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Abstract Natural killer (NK) cells have originally been

identified by their spontaneous cytolytic potential against

tumor cells, which, however, might result from pre-acti-

vation due to prior pathogen exposure. Resting NK cells,

on the contrary, require activation by bystander antigen-

presenting cells to reach their full functional competence.

In this review, we will summarize studies on how dendritic

cells (DCs), the most potent type of antigen-presenting cell,

communicate with human NK cells to activate them in

secondary lymphoid organs and to integrate signals from

activated NK cells at sites of inflammation for their own

maturation. Furthermore, we will review aspects of the

immunological synapse, which mediates this cross-talk.

These studies provide the mechanistic understanding of

how mature DCs can activate NK cells and survive to go on

for the activation of adaptive immunity. This feature of

DCs, to activate different waves of immune responses,

could be harnessed for immunotherapies, including

vaccinations.
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Dendritic and natural killer cell subsets

Classically, dendritic cells (DCs) have been proposed as

professional sentinels that patrol the body, searching for

stress signals [1]. Indeed, DCs are found in peripheral

blood and in nearly every tissue, including the entire set of

lymphoid organs (thymus, lymph nodes, bone marrow,

tonsils and spleen), and non-lymphoid tissues (liver, kid-

ney, skin and gut). Therefore, it is not surprising that these

antigen-presenting cells (APCs) can get in contact with a

vast variety of pathogens and their products, as well as

stress signals released from dying cells. After sensing

disturbances in tissue homeostasis, DCs migrate to sec-

ondary lymphoid tissues to report the nature of the insult

via displaying components of their original environment on

major histocompatibility complex (MHC) molecules, and

reflecting the conditions under which they have taken up

these components, via their particular maturation pattern.

In secondary lymphoid tissues, mature DCs are known to

be superior to other APCs in their capacity to stimulate and

propagate effective immune responses, due to antigen

presentation, the expression of co-stimulatory molecules

and secretion of cytokines and chemokines [2–5]. Never-

theless, it is important to note that this classical view on

DCs is continually getting updated with additional DC

subsets, some of which are resident in secondary lymphoid

tissues and others that develop from monocytes during

inflammation [6–8].

DC biology and its role in the immune system were

originally dissected in mice and, until now, there has been

much more knowledge of the murine DC system than of the

human system. Moreover, the majority of knowledge on

human DC subsets and their development derives from in

vitro studies with peripheral blood DC precursors and

immature DCs. However, and in agreement with the rarity
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and large variety of DC subsets found in mice, several DC

categories can also be identified in human. According to

Shortman and Naik [7], DCs can be categorized into pre-

DCs, conventional DCs and inflammatory DCs. Pre-DCs

include plasmacytoid DCs and monocytes and are charac-

terized by lack of dendrites and DC function in the steady-

state [9]. Conventional DCs (which display dendrites and

DC functions) can be further divided into migratory DCs

and lymphoid tissue-resident DCs. Migratory DCs include

several subsets of blood DCs like CD1c? (BDCA1?) DCs,

CD141? DCs and CD16? DCs [8, 10–13], in addition to

Langerhans cells and dermal DCs [14, 15]. Lymphoid tis-

sue-resident DCs are represented by, for instance, thymic

and splenic DCs. The last category of DCs consists of

inflammatory DCs that are not present in the steady-state,

but can differentiate from precursors upon infection or

stress signals. Inflammatory DCs include Tip DCs (named

after their ability to produce TNF and iNOS) [16]. However,

very little is so far known about the different capacities of

these DC subsets to interact with natural killer (NK) cells,

an aspect of DC biology that requires further investigation.

Maturation of DCs can be achieved by sensing danger

signals (for example, pathogens or their products, necrotic

cells and pro-inflammatory cytokines) through recognition

receptors, which are present on DCs [17–21]. Toll-like

receptors (TLRs) are among the best studied receptors

involved in these processes. Indeed, the expression of a

unique set of TLRs renders each type of DC susceptible to

particular subsets of pathogens and stress signals, and the

outcome of stimulation with TLR ligands can then result in

increased antigen uptake and presentation [22], expression

of co-stimulatory molecules [23], secretion of cytokines

[24, 25], upregulation of chemokine receptors [26] and,

therefore, stimulation of distinct T cell responses (Th1,

Th2, Th17 or Treg) [1, 27, 28]. Thus, DC maturation

mirrors the inflammation conditions in peripheral tissues

and allows the initiation of proper immune responses in

secondary lymphoid tissues.

Although there are some controversies with respect to

TLR expression by different DC subsets, several studies

point to the expression of TLR1, TLR2, TLR3, TLR5,

TLR6 and TLR8 by conventional DCs, isolated from

human blood. Therefore, these DCs can sense bacteria,

virus and fungi, and they produce primarily IL-12, TNF

and IL-6 in response. In contrast, plasmacytoid DCs

express TLR7 and TLR9, which allows them to primarily

sense viruses, and they produce type I IFNs upon activa-

tion. Finally, inflammatory DCs, which have a similar

repertoire of TLRs as conventional DCs, can also respond

to lipopolysaccharide (LPS), due to their expression of

TLR4 [24, 25, 29–33]. Thus, different DC subsets fulfill

distinct and complementary functions in the innate

restriction of infections and initiation of immune responses.

NK cells are among the effector cells that are activated

by mature DCs. NK cells got the attention of the scientific

community due to their ability to spontaneously kill tumor

cells [34, 35]. In addition to their rapid responsiveness, the

lack of somatic antigen receptor rearrangement placed

them in the innate arm of the immune system. Human NK

cells develop from common lymphoid progenitors [36]

and, as in the case of DCs, they can be subcategorized into

several subtypes and can have different activation states.

NK cells were first phenotypically characterized by the

surface presence of CD56 and lack of CD3. Furthermore,

Lanier and colleagues [37] could characterize two main,

functionally distinct subsets of NK cells by the density of

CD56 expression. Therefore, human peripheral blood NK

cells were described as consisting of a predominant

(C95%) CD56dimCD16? subset, further characterized by

high levels of perforin expression and high cytolytic

activity, and a minor (B5%) CD56brightCD16- subset, with

a superior capacity to produce pro-inflammatory cytokines

like IFN-c and TNF [38–40]. Furthermore, in the steady-

state, NK cells can also be found in various lymphoid and

non-lymphoid tissues that contain different NK cell sub-

sets. The reactivity of activated NK cells is guided by sets

of germline-encoded activating and inhibitory receptors

[41, 42]. The main activating NK cell receptors are

NKG2D and the natural cytotoxicity receptors (NCRs)

NKp30, NKp44 and NKp46. NK cells harboring NKG2D

recognize several molecules (e.g., MICA, MICB and

ULBP) that can be upregulated in cells upon infection,

stress or aberrant transformation (reviewed in [43]). In

contrast, the molecules recognized by the activating NCRs

are still being characterized. However, studies point to a

role of NKp30-mediated recognition of BAT3 in cells with

DNA or endoplasmatic reticulum damage [44]. Further-

more, NKp46 and NKp44 seem to interact with

hemagglutinin in viral-infected cells [45, 46], and NKp46

also participates in surveillance of cell division [47]. The

inhibitory receptors (e.g., CD94/NKG2A and killer cell

immunoglobulin-like receptors, KIRs) engage non-classi-

cal and classical MHC class I molecules, respectively. NK

cells integrate these concurrent signaling pathways and, if

activation is stronger than inhibition, they may secrete

cytokines, proliferate and kill the encountered cell. While

the activating NK cell receptors are homogeneously

expressed on all mature NK cell subsets, the inhibitory

receptors are differentially expressed on NK cell subsets

[48, 49]. Therefore, different NK cell populations express a

certain set of inhibitory receptors that can recognize dif-

ferent MHC class I alleles on target cells. Furthermore,

there is an overlapping of these inhibitory receptors among

the different NK cell subsets. This variegated and over-

lapping expression of NK cell receptors in different NK

cell populations might derive from a stochastic regulation
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of gene expression during NK cell development and might

allow the surveillance of viral-infected or tumor cells that

have downregulated only a limited set of MHC class I

molecules [50].

In conclusion, the complexities of human DC and NK

cell populations mean that different NK cell subsets can

interact with different DC populations and, depending on

the place where the interaction occurs and on the matura-

tion/activation status of the interacting cells, the outcome

of this interaction may functionally differ.

Places of NK cell activation by DCs

Although DCs and NK cells can theoretically interact in

numerous places, due to their wide distribution in the body,

two main locations have been the focus of most studies due

to their crucial physiologic relevance during immune

responses, namely secondary lymphoid organs (SLOs) and

sites of inflammation. SLOs have a complex organization

that allows efficient cell–cell interactions. Indeed, different

hematopoietic and non-hematopoietic cells, as well as res-

ident and migrating/homing cells, make up these structures.

Resting or non-inflamed human lymph nodes harbor a sig-

nificant number of lymphocytes, including NK cells [51,

52]. With a frequency of half the 10% found in peripheral

blood, but 20-fold more lymphocytes being parked in SLOs

than circulating through the peripheral blood at any given

time point, NK cells may be 10 times more abundant in

lymph nodes than in the periphery [53]. Also, in contrast to

peripheral blood NK cells, lymph node NK cells mostly

(around 90%) belong to the CD56bright subset [2, 52].

Indeed, circulating human CD56bright NK cells have been

shown to abundantly express L-selectin, CCR7 and LFA-1,

making them able to traffic and efficiently enter secondary

lymphoid tissues in the steady-state [38, 51, 54–56]. Fur-

thermore, NK cells have been found to be preferentially

localized in the perifollicular T cell zones of lymph nodes

[2, 57–60]. Curiously, in mice, homing of CD27bright NK

cells to lymph nodes seems to be dependent on CXCR3 and

not CCR7 expression [61–63]. In contrast, mouse NK cells

seem to migrate into splenic white pulp due to CCR7 and

CCL21 signaling [64–66]. Furthermore, some studies in

mice seem to indicate that inflammation leads to increased

NK cell migration into the splenic white pulp [67, 68]. Here,

NK cells home to T cell zones, possibly because of their

ability to migrate along fibroblastic reticular cells. Thus,

NK cells traffic through secondary lymphoid tissues, in the

steady-state, and may be recruited at enhanced frequencies

to these tissues during inflammation.

Although in the steady-state immature DCs can slowly

traffic to SLOs [69], maturation leads to the upregulation of

chemokine receptors (including CCR7) on the surface of

peripheral conventional DCs, rendering them more effi-

cient in entering peripheral lymph vessels and in migrating

to SLOs [3, 26, 70–72]. Furthermore, fibroblastic reticular

cells in proximity to high endothelial venules (HEVs),

found in the T cell area of lymph nodes and spleen, are

major producers of CCL21 and CCL19, which concentrate

recently homed CCR7? mDCs around HEVs [73, 74]. In

this way, DCs are able to efficiently find not only T cells, to

which they can present antigen, but also resting CD56bright

NK cells, enriched at these sites, in addition to NK cells

that travel to the spleen upon infection [51, 56, 73].

Therefore, it has become clear that important locations of

DC/NK cell interactions are SLOs and that these tissues

support interactions between mDCs and naı̈ve or resting

NK cells. The mechanisms underlying these interactions

and their outcomes will be reviewed in the following

sections.

In addition, sites of inflammation are an important

source of production of several cytokines and chemokines

like CCL4, CCL5, CX3CL1 CXCL8 and CXCL10, some

of them produced by subsets of dendritic cells [75]. Cir-

culating NK cells can sense them and migrate to sites of

inflammation. In contrast to lymph nodes, both subsets of

NK cells seem to migrate to sites of inflammation, but there

is some debate about the capacity of their retention. The

type of infectious agent that triggers this inflammation

might contribute to the selective enrichment of distinct NK

cell subpopulations. Along these lines, the CD56bright NK

cell subset was found to be enriched in sites of inflam-

mation promoted by autoimmunity, lung cancer lesions and

renal cell carcinoma [76–79]. Activated NK cells prefer-

entially home to these sites for rapid and efficient killing of

damaged cells. In inflamed tissues, activated NK cells can

encounter immature DCs or DCs that are in the process of

maturation and can edit their activation before they migrate

to secondary lymphoid tissues. Thus, editing of DC mat-

uration by activated NK cells probably occurs primarily at

sites of inflammation.

Mechanisms of NK cell activation by DCs

NK cells are highly cytotoxic cells, ready to kill target

cells, without the need of recognition of a specific antigen,

but rather recognizing self-molecules, which are upregu-

lated in response to many forms of cellular stress. These

characteristics make them potent effectors against trans-

formed and infected cells [34, 80, 81]. As exceptions from

these rules, NK cells are able to initiate immune responses

by direct recognition of cells infected with MCMV that

express on their surface the MCMV-encoded protein m157,

which is recognized by the Ly49H receptor on NK cells

[82, 83], and with influenza virus, due to the ability of the
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NKp46 and NKp44 receptors of NK cells to recognize viral

haemagglutinins on the surface of infected cells [45, 46].

However, in recent years, it has become apparent that this

NK cell recognition requires pre-activation by myeloid

APCs [84–89]. This pre-activation is also called NK cell

priming and happens through cell contact with accessory

cells and their presentation and/or secretion of cytokines.

The most important accessory cells involved in NK cell

priming are monocytes, macrophages and DCs. Depending

on the particular conditions of immune activation, distinct

subsets of these APCs will be activated and participate in

NK cell stimulation. Here, we will focus on the signifi-

cance of DCs as accessory cells in NK cell priming

(Fig. 1).

As described in the first section of this review, several

DC subsets exist and they possess various means to

activate NK cells. Type I IFNs (IFNa and IFNb) primarily

trigger NK cell cytotoxicity [90–92] and control IFN-c
production by these lymphocytes by regulating IL-12

production on classical DCs [93–95]. Plasmacytoid DCs

seem to be a very important source of type I IFNs upon

virus infections, as, for example, by MCMV and VSV [95,

96]. CpG motives of the viral genomes are recognized by

TLR9, expressed in endosomes of plasmacytoid DCs, and

lead to secretion of type I IFNs. Nevertheless, several in

vivo studies have demonstrated that there are other sources

for type I IFN production, independent of plasmacytoid

DCs, and, therefore, these cells seem to represent an

important, but not unique, source of this cytokine [95, 97–

99]. On the other hand, recognition of MCMV by con-

ventional DCs leads to selective secretion of IL-12 [100–

102]. In this way, both subsets of DCs are activated,

Fig. 1 Natural killer cell activation by dendritic cells. Dendritic cells

(DCs) patrol the body constantly in their immature stage. 1 Upon

recognition of a stress signal, that can be pathogen-derived, necrotic

cellular debris or pro-inflammatory cytokines, DCs undergo matura-

tion. Some stress signals are detected by toll-like receptors (TLRs).

During maturation, DCs up-regulate chemokine receptors, which

allow them to efficiently migrate into secondary lymphoid organs

(SLOs). 2 There, mature DCs can encounter autologous resting NK

cells. The cross-talk between these cells differs depending on the

nature of the maturation stimulus received by the DC and the

particular subset of DC. Thus, NK cell activation by mature DCs can

be mediated by soluble molecules to different degree. Cytokines like

IL-12, IL-18 and IL-2 induce IFN-c secretion by NK cells.

Furthermore, IL-15 signaling induces NK cell proliferation and

survival, while type I IFNs increases NK cell cytotoxicity. Although

these cytokines can be secreted, their effect, especially when

produced at limited concentrations by mature DCs, can be improved

through conjugation of DCs and NK cells. Furthermore, the direct cell

contact between these two cell types is also important for signals

derived from receptor/ligand pairs. Along these lines, NK group 2D

(NKG2D), glucocorticoid-induced TNF-receptor-related protein

(GITR) and intracellular adhesion protein 1 (ICAM1) were shown

to activate NK cells, after interaction with their cognate ligands

(NKGD2L, GITRL and lymphocyte function-associated lymphocyte

1 (LFA1), respectively) on mature DCs. 3 Even so this cross-talk

enhanced NK cell cytotoxicity, DCs survive this interaction due to the

high expression of MHC class I molecules after maturation, the

presence of inhibitors of granzyme B-mediated apoptosis in mature

DCs, and actin-mediated stabilization of NK cell inhibitory signaling

by MHC class I molecules at the immunological synapse
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leading to complementary cytokine secretion and increased

cytotoxicity of NK cells upon MCMV infection. Further-

more, conventional DCs-derived secretion of type I IFNs

was shown to play a role during HSV1 infection [103]. In

addition to type I IFN-stimulated NK cell cytotoxicity, IL-

12 and IL-18 are the major promoters of IFN-c secretion by

NK cells, and both cytokines can be produced by DCs.

Plasmacytoid and conventional DCs are important sources

of IL-12 during MCMV infection [101, 102, 104]. Fur-

thermore, conventional DCs activate NK cell responses to

EBV via IL-12 [105]. This cytokine was shown to be

particularly important for activation of CD56bright NK cells

of SLOs upon encountering mature conventional DCs [2].

Furthermore, during influenza virus infection, DCs produce

IL-12 and induce IFN-c production by NK cells [90, 106].

Some responses against parasites and bacteria are also

dependent on IL-12/IL-18 production by DCs, [107, 108],

and probably in rare exceptions, as, for example, in

response to infections with the Gram-negative bacterium

Escherichia coli, Granucci and colleagues [109] found that

DC-derived IL-2 secretion has a more prominent role in

activating NK cells to produce IFN-c. In addition to these

cytokines that promote cytokine secretion by NK cells, IL-

15 plays a crucial role in several aspects of NK cell biol-

ogy. Firstly, it is important for the development of these

innate lymphocytes [110–112]. Furthermore, a role of IL-

15 in NK cell survival and proliferation has been docu-

mented [2, 113, 114]. Moreover, it plays an essential role

during priming of protective immune responses [89, 115,

116]. Finally, a recent study showed that prolonged stim-

ulation of NK cells with IL-15/IL-15Ra complexes leads to

an impairment of NK cell activation [117], indicating a

possible role in the negative-feedback mechanism that

regulates NK cell activation. Of note, overstimulation of

NK cells with activating-receptor ligands (e.g., Rae-1 and

m157 that engage the NK cell-activating receptors NKG2D

and Ly49H, respectively) or immune modulators (e.g., type

I IFNs or Corynebacterium parvum) have been shown to

lead to NK cell hyporesponsiveness [118–120]. DCs,

especially Langerhans cells, express high levels of IL-15

and IL-15Ra, and can trans-present it to NK cells

expressing IL-15Rb and c chains. Therefore, DCs act as

accessory cells promoting NK cell survival and prolifera-

tion [113, 121]. Trans-presentation of IL-15 requires close

contact between DCs and NK cells. However, IL-15 is not

the only cytokine that might require conjugation of DCs

and NK cells for efficient signaling. Directed secretion of

DC-derived IL-12 and IL-18 towards the NK cell can be

required for efficient NK cell activation, when the partic-

ular DC maturation conditions allow only limited

production of these cytokines [122, 123]. Indeed, the

contact-dependent transmission of signals is equally

important as signaling via soluble molecules during NK

cell priming by DCs [85, 86, 124]. For example, Plasmo-

dium falciparum infection in humans confers the ability to

conventional DCs to stimulate NK cells to secrete IFN-c in

a contact-dependent manner [125]. Furthermore, viruses

harboring CpG motives upregulate expression of gluco-

corticoid-induced TNF-receptor-related protein (GITR)

ligand by human plasmacytoid DCs, and the interaction of

this molecule with GITR on NK cells leads to the pro-

duction of IFN-c and enhanced cytotoxicity [126].

Activation of DCs with pro-inflammatory cytokines,

especially type I IFNs, promotes upregulation of NKG2D

ligands leading to IFN-c secretion and enhanced NK cell

cytotoxicity [127]. NK cell activation by DCs stimulated

with LPS involves TREM2 (triggering receptor expressed

by myeloid cells 2), an activating immunoreceptor that

signals via KARAP (killer cell activating receptor-associ-

ated protein)/DAP12 (DNAX-associated protein 12) [128].

Furthermore, adhesion molecules have been shown to be

important in the DC/NK cross-talk [113, 129]. Thus,

although DCs activate NK cells primarily via cytokines,

cell contact is important for directed secretion during this

interaction.

These studies suggest that mature DCs migrate to SLOs,

where they activate NK cells in the T cell zones via

directed secretion during conjugation, and these activated

NK cells can then fight infections in the periphery.

The immunological synapse between DCs and NK cells

While incubation of NK cells with recombinant IL-2, IL-12

or IL-15 is sufficient to initiate cytokine production by NK

cells and increase their cytotoxic activity [105, 121], NK

cell activation by DCs is most efficiently performed

through cell contact [113, 122]. This cell contact is medi-

ated through immunological synapses (IS), and, thus, the

study of these structures became imperative for the correct

understanding of NK cell activation by DCs. Studies of IS

with NK cells first focused on the interaction of NK cells

and target cells that were susceptible to NK cell cytotox-

icity. As the outcome of these interactions is the killing of

the target cell, this IS was called cytotoxic synapse [130,

131]. The human cytotoxic NK cell IS has been extensively

studied by direct visualization of cell conjugates with

human primary NK cells or NK cell-like tumor cell lines.

Altogether, these studies allowed the detailed description

of the kinetics of formation and maturation of the cytotoxic

NK cell IS. NK cell-mediated killing of allogeneic, virus-

infected or tumor cells includes an initiation stage that

leads to adhesion of the NK cell to the target cell (forma-

tion of the IS) and initiation of activating NK cell

signaling. The following effector stage comprises reorga-

nization of the NK cell cytoskeleton that culminates in

NK cell activation by DCs 3509
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filamentous actin polymerization at the interface between

the cells, and polarization of the microtubule organizing

center (MTOC) of NK cells and of cytotoxic granules

towards the target cell. After lytic granule release, the

termination stage begins, with the detachment of the NK

cell from the apoptotic target cell. The detailed kinetics of

molecule migration and signaling at the cytotoxic NK cell

IS have been recently reviewed [132, 133].

During cytotoxic NK cell responses normal somatic

tissue is spared to avoid immunopathology, and NK cell

cytotoxicity is, therefore, tightly regulated. The expression

of autologous MHC class I molecules on the surface of

healthy cells, together with the absence of expression of

activating ligands, inhibits initiation of cytotoxic NK cell

functions [134, 135]. These inhibitory signaling pathways

are also mediated through conjugates between NK cells

and non-susceptible target cells. The interface of these

conjugates is called the non-cytotoxic IS. The non-cyto-

toxic NK cell IS is characterized by the enrichment of

inhibitory signaling molecules at the interface of the two

cells, that inhibit NK cell–cytoskeleton rearrangements and

promote NK cell detachment from the conjugated cell. In

contrast to these classical classifications of NK cell IS,

mature DCs activate NK cells and prevent themselves from

being killed at the same time during their conjugate for-

mation with NK cells [87]; we named this interaction a

regulatory synapse [113]. While classical cytotoxic and

non-cytotoxic NK cell interactions have been studied in

depth, the interactions of NK cells involving regulatory

synapses are just being characterized. Regulatory NK cell

synapses include interactions between resting NK cells and

fully matured DCs (Fig. 2). In this cross-talk, mature DCs

activate NK cells to secret cytokines, to increase their

cytotoxicity, to survive and to proliferate [105, 113, 121],

while they escape at the same time from NK cell cyto-

toxicity to propagate adaptive immune responses. DC

survival from NK cell cytotoxicity relies on several factors.

Firstly, increased MHC class I expression after DC matu-

ration engages inhibitory NK cell receptors, repressing NK

cell cytotoxic activation. Secondly, mature DCs express

protease inhibitors of the serpin family, like protease

inhibitor 9 (PI9), which inhibit granzyme B-mediated

apoptosis [87, 136, 137]. Furthermore, actin-dependent

stabilization of MHC class I molecules at the IS between

NK cells and mDCs might allow the continuous engage-

ment of inhibitory receptors to prevent NK cell cytotoxicity

(Barreira da Silva and Münz, submitted). These multiple

mechanisms protect DCs from cytotoxicity, while NK cells

are activated at the same time via the IS with mature DCs.

In addition to these inhibitory interactions at the IS

between DCs and NK cells, polarization of NK cell-acti-

vating cytokines to the conjugate interface can be

observed. Semino and colleagues [123] investigated the

interaction between immature DCs and resting NK cells.

They demonstrated the importance of IL-18 accumulating

at the IS for NK cell activation. In addition, the high

mobility group B1 (HMGB1) protein seemed to mediate

DC maturation and survival during this interaction [123,

138]. In addition, LPS-matured DCs were found to elicit

IFN-c production by resting NK cells in a cell contact-

dependent fashion [122]. During this interaction, IL-12 of

DCs polarized to the interface with NK cells. While these

studies analyzed just a single time point after IS formation

and did not optimize DC maturation for NK cell activation,

we investigated the synapse maturation between NK cells

and polyinosinic polycytidylic acid [poly(I:C)] matured

DCs, which allows for maximal NK cell stimulation [105].

These experiments documented that the synapse between

human mature DCs and autologous resting NK cells forms

rapidly (within 1–5 min of coculture) and matures further

after 20 min of interaction [113, 139] (Barreira da Silva

and Münz, submitted). Maturation is associated with the

polymerization of DC-derived filamentous actin at the IS

(Barreira da Silva and Münz, submitted). Cytoskeletal

stabilization of the IS was previously observed in stimu-

latory DC/T cell synapses [140, 141]. DC/NK cell

conjugate formation also seems to depend on CX3CL1

signaling [139], as fewer conjugates are formed in the

presence of blocking antibodies against CX3CL1. Upon

conjugate formation, inhibitory and activating molecules

are recruited in a temporally and spatially well-orchestrated

manner. After 1–5 min, inhibitory KIRs and CD94 mole-

cules on the NK cell and MHC class I molecules on the DC

side, as their ligands, polarize to the DC interface with NK

cells [113]. With similar kinetics, the IL-15 receptor

components accumulate at the synapse. Since the interac-

tion between KIRs and CD94 with MHC class I molecules

leads to inhibitory signaling and IL-15 transpresentation is

important for the activation and survival of NK cells, the

synchronized polarization kinetics of all these molecules

could pose problems for the parallel signaling of these

inhibitory and activating pathways. The simultaneous sig-

naling of these molecules seems to be possible because

they may segregate into different domains at the center of

the synapse [113]. In contrast, structural and adhesion

molecules, like talin, filamentous actin and LFA-1, are

located in the peripheral part of the IS [113]. In addition to

these early events, maturation of the interactions between

DCs and NK cells allows, after 20 min, for IL-12 polari-

zation to the interface, which is essential for the stimulation

of IFN-c secretion by NK cells [122, 139]. Furthermore,

maturation of the IS between mature DCs and resting NK

cells also seems to be important for the maintenance of

inhibitory signaling through KIR engagement by MHC

class I molecules, and for prevention of cytotoxic granule

recruitment to the interface (Barreira da Silva and Münz,
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submitted). Therefore, mDCs seem to stabilize their syn-

apse with resting NK cells by actin polymerization in order

to allow additional stimulatory molecules, like IL-12, to be

polarized towards NK cells, but use this cytoskeletal sta-

bilization at the same time to maintain inhibitory MHC

class I molecules at the synapse to prevent being killed by

NK cells.

All published studies on human DC/NK cell synapses

have used monocyte-derived DCs, but the hallmarks of this

interaction seem to also hold up for HLA-DR?

CD11c?BDCA1? peripheral blood DCs (Barreira da Silva

and Münz, submitted). Of further note, both subsets of

peripheral blood NK cells can form conjugates with mature

DCs, but the CD56bright NK cell subpopulation seems to

form synapses with mature DCs more readily [113, 142].

This is consistent with SLOs, as sites of CD56bright NK cell

enrichment, being the primary site of interactions between

mature DCs and resting NK cells.

For obvious reasons, the summarized studies on human

DC interactions with NK cells have been confined to in

vitro experiments. However, it remains unclear if the long

lasting interactions of DCs with NK cells in vitro also

occur in vivo. Initially, using an adoptive transfer strategy,

Bajénoff and colleagues [58] demonstrated that NK cells

can conjugate in vivo for longer time intervals with DCs (at

least 25 min), both in the steady-state and upon infection

with Leishmania major. In contrast, a more recent study

has challenged this notion and suggested multiple short

Fig. 2 The immunological synapse between mature dendritic cells

and resting natural killer cells. Upon encounter, dendritic cells (DCs)

and natural killer (NK) cells rapidly form conjugates, forming an

immunological synapse (IS). The IS between mature DCs and resting

NK cells has both activating and inhibitory features and can,

therefore, be described as a regulatory synapse. The immature IS

between DCs and NK cells (formed after 1–5 min of interaction)

presents enrichment of both activating [IL-15R, talin, lymphocyte

function associated molecule 1 (LFA-1)] and inhibitory [killer cell

immunoglobulin like receptors (KIRs), CD94 and MHC class I]

molecules at the IS (left side). The parallel signaling of these

opposing interactions is possible due to the spatial separation of

activating and inhibitory domains in the IS, which cluster IL-15R,

MHC class I, KIRs and CD94 molecules in the central part of the IS

and are surrounded by talin and LFA-1 molecules. Upon maturation

of the synapse (after 15–20 min of interaction), DCs-derived

filamentous actin polymerized at the interface between the cells

(right side). Furthermore, IL-12 and IL-12R accumulate at the IS,

while IL-15R and MHC class I polarization to the synapse is

maintained. The maintenance of inhibitory signaling via MHC class I

prevents polarization of the cytolytic machinery, like perforin-

containing granules and the microtubule organizing center (MTOC),

to the synapse. The synchronized signaling of activating and

inhibitory molecules allows NK cell activation and inhibition of DC

lysis by NK cells at the same time. Microscopy pictures represent

conjugates between poly(I:C) matured DCs and autologous resting

NK cells after 1 (left) and 20 min (right) of co-culture. Filamentous

actin (green) and nuclear DNA (blue) were stained. Original

magnifications 9100, scale bars 10 lm
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contacts of below 5 min duration for the interactions of NK

cells with DCs in lymph nodes, both in the steady-state and

after poly (I:C) or LPS activation [59]. Therefore, it would

be interesting to discover which pattern of NK cell motility

human NK cells follow in vivo, and novel mouse models

with human immune compartment reconstitution might

allow the addressing of this question [116, 143].

DC editing, activation and polarization by NK cells

In addition to NK cell activation by mature DCs, which

might preferentially take place in secondary lymphoid

tissues, activated NK cells might also influence DC mat-

uration at sites of inflammation. This signaling from NK

cells to DCs has been termed DC editing [144], and con-

sists of killing of immature or allogeneic DCs, induction of

DC maturation and modification of DC maturation for

enhanced induction of Th1-polarized adaptive immune

responses (Fig. 3). NK cells, as cytotoxic innate

lymphocytes, can directly attack susceptible target cells.

Cytotoxicity of activated NK cells is triggered if a target

cell does not provide enough inhibitory signals (absence of

MHC class I molecules or ‘‘missing self’’) or too many

activating signals (‘‘altered self’’). Due to an abundance of

activating ligands, NK cells can lyse autologous myeloid

cells, like microglia cells, macrophages and DCs, despite

their MHC class I expression. Non-activated microglia

cells were found to be susceptible to NK cell killing via

recognition by the activating NKp46 and NKG2D receptors

[145]. Furthermore, macrophages can also be targets of

editing by NK cells. In this case, TLR-activated or infected

macrophages seem to be more susceptible than non-acti-

vated macrophages and upregulate NKG2D ligands [146–

148]. Moreover, the first report documenting killing of DCs

by NK cells appeared in 1985 by Shah and colleagues

[149]. Today, it is appreciated that immature DCs can be

targets for NK cell cytotoxicity, and are more susceptible

than mature DCs [150–152]. However, the ratio between

DCs and NK cells seem to play an important role in

Fig. 3 Dendritic cell editing: killing, maturation, and Th1 polariza-

tion by natural killer cells. Sites of inflammation allow activated

natural killer (NK) cells to encounter immature dendritic cells (DCs).

1 At high NK cell/DC ratios, NK cells can kill immature DCs, due to

the engagement of the natural cytotoxicity receptors p30 and p46 and

DNAX accessory molecule 1 (NKp30, NKp46 and DNAM-1). The

low levels of HLA-E expression on immature DCs are unable to

inhibit this NK cell activation. It is thought that cytotoxic editing of

DCs by NK cell is mediated by TRAIL/DR4/5-induced apoptosis. 2
At low NK/DC ratios, NK cells can promote maturation of DCs, via

type II interferon, tumor necrosis factor and granulocyte macrophage

colony-stimulating factor (IFN-c, TNF and GM-CSF, respectively).

These cytokines induce phenotypic maturation of DCs, which

includes up-regulation of co-stimulatory and MHC molecules

(CD83, CD86, MHC class I and MHC class II). Furthermore, in

some cases, cytokine production by DCs is also induced (like IL-12

secretion). Maturation of DCs enables then to migrate into secondary

lymphoid organs (SLOs), due to the upregulation of chemokine

receptors, like C–C chemokine receptor 7 (CCR7). 3 Inside SLOs,

DCs previously activated by NK cells were found to efficiently prime

protective adaptive responses, including Th1 polarization of naı̈ve

CD4? T cells and cytotoxic responses by CD8? T cells
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whether immature DCs are targeted by NK cells. Large

numbers of activated NK cells competently kill immature

DCs [86, 153]. Furthermore, killing of immature DCs by

NK cells is mediated by NKp30, NKp46 and the activating

co-receptor DNAM-1 [87, 154, 155] in the context of

insufficient inhibitory signaling due to low HLA-E

expression by these APCs [156]. In contrast, upregulation

of MHC class I, including non-classical HLA-E molecules,

during DC maturation protects DCs against NK cell lysis

[87]. After activating NK cell receptors are engaged,

immature DCs are killed by NK cells through apoptosis

induction, via the TNF-related apoptosis-inducing ligand

(TRAIL)-death receptor 4 (DR4) pathway [153, 157]. In

addition, after homing to lymph nodes, NK cells can also

kill DCs by perforin-dependent mechanisms [158]. The

advantages of eliminating immature DCs through NK cell-

mediated cytotoxicity might be that such tolerogenic APCs

can be selectively eliminated to allow only mature DCs to

emigrate from sites of inflammation for efficient induction

of immune responses. Moreover, DC killing by NK cells

can also be harnessed clinically to remove allogeneic DCs

that could elicit graft-versus-host disease during bone

marrow transplantation, or allograft rejection [159, 160].

Contrary to DC killing by NK cells at high NK cell to

immature DC ratios, low ratios seem to promote DC

maturation and survival [86, 153]. Activated NK cells

upregulate the surface expression of co-stimulatory mole-

cules and cytokines by DCs. Both, contact-dependent

mechanisms and soluble factors promote maturation of

DCs by NK cells. After activation, NK cells can secrete

IFN-c and TNF and these cytokines induce differentiation

of monocytes into inflammatory DCs and upregulation of

co-stimulatory molecules on immature DCs [85, 86, 161,

162]. Among these, NK cells induce upregulation of CD86,

CD83 and HLA-DR expression of DCs, while DC-SIGN

expression was found to be downregulated [153]. More-

over, NK cells also boost plasmacytoid DC functions, like

their capacity to sense virus products at suboptimal con-

centrations [90]. Furthermore, DC maturation by NK cells

allows also for the upregulation of chemokine receptors for

the migration to SLOs, the site of T cell priming. Thus,

activated NK cells can mature DCs for the initiation of

adaptive immune responses. However, physiologic condi-

tions under which NK cell activation precedes DC

maturation have so far been rarely reported. The notable

exception being NK cell activation by tumors cells, which

was found to mature DCs for the priming of protective

CD8? T cell responses [163].

In addition to DC maturation, NK cells can also assist in

the polarization of Th1 responses. Especially, the

CD56bright NK cell subset in SLOs is superior in IFN-c
secretion and can thereby assist Th1 priming by DCs [58,

61, 164]. The NK cell-supported initiation of Th1 immune

responses allows the efficient elimination of tumor cells

and several intracellular pathogens [165–167]. Indeed, Ing

and Stevenson [166] showed very elegantly that Plasmo-

dium falciparum induces activation of NK cells via mature

DCs, and activated NK cells in turn augment IL-12 pro-

duction by DCs to induce Th1 polarized CD4? T cell

responses. Thus, NK cells edit DC-mediated responses by

killing tolerogenic immature DCs, by maturing DCs pri-

marily via TNF, and by assisting the priming of Th1-

polarized immune responses by secretion of IFN-c.

Conclusions

Dendritic cells have now been recognized as the most

efficient antigen-presenting cells for the initiation of innate

and adaptive immune responses. By delicately balancing

inhibitory and activating signaling, they stimulate human

NK cells, preferentially those that are enriched in T cell

areas of secondary lymphoid organs, and prevent them-

selves being killed by them at the same time. DCs

preferentially migrate to these sites after maturation is set in

motion through pathogen-associated molecular pattern

recognition in the periphery. Activated NK cells can then, in

turn, home to these peripheral sites to limit pathogen rep-

lication through cytokines and killing of infected cells, but

also edit DC populations so that only mature DCs deliver

signals from these sites to secondary lymphoid organs.

Tolerogenic immature DCs are either matured by NK cells

or destroyed at the site of infection. While the ability of NK

cells to kill immature DCs is already used clinically to

prevent graft-versus-host disease after HLA-mismatched

bone marrow transplantation, NK cell activity is not yet

consciously harnessed during vaccination by suitable

adjuvant choice, which would mature DCs optimally to

recruit these innate effector cells during immunization.

Especially, tumor immunotherapy could benefit signifi-

cantly from DC-mediated activation of NK cells.
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