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Abstract Gap junctions consist of arrays of intercellular

channels composed of integral membrane proteins called

connexin in vertebrates. Gap junction channels regulate the

passage of ions and biological molecules between adjacent cells

and, therefore, are critically important in many biological

activities, including development, differentiation, neural acti-

vity, and immune response. Mutations in connexin genes are

associated with several human diseases, such as neurodegen-

erative disease, skin disease, deafness, and developmental

abnormalities. The activity of gap junction channels is regulated

by the membrane voltage, intracellular microenvironment,

interaction with other proteins, and phosphorylation. Each

connexin channel has its own property for conductance and

molecular permeability. A number of studies have tried to

reveal the molecular architecture of the channel pore that should

confer the connexin-specific permeability/selectivity properties

and molecular basis for the gating and regulation. In this review,

we give an overview of structural studies and describe the

structural and functional relationship of gap junction channels.
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The general function of gap junctions

Intercellular signaling is fundamental to the complex bio-

logical functions of multicellular organisms such as neural

transmission, immune reaction, or reproductive function

[1]. Physiological functions that are critically dependent on

this intracellular signaling include synaptic transmission,

hormone-receptor signaling, and cell adhesion. These

processes are all mediated by membrane proteins such as

ion channels, G-protein coupled receptors (GPCRs), or

receptor tyrosine kinases. Gap junctions are, however,

unique in that they mediate intercellular signals by con-

necting the cytoplasms of two neighboring cells. A gap

junction contains clusters of tens to thousands of intercel-

lular channels called ‘‘gap junction channels,’’ each of

which is formed by the end-to-end docking of two hemi-

channels, also referred to as ‘‘connexons.’’ Each connexon

is composed of six connexin subunits surrounding the

central pore. Connexin has been predicted to have four

transmembrane alpha helices and two extracellular loops,

each of which has three highly conserved cysteine residues.

These cysteines make disulfide bonds between the loops

[2], which are essential for the formation of functional

gap junction channel [3]. There are 21 connexin (Cx)

isoforms in the human proteome with different physio-

logical properties and regulation responses. Some of them

are expressed in a single cell type and form heteromeric

(more than two different connexins in a connexon) or

heterotypic (a gap junction channel with different con-

nexons) channels, conferring further diversity in their

composition and function.

Gap junctions are expressed in a wide variety of cells,

organs, and tissues, and play essential roles in a variety of

biological processes. In the developing brain, gap junctions

are expressed in periventricular precursor cells and mediate
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synchronous Ca2? oscillations, which coordinate and

regulate the proliferation of neural cells [4–6]. The neural

cells migrate along with the radial glial cell [7], and the

expression pattern of connexins appears to be associated

with neural differentiation [8–10]. Alterations of spatio-

temporal expression patterns of connexins, Cx43, Cx40,

and Cx45, are also observed in the developing heart

[11–13]. It is possible that the expression of different

connexins in altered spatiotemporal patterns is related to

the electrical and signal patterning or formation of the

electrical and signal compartments. Impairments of these

expression patterns caused by knockout (KO) of certain

connexins have exhibited a number of malformations

or malfunctions of cardiac tissue [14–21]. Mutations of

Cx43 in its C-terminal domain are associated with heart

malformations [22–24], both of which support the crucial

involvement of connexins in cardiac development. The

inner ear in mammals consists of fluid-filled organs, the

cochlea and the vestibule, which are essential for sound

transduction and sensing the movement of the head. The

cochlea has two major spaces, the scala media and scala

tympani, filled with endolymph, high K? and low Na?,

and perilymph, Na? and low K?, respectively. Upon

sound transduction, K? current flows through the organ of

Corti to the perilymph, generating the auditory signal. K?

is subsequently taken up by transporters and recycled to

the endolymph through the gap junction intercellular

network. Two major connexins, Cx26 and Cx30, are co-

expressed and form homo- and hetero-gap junctions in the

inner ear [25–27], and mutations in these proteins are

known to be associated with hearing loss [28, 29],

underscoring the importance of gap junctional commu-

nication in auditory function. The lens is an extensively

specialized organ that is spherical and transparent for

visual function. Three different connexins, Cx43, Cx46,

and Cx50, contribute to the development, maturation, and

maintenance of lens fiber cells [30–32]. As in the case of

the brain and the heart, the expression pattern of lens

connexins changes during the differentiation of the lens

fiber [33–37]. Since the lens fiber cells are devoid of

mitochondria, nuclei, and other cytoplasmic organelles,

thus making the tissue transparent, they must exchange

metabolites and ions in a specific manner. In fact, they are

coupled with the surrounding epithelial cells for trans-

porting essential molecules and removing waste through

gap junctions [38, 39]. Mutations in lens connexins are

associated with cataracts [40–44], possibly because of

impairment in communication with surrounding cells. In

addition to the above examples, gap junctions play

essential roles in a wide variety of biological processes,

such as the vascular, reproductive, and immune systems,

as well as in the development and progression of cancer

[45–54].

Structural studies of gap junction channels

The structural information of a protein molecule is quite useful

and important for studying its functions. The primary method

for three-dimensional structural analysis of the gap junction

channel has been electron microscopy. In the 1960s, Robert-

son [55] first described the hexagonal array of protein

molecules on the plasma membrane of Mauthner cell synapses

of goldfish, and Benedetti and Emmelot [56] identified almost

the same structure in isolated rat liver. In the 1970s, Zampighi

and Unwin isolated two forms of channels from rat liver and

later proposed a gating model, in which sliding or tilting of

each subunit closes the pore, from an 18-Å-resolution map

[57, 58]. In the 1990s, Yeager et al. utilized a mammalian

expression system to express a C-terminally truncated Cx43

and improved the resolution of the map to 7.5 Å [59–62],

where 24 helical structures in each connexon were identified.

They further improved the map up to 5.7-Å resolution [63] and

proposed a helical arrangement of the four helices in a conn-

exin subunit. More recently, Oshima et al. [64] revealed a pore

plug structure in the channel vestibule of recombinant

Cx26_M34A mutant at a 10-Å resolution map. Other methods,

including X-ray diffraction [65–67], atomic force microscopy

(AFM) [68, 69], and nuclear magnetic resonance (NMR)

[68, 70–73], in combination with mutational, biochemical,

and some functional studies, have added valuable struc-

tural information about the gap junction channels [74–79].

Although there has been a great deal of progress in under-

standing the structural biology of the gap junction channels, a

high resolution structure where each amino acid could be

distinguished is essential for a more detailed biochemical and

physiological analysis. The long-awaited high resolution

structure has been recently determined at a resolution of 3.5 Å

by three-dimensional X-ray crystallographic analysis [80].

The structural determination was initiated by the single iso-

morphous heavy atom replacement method coupled with the

anomalous dispersion method. The initial phases were refined

and extended to 3.5-Å resolution by non-crystallographic

symmetry averaging, multi-crystal averaging, solvent flat-

tening, and histogram matching. Amino acid sequences and

disulfide bonds were uniquely assigned by anomalous dis-

persion signals of the native and seleno-methionine derivative

crystals [81]. Although precise modeling of side chains or

atomic positions is hardly achievable at 3.5-Å resolution, the

structure figures out many previously unclear features and

indicates possible roles of each amino acid residue.

Molecular architecture of the Cx26 gap junction

channel

The overall structure of the Cx26 gap junction channel

resembles the maps of cryo-electron microscopic (cryoEM)
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analysis in its shape, size, and arrangement of the trans-

membrane helices [62, 64]. The outer diameter of the

channel at the cytoplasmic end is *90 Å, which decreases

to about 50 Å in the extracellular portion, thereby forming

a structure similar to a tsuzumi, a traditional Japanese drum

(Fig. 1). The inner diameter of the channel is *40 Å at the

cytoplasmic channel entrance and narrows to *14 Å

around the midpoint of the membrane region, and narrows

again to *17 Å at the extracellular boundary, where

transmembrane helix 1 (TM1) is kinked followed by a 310

helix. The pore diameter widens to *25 Å near the

extracellular cavity. Although it is possible that the missing

region in the cytoplasmic loop (CL) and cytoplasmic tail

(CT) could form the gate, the structure is considered an

open conformation, since no obstructions through the pore

vestibule were identified, and the crystallization condition

(calcium or magnesium free, phosphate buffer at neutral

pH) generally favors the channel in its open state. The

length of the channel is approximately 155 Å. The extra-

cellular ‘‘gap,’’ membrane spanning region, and protruding

helices into the cytoplasmic region are 40, 38, and 19 Å,

respectively. This topology is roughly in agreement with

the X-ray scattering density profile of the mouse liver gap

junction [65], where the major connexins are Cx32 and

Cx26 [82]. The extracellular surface of the connexon in the

structure of Cx26 gap junction channel is rather smooth

and does not have protrusions like that in the EM study

[83]. The difference might be simply due to the docking

interactions between apposing hemichannels or the defor-

mation caused by urea treatment during sample preparation

to split gap junctions in the EM study. In X-ray structure

determination, several biochemical and biophysical data

indicated that they still maintained a dodecameric gap

junction channel. Thus, the X-ray structure represents more

reliable configuration of the extracellular region. The

channel contains substantial alpha-helical structures, as

much as *60% including the 24 transmembrane alpha

helices, short helices in NT and E1. Previous circular

dichroism (CD) spectroscopic study showed that rat liver

gap junctions had 40–50% alpha-helical content, depend-

ing on the isolation procedure [84]. The lower estimate is

probably due to the connexin composition of rat liver,

where the ratio of Cx32 and Cx26 is 10:1 [82, 85], and

Cx32 has a longer cytoplasmic C-terminus, considered to

have a flexible structure [83, 86]. TM2 and TM3 comprise

the cytoplasmic channel entrance. In contrast to the cryo-

EM structure of Cx43DCT [62], in which TM1 mostly

extends into the cytoplasmic space, cryoEM and X-ray

crystal structures of Cx26 [64, 80] reveal that TM2 is the

helix most extending into the cytoplasmic space. Since the

primary structure of the cytoplasmic region of connexin is

much more variable compared to the transmembrane and

extracellular regions [87], the difference might reflect the

variety of the three-dimensional structures of connexins in

this region.

Structure of the Cx26 monomer

Each monomer of the Cx26 gap junction channel has four

transmembrane helices (TM1-TM4), two extracellular

loops (E1, E2), an N-terminal region (NT), a cytoplasmic

loop (CL), and a C-terminal tail (CT; Fig. 2). The topology

of connexins was proposed and tested by hydropathy plots,

protease sensitivity, and site-directed antibodies to examine

whether specific regions are cytoplasmic or extracellular

Fig. 1 Overall structure of the human Cx26 gap junction channel in

ribbon representation. a Side view of the Cx26 gap junction channel

with the locations of plasma membranes and scale of each region.

Each subunit is colored differently, and those associated with the

crystallographic two-fold axis are in the same color. b Top view of the

Cx26 gap junction channel representing the arrangement of the

transmembrane helices and the N-terminal helix. The channel has a

hexagonal appearance with the largest outer diameter of *90 Å and a

pore entrance of *40 Å
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[60, 88–97]. Although only a few connexins were subjected

to the topology tests, the results were considered to be

broadly applicable to all connexin family members with

their conserved primary structures. The proposed topology

is almost identical to that of the X-ray crystal structure.

However, the atomic structure reveals a novel conforma-

tion and position of the NT. We have named this region the

‘‘N-terminal helix (NTH)’’ [80]. Although topologically

NT has been depicted in the cytoplasmic region, it showed

resistance to both proteases and antibodies [88, 89]. The

structure reveals that NT is inserted into the lumen of the

channel, thus accounting for the limited accessibility of

proteases and antibodies.

The Cx26 monomer has the typical four-helical bundle

in which any pair of adjacent helices is antiparallel. The

anomalous signals from seleno-methionine derivative

crystals confirm the assignment of the helices on the

experimental density map [80, 81] (Fig. 2). TM1 and TM2

face the luminal side of the pore, although TM2 and the

cytoplasmic half of TM1 are covered by the NTH, and they

are not exposed to the lumen. TM3 and TM4 are on the

perimeter of the hemichannel facing the lipid environment.

There was substantial complexity and controversy sur-

rounding the assignment of connexin alpha helices,

especially on the composition of pore-exposed regions [63,

75, 76, 98]. Fleishman et al. [63] proposed an assignment

of the transmembrane helices based on the EM map and

theoretical models, where they proposed TM3 as the major

pore helix. Biochemical studies using the substituted cys-

teine accessiblity method (SCAM) have been performed by

several groups [75, 76, 98]. Skerrett et al. proposed TM3 as

the major helix. Kronengold et al. proposed TM1 as the

major helix, and Zhou et al. proposed both helices con-

tribute to the pore. Some other studies, including domain

swap chimera [99, 100] and point mutation [74, 101, 102],

suggested the involvement of E1 and NT in defining the

conductance properties of connexin channels. Our crystal

structure is, for the most part, consistent with the SCAM

result of Kronengold et al. and chimeric and mutational

studies that implicated residues in NT, TM1, and E1 as

pore-lining. The difference in our structure and other

SCAM studies may arise as a consequence of the differ-

ence in methodology, the kind of connexins used, the state

of the channels, and the form of the channels that they

investigated. Baldwin et al. [103] proposed that in mem-

brane proteins, conserved amino acid residues are likely to

mediate helix-helix packing, whereas the non-conserved

ones are more likely to face the lipid environment or pore

lumen. The locations of the conserved and non-conserved

residues among connexin family proteins are plotted on the

atomic structure (Fig. 3) according to the ConSurf server

[104]. Intra-molecular and inter-molecular interfaces

Fig. 2 Wall-eye stereo view of the Cx26 monomer in ribbon

representation. Each region is colored differently, and the upper
arrows indicate the pore side and the lipid side. Three disulfide bonds

in the extracellular region are shown in stick representation.

Unobserved regions in the cytoplasmic loop and the C-terminal tail

are represented by dashed lines

Fig. 3 Ribbon representation of the Cx26 monomer is colored
according to conservation of residues in the connexin family [104]

(the gradient from white to violet indicates increasingly variable

residues)
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within the hemichannel are highly conserved, whereas the

pore lumen side of NTH and TM2 in the cytoplasmic

region is relatively variable. The outer sides of TM3 and

TM4, which are exposed to the lipid environment, are the

most variable regions. The charged amino acid residues in

the middle of TM3, which is unfavorable if exposed to the

lipid environment, are buried within the monomer and are

involved in intra-monomer interactions.

The extracellular loop E1 contains a 310 helix at the

beginning and a short a-helix in its C-terminal half. E2,

together with E1, contains a short antiparallel b-sheet and

stretches over E1, forming the outside wall of the

connexon.

Each connexin protein has three conserved cysteines in

each of the extracellular loops. They are all essential for

normal channel function and probably for their proper

folding as well, since mutations in any of them lead to a

loss of functional gap junction channels [105, 106]. (One

study has reported that a cysteine-less version of Cx43 can

function as the hemichannel [3].) Since a connexon docks

with an apposing one from a neighboring cell in the

extracellular space, it was thought that the extracellular

cysteines form disulfide bridges with apposing connexon.

However, it was clearly demonstrated that extracellular

cysteines form disulfide bridges intramolecularly, linking

the E1 and E2 of a single connexin subunit [91, 107]. Foote

et al. [2] made several cysteine shift mutants of Cx32, in

which the first and the third cysteines of each loop were

shifted within their sequences individually or pairwise and

also in some quadruple combinations. The conductance of

the Cx32 gap junction channel was robustly recovered only

when the first cysteine in one loop was shifted in combi-

nation with the third cysteine in the other loop. The

combinations of shift indicated the pairings of disulfide

bonds in which the first cysteine in each loop pairs with the

third one in the other loop. The periodicity of the shifts

indicated that the extracellular loops form antiparallel

strands. Indeed, six conserved cysteine residues form

three intramolecular disulphide bonds between E1 and E2.

In X-ray crystallographic analysis, the extracellular disul-

fide bonds and their pairings were confirmed by collecting

anomalous scattering signals from native sulfur atoms of

disulfide bonds, which are much larger than that of a single

sulfur atom [81]. The extracellular loops form short anti-

parallel beta-strand configuration, and one disulfide bond is

formed between the strands, as previous studies have

suggested [2]. However, the other two disulfide bonds were

formed between the alpha helix and beta strand or the loop

regions. In such cases, the shift of two residues would

move the cysteines to the opposite side of the helix, and

they would no longer form bridges. Because Cx26 and

Cx32 are highly conserved members of the connexin

family, it is unlikely that the discrepancy can be attributed

to the difference in the connexin protein in these experi-

ments. Rather, mutagenesis may have introduced some

structural perturbation or docking of two hemichannels by

external force in the Xenopus system may be possible in

the biochemical study.

Structural organization of the hexameric connexon

A gap junction channel is a dodecamer, and a connexon is a

hexamer of the connexin subunit with a six-fold symmetry

(Fig. 1). The inter-subunit interactions within a hemi-

channel are mostly located in the extracellular half of

transmembrane helices TM2 and TM4 and in the extra-

cellular loops. The core of the inter-protomer interaction

comprises Glu 47 (E1), Gln 48 (E1), Asn 62 (E1), Asp 66

(E1), Tyr 65 (E1), Arg 75 (TM2), and the main-chain

amide of Ser 72 (E1) from one protomer, and Asp 46 (E1),

Asp 50 (E1), Arg 184 (E2), Thr 186 (TM4), and Glu 187

(TM4) from the adjacent protomer (Fig. 4). In the case of

multiple connexins expressed in a single cell type, there

would be a variety of connexin channels. Homomeric

connexons are composed of a single connexin isoform,

whereas heteromeric connexons are composed of more

than two different isoforms. There seem to be some rules

Fig. 4 Structural organization of Cx26 monomer and hexamer.

a Topological map of mutations associated with deafness and skin

disease, adapted from [51]. b Intramolecular interactions that stabilize

the monomer structure of Cx26. c Intermolecular interactions between

two neighboring monomers in a connexon. Each interaction is shown

in the enlarged insets
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for the formation of heteromeric connexons. The structure

of the Cx26 hexamer shows that most of the intermonomer

interactions are located at the extracellular side of the

membrane region. These residues, as well as those of the

intramonomer interactions, are conserved among connexin

isoforms, suggesting that there is a conservation of

monomer folding and the manner of oligomerization within

the connexin family members. This idea has been validated

by the similarity in cryoEM structures of two types of

connexins (Cx43 and Cx26) [62, 64]. The residues of Cx26

that take part in intermonomer interactions are conserved

among connexin families, making it difficult to specify the

molecular determinants that specify heteromeric compati-

bility. The structure of the other connexins that are

incompatible with Cx26 in heteromeric interactions would

reveal the molecular determinants of this heteromeric

compatibility. Alternatively, there might be some regula-

tory mechanism determining heteromeric interactions

during protein synthesis, folding, oligomerization, and

trafficking. Some connexins have been reported to oligo-

merize at the endoplasmic reticulum (ER) similarly to most

membrane proteins. An exception to this rule is Cx43,

which is oligomerized at the trans-Golgi network (TGN)

[108–111].

A number of mutations in connexin genes have been

shown to be associated with a wide variety of inherited

diseases, including deafness, skin diseases, cataracts, neu-

ropathy, and developmental abnormalities [40–44, 112–

119]. Missense mutations can abrogate protein folding or

oligomerization, which are essential for the proper function

of the protein. Mutations in Cx26, which is indispensable

for potassium recycling in the cochlea [25–27, 120], have

been associated with syndromic and nonsyndromic deaf-

ness [28, 29, 116–118, 121]. In fact, a number of residues

that harbor disease-causing mutations [51] are involved in

the interactions stabilizing monomer and hexamer struc-

tures (Fig. 4). These interactions are consistent with

previous functional studies of mutant Cx26s. For example,

W44C has been reported to accumulate in the cytoplasm,

which could be attributed to the misfolding caused by the

collapse of the hydrophobic core of the Cx26 monomer

[122]. R184P is known as an oligomerization-deficient

mutant, and this residue is involved in inter-monomer

interactions [123, 124]. R75Q and R75 W, each involved in

syndromic and non-syndromic deafness, respectively, are

rather complicated. The structure indicates that this residue

is involved in inter-monomer interactions in a connexon,

which explains well the oligomerization deficiency of R75

W in detergent-solubilized form [124]. The same and other

mutants of R75, however, are reported to form functional

hemichannels but no functional gap junction channels in

the membrane [125, 126]. R75 is located at the membrane/

extracellular periphery. Interactions involving this position

would contribute to appropriate folding and positioning of

extracellular loops for docking as well as stabilization of

inter-monomer interactions in a connexon. More detailed

reviewing and examination would be necessary for some

disease-associated mutants, considering the possibility of

the non-straightforward effects they invoke.

Intercellular interactions in the docking of apposing

connexons

There had been a presumption that gap junction channels

are dissociated to hemichannnels once they are solubilized

by detergents. In our experiments, however, purified con-

nexins exist in the form of the gap junction channel, which

is suggested by dynamic light scattering and size-exclusion

chromatography. These results lead us to conclude that the

observed structure represents a dodecameric gap junction

channel that is not ‘‘re-docked’’ in the crystallization con-

dition. Thus, we can discuss the inter-hemichannel

interactions revealed in the crystal structure. The interac-

tions between the two adjoining connexons of the Cx26

gap junction channel involve both E1 and E2 domains

(Fig. 5). In E1, Asn 54 forms hydrogen bonds with the

main-chain amide of Leu 56 in the opposite protomer, and

Gln 57 forms symmetric hydrogen bonds with the same

residue of the diagonally opposite protomer. These residues

are highly conserved among connexins. In E2, Lys 168,

Asp 179, and the main-chain carbonyl groups of Thr 177

and Asn 176 form hydrogen bonds and salt bridges with the

opposite protomer. Through these interactions, the E1 and

E2 domains create a tight seal in the extracellular space,

isolating the channel interior from the outside environment.

Homotypic gap junction channels are formed by a single

connexin isoform. Heterotypic gap junction channels are

formed by two connexons each composed of different

isoforms [127, 128]. Formation of heterotypic channels

provides greater variety in channel properties, including

Fig. 5 Interactions between apposing connexons. Interactions of E1

and E2 are each shown in the enlarged insets
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conductance, permeability, and gating, which could not

be obtained with a single connexin [129]. The heterotypic

gap junction channels with various combinations have

been identified in lens, cardiovascular, and neural con-

nexins [130–136]. As in the case of the heteromeric

connexon, there seem to be some rules for the formation

of heterotypic gap junction channels. Several groups

have investigated heterotypic junction compatibility using

communication deficient expression systems [129]. The

extracellular loops, E1 and E2, mediate the docking of

hemichannels, and thus they should determine heterotypic

compatibility. Several studies have focused on identifying

the structural motifs that confer specificity for heterotypic

interactions by making chimeric connexins [135, 137]. In

general, E2 appears to contain the determinants for het-

erotypic interactions, although some other regions could

contribute to the specificity as well [137]. The atomic

structure of the Cx26 gap junction channel provided evi-

dence for the role of E2 in the docking of hemichannels.

Since Lys168, Asn176, Thr177, and Asp179 exhibit some

variation within the connexin family, we have performed

homology modeling of various connexins with the crystal

structure as a template and evaluated the compatibility of

many combinations of connexin families (data not shown).

Our preliminary result suggests that they and the corre-

sponding residues in other connexins dictate docking

compatibility.

Architecture of the channel pore

The molecular cutoff size for the gap junction channel pore

is often described to be up to 1 kDa. These channels,

however, are not simple and featureless tunnels for any

molecules. Each homo-gap junction channel has its own

conductance, permeability, and selectivity property, and

hetero-gap junction channels provide further diversity,

depending on the constituting connexin subunits. Conduc-

tance of a single homo-connexin channel ranges from *20

picoSiemens (pS) to *300 pS [138–141]. Some connexins

prefer cations rather than anions [99, 142, 143], whereas

others have smaller or larger molecular cutoff sizes [144–

146]; yet others have a preference for permeating second

messengers [147–149]. These findings imply that for cer-

tain ions, signaling molecules, or biological processes,

there are specific connexin channels for which they are

‘‘fine tuned.’’ The most important factor for the perme-

ability is the channel pore structure. The pore width, the

electrical field within the pore, and the local electrical

charges on the pore surface will affect the permeability of

the ions or molecules entering and passing through the

channel. These kinds of microenvironments give connex-

ins specific permeability/selectivity properties enabling

functional specialization. A large number of studies have

explored the differences in permeability/selectivity of dif-

ferent connexin channels, including electrical conductance,

pore width, and permeability of non-biological or biological

molecules [142, 143, 147, 149–158].

The permeation pathway of the Cx26 gap junction

channel consists of an intracellular channel entrance, the

pore funnel, a negatively charged path, and an extracellular

cavity (Fig. 6).

The pore funnel is formed by six NTHs located from the

cytoplasmic surface to the midpoint of the plasma mem-

brane, gradually narrowing the pore diameter. Since the

bottom of the funnel is the constriction site of the pore, the

identities of the surface residues of the funnel would have

strong effects on both the molecular cutoff size and per-

meability (Figs. 6, 7). Consistent with this notion,

substitutions or deletions in the NT have been reported to

affect single channel conductance, molecular permeability,

and charge selectivity [74, 159–163].

The negatively charged path is located at the TM1/E1

boundary, and the channel narrows again in this region.

Like the residues in the NT, those in this region are

exposed to the pore in a constricted site. It is, therefore,

likely that these residues also contribute to channel pro-

perties. In fact, this region has been demonstrated to

contain the determinants for charge selectivity in Cx46

hemichannels [99]. The pore-exposed and peripheral

location, and the highly charged character of this region

suggest an involvement in sensing the membrane or

transjunctional voltage [164, 165]. Recent studies indicate

that movement or conformational change of this region

underlies the voltage-dependent ‘‘loop gating’’ of hemi-

channels [101, 166]. Lys41 and Glu42 in Cx26, which are

exposed to the pore, are different from other members

(Fig. 7). Cx32, which is the closest isoform of Cx26 and

Fig. 6 Pore architecture of the Cx26 gap junction channel. Left Cx26

gap junction channel is rendered as surface drawing and sectioned

along the six-fold axis of symmetry, showing the surface potential

distribution of the channel interior. Right The pore diameter is

illustrated along the six-fold axis generated using the HOLE program

[179]
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has negative gating polarity contrary to the positive gating

polarity of Cx26, has Glu and Lys in the corresponding

positions, respectively. Addition of negative charge (ES for

KE) to Cx26 and positive charge (KE for ES) to Cx32

promoted faster gating kinetics and increased the gating

charges, and substitution of Lys to Glu in Cx32*KE mutant

reversed the gating polarity. These results suggested that

the border of TM1/E1 would form a unit of voltage gating

sensor with the formerly suggested one, the NT [167].

Although there is no direct interaction between Lys41 and

the NT, the proximity between them (*8 Å) suggests a

possibility of cooperativity between them in sensing the

membrane voltage. The extracellular cavity is formed by

12 portions of E1 from each subunit, making the tight

continuous inner wall of the channel in the extracellular

region. Since the extracellular cavity has a wide pore

diameter, the residues in this region are less likely to

influence the permeability/selectivity properties.

Pore funnel and implication for the Vj gating

mechanism

In typical topological images, the N-terminal region (NT)

of connexins has been described to reside in the cytoplas-

mic space [60, 127]. Limited sensitivity to proteases and

accessibility of antibodies suggested that NT is protected

either by interaction with some other regions or by its own

folding [88]. Electrophysiological studies suggested the

involvement of NT in the pore lining residues and the

voltage sensor [161, 163, 167–170]. NMR study revealed a

short helical conformation in the NT region [71], and the

EM study revealed a ‘‘pore plug,’’ which was formed

possibly by the NT region [64, 171]. In this context,

probably one of the most important and most surprising

findings in the structure of the gap junction channel is the

existence of the pore funnel (Fig. 8). The NT forms a short

helix (NTH) and is inserted into the channel pore, and six

NTHs assemble on top of the pore. This structure is termed

a ‘‘pore funnel’’ since the appearance of the structure of six

NTHs is like that of a funnel. The funnel is a narrower

entrance to the channel, and the bottom is the constriction

site through the channel pore. The substitution of NT res-

idues changed the single-channel conductance or

sensitivity to blockage by spermine [102, 172].

The pore funnel is stabilized by the circular hydrogen

bond network between Asp2 and the main chain of the

neighboring monomer at the bottom of the funnel. Trp3,

which is conserved in almost all connexins, undergoes a

hydrophobic interaction with Met34 from the neighboring

monomer (Fig. 8). The hydrophobic interactions draw the

pore funnel onto the innermost wall of the channel,

switching it to the open state. Considering the high con-

servation of Trp3 and the hydrophobic segment in TM1

among connexin family members, this interaction should

also be conserved among most connexins. The structure of

the pore funnel, along with the recent EM map of the

Met34Ala mutant [64, 171] (Fig. 8), suggests the impli-

cation of the molecular consequence of the Met34Thr

mutation, which is one of the most frequent deafness-

associated mutations of Cx26. Substitution of the hydro-

phobic methionine with hydrophilic threonin would disrupt

the hydrophobic interaction between Trp3, releasing the

NTH from TM1. While there is no direct evidence for this,

once NTHs are released from TM1, they might assemble or

form some structure cooperating with the end of TM1 that

Fig. 7 Sequence alignment of human connexins in the pore-lining

region. Amino acid residues of Cx26 from the N-terminus to amino

acid 65 are aligned with CLUSTALW [180]. Secondary structures

and numbering of residues of Cx26 are represented at the top.

Asterisks indicate pore-exposing residues in Cx26. Figures are

created with ESPript [181] and manually modified
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physically blocks the channel at the pore vestibule and

forms the ‘‘pore plug’’ seen in the EM map of the

Met34Ala mutant.

Gap junction channels have multiple gating mecha-

nisms, including the conventional membrane voltage-

dependent gating, termed Vm or Vi–o gating, and the

transjunctional voltage-dependent gating [164], which is

specific to the gap junction channels. There are two dif-

ferent forms of gating mechanism in transjunctional

voltage-dependence [173, 174]. One is the Vj gating or fast

gating, which displays fast (\10 ms) and incomplete clo-

sure to the subconductance state. Another is the loop or

slow gating, which shows the slow transitions ([10 ms)

from fully open to fully closed state and appears to involve

the extracellular loop domains. Each connexin channel

shows specific sensitivity in its gating characteristics,

including its polarity [167, 168, 175]. Cx26 gap junction

channels have positive Vj gating polarity [167] and Cx32,

the closest relative of Cx26, has negative Vj gating polarity

[167, 169, 170, 176]. A number of experiments using

Fig. 9 Plug gating model for

transjunctional voltage-

dependent gating of the Cx26

gap junction channel. When

there is no difference in

membrane voltages between

two neighboring cells (a), NTHs

form the pore funnel and attach

to TM1 by hydrophobic

interactions. When there is a

difference in membrane

voltages between two cells (b),

the positive electric field pulls

up Asp2, which is exposed to

the pore, in the cytoplasmic

direction, releasing NTHs from

TM1. Once released, NTHs will

assemble on the top of the pore

and form a so-called ‘‘plug’’

structure

Fig. 8 The structure of pore funnel and pore plug. a The six NTHs

form pore funnel, which is stabilized by circular hydrogen bond

network (red dashed lines) at the bottom of it and attached to the

inner wall of the channel by hydrophobic interactions (orange dashed

lines). These interactions are formed between neighboring monomers.

b Superposition of the atomic model of wild-type Cx26 gap junction

channel (ribbon representation: green) into the electron density map

of Met34Ala mutant Cx26 (surface representation: gray)
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chimeras of Cx26 and Cx32 or substitution of them were

performed to reveal the determinants of the voltage depen-

dence [167, 169, 170, 176], and NT, especially the second

amino acid residue, is suggested to be the voltage sensor. The

pore funnel and the linker loop to TM1 are highly flexible

domains, and together with the recent EM structure of

Met34Ala mutant, suggest a mechanism of Vj gating triggered

by the movement of NT [64, 80]. In the Met34Ala mutant, the

smaller side chain of Ala would be insufficient for the

hydrophobic interaction with Trp3, leading to the detachment

of the pore funnel from TM1 and assembly of the released

NTHs at the vestibule. Since Asp2 is exposed to the pore and

could sense the changes of the electric field along the pore, the

application of an inside positive Vj would displace Asp2

towards the cytoplasm, releasing the NTH from TM1, fol-

lowed by the assembly of NTH as in the case of Met34

mutants (Fig. 9). Although this model, named the ‘‘plug

gating model,’’ is quite different from that of the other

membrane channels such as potassium channels or sodium

channels, which have the S4 helix as a voltage sensor, it could

account for many physiological observations. The opposite

gating polarity of Cx26 and Cx32 [167, 169, 176] could be

attributed to the net charge in the NT, where Cx26 has Asp2

and Cx32 has Asn2. Since up to ten amino acid residues

corresponding to the end of NTH could sense the electric field

[169, 176], oppositely charged residues in this region could

sense and respond individually, resulting in the observed

bipolar gating [169]. It is possible that the release of any one

of six NTHs would break down the circular hydrogen bond

network through the Asp2-Thr5, releasing them from TM1

and consequently forming the pore plug. This hypothesis can

explain the reported observation that a single subunit could

trigger Vj gating and the bipolar gating of heteromeric

hemichannels composed of subunits of different polarity

[170]. Though the pore plug model seems to be a good one to

explain some features of Vj gating as described above, it

appears that in the EM plug structure the channel pore is

occluded and is unable to conduct ions. This is inconsistent

with the subconductance state of Vj gating. It should be noted

that most of CL and CT are missing in the crystal structure,

and there are some other reports that suggest the involvement

of some parts of CL and CT in Vj gating [177, 178], which

might explain the discrepancy between subconductance state

and plug structure. Undoubtedly, the high resolution structure

of the whole region and in the closed state is necessary for

comprehensively understanding the complex gating mecha-

nisms of the gap junction channel.

Conclusion

Since its discovery in the 1960s, structural studies of the

gap junction channel have been performed extensively.

Determination of the recent atomic structure of the human

Cx26 gap junction channel by X-ray crystallography pro-

vides an answer for long unresolved issues, such as the

molecular organization, helical assignment, and pore

structure. In conjunction with the previous biochemical,

electrophysiological, and structural studies, the atomic

structure of the N-terminal region suggests a mechanism of

plug gating. The structure will be useful as a common

template for any gap junction channel for functional and

structural studies. There remain, however, unobserved

segments in the cytoplasmic region, which are the most

variable regions among connexin families contributing to

the connexin-specific properties and responding to various

chemical stimuli (chemical gating). Crystallographic

structure of Cx26 at higher resolutions as well as those of

other connexin channels will help elucidate such functional

mechanisms.
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