genetic ablation of IL-10 specifically in Foxp3? Treg

cells elicits colitis, IL-10 produced by Treg cells has a

critical role in intestinal homeostasis [112]. However, the

incidence of colitis in these mice is slightly less and the

onset is delayed compared with IL-10-/- mice, suggesting

that IL-10 produced by other cells also contributes to the

maintenance of intestinal homeostasis. Indeed, CD11b?F4/

80?CD11c- macrophages in the small intestinal lamina

propria are capable of producing IL-10 and involved in

maintenance of mucosal homeostasis [49]. Furthermore,

patients lacking a functional IL-10R develop colitis with an

earlier onset and a higher penetrance compared with IPEX

patients [113]. Therefore, IL-10 secretion by both Treg and

non-Treg cells likely has a role in the control of intestinal

immune homeostasis. Mice with a Treg-specific ablation of

IL-10R or STAT3, which is a downstream signaling mol-

ecule of the IL-10R, develop spontaneous colitis with

dysregulated Th17 cell responses [114, 115]. These results

indicate that IL-10 signaling in Treg cells is critical for

suppressing Th17 cells. IL-10R is also expressed by

intestinal Th17 cells and required for the suppression of

excess Th17 responses [116]. CTLA-4, which is highly

expressed on intestinal Treg cells [9], is another molecule

that is involved in intestinal homeostasis. On the basis of

studies showing that CTLA-4 blockade abolishes Treg cell-

mediated inhibition of colitis in the CD45RBhiCD4? T cell

transfer colitis model [117], and that the clinical applica-

tion of an anti-CTLA-4 antibody (tremelimumab) for

cancer treatment induces colitis as a side effect [118],

CTLA-4 appears to be an indispensable molecule for

maintaining intestinal homeostasis.

Intestinal Treg cells have suppressive activity against

not only effector CD4? T cells but also other types of cells.

As mentioned above, Treg cells regulate TCRcd T cells at

steady state to maintain enteric immune tolerance [76].

Colon Foxp3? Treg cells facilitate IgA responses to the

microbiota-derived antigen flagellin, which is one of the

TLR5 ligands [119]. This IgA induction could be another

mechanism for the maintenance of intestinal homeostasis

through Treg cells. Thus, intestinal Treg cells appear to

contribute greatly to intestinal homeostasis via various

mechanisms and via targeting different cell subsets.

Immune regulation by the gut microbiota

Studies using GF and gnotobiotic animals have revealed

the enormous impact of commensal bacteria on a host’s

systemic immune system. GF mice have smaller PPs and

ILFs with fewer germinal centers, decreased IgA? cells

and lamina propria T cells, and reduced production of

AMMs by IECs compared with SPF mice [21]. All these

observations suggest that active immune responses occur in

the intestinal mucosa in the presence of the commensal

microbiota. Although the purpose of the ‘classical’ immune

response is to eliminate pathogens to protect the host, the

active immune response in the steady-state intestine is

somehow oriented toward co-existence with the commen-

sal microbiota. In other words, host immune cells likely

function to contain the commensal bacteria to local sites

and regulate local inflammation possibly elicited by the

commensal bacteria.

Because more than half the intestinal microbiota is not

culturable, the composition of the intestinal microbiota was

until recently poorly defined. Culture-independent bacterial

sequencing has now been extended to include metage-

nomics, which refers to studies of the structures and

functions of microbial communities as well as their inter-

actions with the habitats they occupy [120]. This analysis

includes the sequencing of microbial 16S ribosomal DNA

(rDNA) and the genome to determine the lineage and genes

of the microbiota composing the community, and also
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includes characterizing the community’s expressed RNA

and protein products and metabolic networks [120]. Based

on this concept, the international human microbiome pro-

ject has been initiated. This project has revealed that most

bacteria belong to two phyla, Firmicutes and Bacteroidetes,

which dominate among all the human adult commensal

bacteria analyzed, and that enormous diversity exists in the

types and proportions of species within the phyla [120].

The results also revealed considerable interpersonal varia-

tion [121–123].

Accumulating evidence suggests that deviations in the

balance of the composition of commensal bacteria affect

local and systemic diseases. Although the precise mecha-

nisms of IBD remain unclear, the gut microbiota are

thought to contribute to pathogenesis [5]. Several studies

attempting to identify the causative microbiota composi-

tion for IBD have reported that the phylum Firmicutes

appeared with less frequency in patients than healthy

controls [122, 124–126]. Given that the samples were from

patients in whom disease was established, whether the

reduction in Firmicutes is a cause or a consequence of IBD

is unclear.

IL-10-/- mice are often used as an IBD model, which

have no colitis when they are raised under GF conditions

[127]. This finding clearly demonstrates that commensal

bacteria contribute to intestinal inflammation. In another

IBD model, T-bet-/-RAG2-/- (TRUC) mice develop

spontaneous colitis, which is horizontally and vertically

transmissible to wild-type mice when they are co-housed

with the TRUC mice [128], indicating that altered com-

mensal bacteria (dysbiosis) alone have the potential to

cause intestinal inflammation [128]. More recent studies

have shown that mice deficient in NLRP6 have altered

commensal bacteria and exhibit high sensitivity to DSS-

induced colitis. The colitogenic microbiota is also trans-

missible to wild-type mice [38]. A 16S rDNA-based

analysis revealed that TRUC mice have an increase in

Klebsiella pneumoniae and Proteus mirabilis whereas

NLRP6-deficient mice have an increase in Prevotellaceae

and TM7 in their fecal microbiota [38, 129]. Collectively,

these findings imply that the composition of the microbiota

can dictate the status of local host immune system.

Induction of Th17 cells by segmented filamentous

bacteria

Segmented filamentous bacteria (SFB) are yet-to-be cul-

tured, Gram-positive, and spore-forming bacteria that are

commonly considered to be nonpathogenic. SFB are host-

specific members of the gut microbiota in numerous spe-

cies, including mammals, birds, fishes, and insects

(although whether SFB are present in the human intestine

is currently unclear). Very recently, three independent

groups reported the complete genome sequence of SFB

indigenous to mice, and revealed that the bacteria have a

highly reduced genome and are highly dependent on and

utilize the host for nutrition and metabolism [130–132].

SFB colonize mainly the small intestine and exhibit a

characteristic long filamentous morphology comprising

multiple segments with well-defined septa. Each bacterium

is likely to originate from a single, holdfast-bearing cell

that tightly adheres to, and even embeds itself in, the

microvilli on the IEC surface. The attachment of SFB

induces morphological changes in the IECs, such as the

accumulation of actin around the attachment site [133,

134]. SFB activate IECs to induce MHC class II molecules

and fucosyltransferase 2 (Fut2) [135]. Fut2 fucosylates host

glycoproteins on the IECs, such as asialo GM1 glycolipids.

SFB are also potent stimuli of the IgA response and of the

recruitment of TCRab? IELs in the small intestine [136].

C57BL/6 mice from Taconic Farms have a substantial

population of Th17 in the small intestine lamina propria

whereas the mice from the Jackson Laboratory have only a

few [12]. By comparing the components of the intestinal

microbiota between the mice from the two vendors, SFB

were found to be responsible for the induction of Th17

cells in the small intestine [137]. This finding was con-

firmed by the accumulation of Th17 cells in the small

intestines of SFB-monocolonized mice [11, 137]. Further-

more, transgenic mice expressing the human antimicrobial

peptide a-defensin, which exhibit the loss of SFB of the

intestinal microbiota, have fewer Th17 cells in the lamina

propria of the small intestine [138]. The mechanisms by

which intestinal Th17 cells are induced by SFB are not at

present clear. TGF-b and IL-6, which are critical for the

early stages of differentiation of Th17 cells, are likely to be

required for the accumulation of Th17 in the small intestine

in SPF mice [12]. However, how TGF-b and IL-6 are

induced by SFB colonization remains unclear. Given that

SFB directly attach to IECs and induce the cytoplasmic

accumulation of polymerized actin in IECs [139], SFB may

have specific mechanisms for inducing TGF-b and IL-6

through direct interaction with IECs.

Induction of Treg cells by the commensal microbiota

Foxp3? Treg cells distribute to essentially all organs, and

the frequencies of Foxp3? cells are approximately 10 %

within the CD4? cell subset. In contrast, the frequency of

Foxp3? Treg cells in the gut lamina propria is notably

higher ([30 % within CD4? T cell) than in other organs

[9]. Therefore, the intestinal microbiota likely has a critical

role in the accumulation of intestinal Treg cells. Indeed, we

have shown that, in the colon lamina propria, Treg cell

numbers decreased in GF mice and antibiotic-treated mice

[9]. However, the analyses of the number of colon Treg
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cells in various studies have provided discordant results.

Some studies, including those from our laboratory, show a

decrease in GF mice [9, 140, 141], and other studies show

normal numbers of Treg cells in GF mice [111, 142–144]

relative to SPF mice. These different results might be

produced by different methods of isolating lymphocytes

from gut lamina propria. The discrepancies could also be

attributed to differences in the components of the intestinal

microbiota in mice among various SPF animal facilities.

Furthermore, there might be differences in the stringency

of cleanliness between GF facilities. Importantly, many

reports have consistently shown that the percentage and

number of Helios-negative Tregs was markedly reduced in

GF mice compared with SPF mice [9, 111, 143]. In SPF

mice, Helios-negative and Helios-positive cells are present

at approximately a 1:1 ratio within colon Treg cells

[9, 111]. Helios is a putative marker for thymically derived

nTreg cells [145]. Thus, Helios- Treg cells in the colon

lamina propria may be iTreg cells. Although more detailed

studies are required to fully characterize Helios-negative

Treg cells in the intestine (discussed later), the presence of

the microbiota likely affects this population of Treg cells.

The human symbiont Bacteroides fragilis is commonly

isolated from human fecal samples [146, 147]. Coloniza-

tion of GF mice with B. fragilis suppresses colitis by the

opportunistic pathogen H. hepatics. This suppression is

dependent on polysaccharide A (PSA), which is a com-

ponent of B. fragilis [13]. Administration of purified PSA is

sufficient to increase IL-10 production by Treg cells and to

suppress IL-17 production during intestinal inflammation

[142, 148]. The consumption of another human commensal

species, Bifidobacterium infantis, also increases Foxp3?

Treg cells during pathogenic Salmonella typhimurium

infection, leading to a reduction in disease severity and the

systemic translocation of the bacteria with an attenuation of

local NF-jB activation [14].

Among the microbiota that is indigenous to the murine

colon, spore-forming components, particularly those of the

genus Clostridium belonging to clusters XIVa and IV, are

potent inducers of colon Treg cells [9]. Some species of

Clostridium, such as C. perfringens (a member of Clos-

tridium cluster I), C. difficile (a member of cluster XI), and

C. tetani (a member of cluster I), produce toxins and are

pathogenic, but most of the Clostridium clusters XVIa and

IV maintain a commensal relationship with the host. The

colonization of GF mice with a defined mixture of 46

strains of Clostridium clusters XIVa and IV, which were

originally isolated from the chloroform-treated fecal

material (sporulated fraction) of conventionally reared

mice [149], is sufficient to induce Treg cells [9]. Impor-

tantly, the 46 strains of Clostridium spp. do not include

pathogenic clostridia, such as C. difficile. Perhaps consis-

tent with the importance of commensal Clostridium

clusters XIVa and IV, colonization with altered Schaedler

flora (ASF), which includes C. clostridioforme (Clostrid-

ium cluster XIVa), results in Treg cell accumulation in the

colon LP [111]. Similar to mice reared in SPF conditions,

Treg cells in the colon of mice colonized with Clostridium

clusters XIVa and IV contain a large number of Helios-

Foxp3? cells [9]. Therefore, Clostridium clusters XIVa and

IV may induce iTreg cell conversion in the colon. In

addition, a large subset of the Treg cells induced by col-

onization by Clostridium clusters XIVa and IV expresses

high levels of IL-10 and CTLA-4 [9]. Therefore, Clos-

tridium clusters XIVa and IV may influence the qualitative

properties of colon Treg cells in addition to the quantity

[9].

The mechanisms by which certain bacteria induce the

intestinal accumulation of Treg cells are still unknown.

Given that Helios is a candidate marker for nTreg cells

[145], conversion from local naı̈ve CD4 T cells may be

responsible for the accumulation of Helios-Foxp3? Treg

cells in the colon (Fig. 1a). In addition, the intestinal

microenvironment is rich in TGF-b and bacteria-derived

antigens and, therefore, might promote iTreg cell induction

(Fig. 1a). Alternatively, Helios-Foxp3? Treg cells could

be a further activated or differentiated subset of thymus-

derived nTreg cells that pre-exist in the colon (Fig. 1b).

The steady-state colon microenvironment might induce

nTreg cells to differentiate into IL-10-producing Treg cells,

resulting in the downregulation of Helios. Another possi-

bility is that the microbiota activates the host IECs or other

cells to produce chemokines to recruit Helios- Treg cells

into the colon lamina propria (Fig. 1c). In support of the

first scenario (the induction of iTreg cells in the colon), one

recent study provided evidence that many clones of Treg

cells that localize specifically in the colon react to the

intestinal bacterial content in vitro [143]. Therefore, spe-

cific commensal bacteria likely induce naı̈ve CD4? T cells

to differentiate into antigen-specific colon Treg cells that,

presumably, enforce immune system tolerance toward

those bacteria.

Impacts of commensal bacteria on systemic immune

responses and diseases

Several models of autoimmunity have been tested in GF

conditions to assess the influence of commensal bacteria

on the diseases. Non-obese diabetic (NOD) mice and

BioBreeding rats, which are models of type 1 diabetes

(T1D), display accelerated and severe diabetes under GF

conditions [150, 151]. In contrast, myelin oligodendro-

cyte glycoprotein (MOG)-specific TCR-transgenic mice,

which spontaneously develop experimental autoimmune

encephalomyelitis (EAE) in a model of multiple sclero-

sis, exhibit decreased severity of the disease under GF
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conditions [10]. The commensal bacteria-dependent acti-

vation of MOG-specific CD4? T cells leads to an

increase in MOG-specific antibody production by the

draining lymph node B cells as a mechanism of altering

the severity of disease by commensal bacteria [10]. For

rheumatoid arthritis, different models yield different

outcomes of the disease related to colonization by com-

mensal bacteria. GF conditions ameliorate arthritis in

IL-1 receptor antagonist-deficient mice and KBxN mice,

both of which develop spontaneous arthritis under SPF

conditions [152, 153]. In addition, GF mice have slightly

less severe disease in an adjuvant-based arthritis model

than SPF mice [154]. Collectively, these results imply

that commensal bacteria affect autoimmune disease and

that the outcome differs between the diseases.

Because SFB induce Th17 cells in the small intestine,

several studies have focused on the influence of the bac-

teria on infections or autoimmune diseases. SFB-colonized

mice are resistant to infection with C. rodentium [137]. In

KBxN mice, the disease is attenuated under GF conditions,

and this attenuation is accompanied by a loss in autoreac-

tive IgG production by B cells that results from a decrease

in Th17 cells [153]. Monocolonization with SFB reverts

arthritis through an increase in splenic Th17 cells and IgG

production [153]. Similar to the KBxN arthritis model, the

severity of EAE is greatly attenuated under GF conditions

[10, 155]. However, in SFB-monocolonized mice, the level

of infiltration of Th17 cells in the spinal cord and the

disease severity are equivalent to these measures in SPF

mice [155]. These two autoimmune disease models (KBxN

arthritis and EAE) have been shown to require Th17 cells

for disease development, because mice with an IL-17

deficiency or subjected to IL-17-blocking treatment display

attenuated disease symptoms [153, 156]. Therefore, SFB

likely induce Th17 cells in the intestine, and these cells

then migrate to, and accumulate in, the target organs of the

autoimmune disease. NOD mice spontaneously develop a

disease similar to T1D, which is a Th1-mediated disease.

There is a significant difference in incidence of disease

development between SFB-colonized and uncolonized

NOD mice [157]. SFB-colonized NOD mice develop dia-

betes at a greatly reduced frequency. Interestingly, SFB

colonization does not have an effect on the development of

insulitis [157], suggesting that SFB colonization cannot

overcome the genetic influence on the susceptibility to

insulitis. However, the bacteria can modify the progress of

the disease, presumably by affecting the progress of insu-

litis and/or the metabolism of insulin and glucose [157]. As

a mechanism, the report suggests that SFB colonization

directs the Th1/Th17 balance toward a Th17-skewed

response and consequently suppresses the Th1 response

[157]. However, how intestinal Th17 cell accumulation

elicits a systemic Th17 response in the EAE, arthritis and

T1D models remains unclear.

iTregNaïve T Activated
nTreg

nTreg

Systemic circulation

Commensal bacteria

CD103+

DCs

a b c

Colonic microenvironment 
induced by Clostridium spp.TGF-

Helios-

IL-10+

Recruitment

Helios-

IL-10+

Chemokines

Helios-

IL-10+ nTreg/
iTreg
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Fig. 1 Possible mechanisms for the induction of Helios- IL-10?

Treg cells by commensal bacteria in the colon lamina propria. a Upon

colonization with commensal bacteria, the colon epithelial cells

produce TGF-b, which then contributes to the conversion of naive

Treg cells to iTreg cells. Retinoic acid (RA) production by CD103?

DCs in the lamina propria may also contribute to the conversion.

b Alternatively, the colon microenvironment that is generated in

response to the commensal microbiota may contribute to the

activation, differentiation, and proliferation of nTreg cells to become

Helios- IL-10? Treg cells. c Another possibility is that upon

interaction with the microbiota, IECs or other intestinal cells produce

chemokines that recruit Helios- IL-10? Treg cells from other organs

into the colon lamina propria
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Oral inoculation of SPF mice with 46 strains of Clos-

tridium clusters XIVa and IV decreased the severity of

DSS-induced colitis, and the Th2 response, including

OVA-specific IgE production, upon immunization [9]. In

humans, a reduction in the number of Faecalibacterium

prausnitzii, which is a member of Clostridium cluster IV,

was shown to be associated with a high risk of postoper-

ative recurrence of Crohn’s disease [158]. The supernatants

from F. prausnitzii cultures increase the production of IL-

10 by peripheral blood mononuclear cells in vitro. In

addition, the proportion of Clostridium clusters XIVa and

IV in the fecal community was shown to be smaller in IBD

patients than in healthy controls [122]. These reports raise

the possibility that the Clostridium-dependent constitutive

induction of Treg cells and their expression of IL-10 and

CTLA-4 may contribute to the suppression of local and

systemic autoimmunity and deleterious inflammation in

humans. They further suggest that the prophylactic

administration of human-gut-resident Clostridium clusters

XIVa and IV could reduce susceptibility to chronic disease.

However, it still remains unclear whether the defects in

Treg cells actually contribute to human IBD. Interestingly,

serological analysis of colitic C3H/HeJBir mice has

revealed that a flagellin protein called CBir1, which con-

tains sequences related to the flagellins of Clostridium

cluster XIVa, is the dominant antigen responsible for the

colitis. The adoptive transfer of a CBir1 flagellin-specific

CD4? T cell line into immunodeficient mice induced

colitis in the recipients [159]. Furthermore, Crohn’s disease

patients have an increased number of CD4? T cells that are

reactive to CBir1 flagellin [160]. Therefore, depending on

the circumstances, clostridia-derived antigens could be

causative factors for inflammatory diseases.

Concluding remarks

Considerable progress has been made in improving our

understanding of intestine-residing immune cell popula-

tions and the influences of the composition of the gut

microbiota on the immune system. Specific species of the

gut microbiota affect the numbers and activities of intes-

tinal immune cells. However, we are still far from

achieving a comprehensive understanding of the mecha-

nisms underlying how IECs and immune cells, including

the newly discovered cells, collaborate to protect the host

from pathogenic bacteria and at the same time develop

tolerance to commensal bacteria. It also remains unclear

whether and how the intestinal immune cells affect the

systemic immune responses. In addition, it is also unclear

how the host immune system maintains the diversity and

balance of the microbiota. More intensive studies will be

required to answer these questions.
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