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Abstract Due to the rapid emergence of resistant

microbes to the currently available antibiotics, cationic

antimicrobial peptides have attracted considerable interest

as a possible new generation of anti-infective compounds.

However, low cost development for therapeutic or indus-

trial purposes requires, among other properties, that the

peptides will be small and with simple structure. Therefore,

considerable research has been devoted to optimizing

peptide length combined with a simple design. This review

focuses on the similarities and differences in the mode of

action and target cell specificity of two families of small

peptides: the naturally occurring temporins from the skin of

amphibia and the engineered ultrashort lipopeptides. We

will also discuss the finding that acylation of cationic

peptides results in molecules with a more potent spectrum

of activity and a higher resistance to proteolytic degrada-

tion. Conjugation of fatty acids to linear native peptide

sequences is a powerful strategy to engineer novel suc-

cessful anti-infective drugs.
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Abbreviations

AMP Antimicrobial peptide

GFP Green fluorescent protein

LiPs Lipopeptides

LPS Lipopolysaccharide

LPG Lipophosphoglycan

LTA Lipoteichoic acid

IM Inner membrane

MIC Minimum inhibitory concentration

OM Outer membrane

TNFa Tumor necrosis factor alpha

USLiPs Ultrashort lipopeptides

Introduction: antimicrobial (host-defense) peptides

and lipopeptides

Host-defense cationic peptides (HDPs, also named anti-

microbial peptides, AMPs) are ribosomally produced by

almost all forms of life, from unicellular organisms to

plants and highly evolved animal species [1]. They are

essential evolutionarily conserved elements of the innate

defense system of these organisms, providing them with a

fast-acting weapon against microbial infections. This pro-

tection is required, in the case of vertebrates, before the

adaptive immune system is activated [2–8]. Most AMPs

are mobilized shortly after the attack of the pathogen and

operate rapidly to neutralize a broad range of microor-

ganisms [9]. They can be found in large quantities freely

circulating or sequestered in compartments throughout the

organism [10, 11]. AMPs were initially isolated more than

two decades ago from various sources including insect

hemolymph, the skin of frogs, and mammalian neutrophil

granules [12–15].
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Many antibiotic-resistant bacterial and fungal strains

have emerged due to the widespread use of conventional

drugs. This is a growing health concern worldwide, espe-

cially in hospitals [16, 17], and has stimulated research into

alternative antibiotic agents with new mechanisms of

activity. AMPs are considered among the most promising

candidates for future therapeutics and have resulted in

intensive research for the discovery of new types and

sequences. Currently, more than 1,000 native peptides from

all species of life, as well as many thousands of designed

peptides have been described (see Hancock review in this

MAR and database http://aps.unmc.edu/AP/main.php).

Antimicrobial lipopeptides (LiPs), on the other hand, are

produced nonribosomally in bacteria and fungi during

cultivation on various carbon sources. They are a class of

antibiotics that are highly active against multidrug-resistant

bacteria. However, some LiPs also display antifungal

activity [18–29]. Most native LiPs consist of a short (six to

seven amino acids) linear or cyclic peptide sequence, with

either a net positive or a negative charge, to which a fatty

acid moiety is covalently attached to the N-terminus.

Compared to AMPs, resistance to LiPs is generally rare

[20, 30].

Acylation of synthetic or natural AMPs with fatty acids

has been proven to be a useful approach to improve their

antimicrobial activity, as well as to endow them with

antifungal properties. This has been shown with a number

of LiPs consisting of cationic AMPs acylated at their

N-terminus with a C8–C18 fatty acid chain length. This

effect is due to changes in the overall hydrophobicity of

these molecules, which affects both their oligomerization

and organization in solution and in membranes and their

affinity for membranes [31–40].

Searching the keywords ‘‘antimicrobial peptide’’ results in

over 7,000 scientific publications and over 2,500 patents.

Therefore, to focus this review, we will discuss only a family

of short AMPs isolated from frog skin, and a de novo designed

family of ultrashort LiPs (USLiPs). Due to the small size and

simple composition of both these families, they are attractive

and commercially feasible candidates for further develop-

ment in therapeutic or industrial uses.

Does the activity of AMPs or LiPs depend on a specific

structure or a defined length?

Despite differences in their conformation and length, most

naturally occurring AMPs share two main features: (1) a

high net positive charge under physiological conditions and

(2) a potential to adopt an amphipathic structure in a

hydrophobic environment (an a-helix, a b-sheet, or a

combination of both [41]). These structures characterize

most membrane-active peptides that can bind and permeate

microbial membranes. The conformation and the length of

AMPs are important biophysical parameters in determining

their mode of action, which will be discussed in the next

paragraphs. Generally speaking, the minimum length for a

peptide in an a-helix structure required to span a membrane

is *23 amino acids or *8 amino acids for a peptide that

adopts a b-sheet structure. However, peptides that do not

need to insert into the hydrophobic core of the membrane

in order to exert their function can be even smaller. Nev-

ertheless, the length of native AMPs ranges from about 8

amino acids up to more than 100 amino acids. Because

most of them have an amphipathic character, many reports

have focused on the role of amphipathicity in their ability

to kill microorganisms.

Native LiPs on the other hand differ from AMPs by

having only short chains of six to seven amino acids linked

to a specific lipophilic moiety [42–44]. Both the compo-

sition of the peptide moiety and the type of the lipophilic

part are sensitive to modification. In general, native LiPs

belonging to this group are non-cell-selective and therefore

quite toxic to mammalian cells. Despite this toxicity,

daptomycin, a member of this family, which is active only

toward Gram-positive bacteria, was recently approved by

the FDA for the treatment of skin infections caused by

Staphylococcus aureus [45]. This flagship example con-

firms the growing opinion that peptide-based antibiotics

will be among the next generation of anti-infective therapy.

Short-length native AMPs and engineered USLiPs

Among the natural sources of AMPs, the skin of amphibia

Anura is one of the richest storehouses [46–48]. These

AMPs are produced by dermal glands and stored within

granules that can be released on the skin surface upon

stress or injury [46]. Their synthesis is induced by contact

with microorganisms and is transcriptionally regulated by

NF-jB/IjBa machinery [49]. Over the past 10 years, a

significant number of studies have been carried out with

temporins, initially isolated from the European red frog

Rana temporaria [50] and subsequently from the secretions

of other ranid frogs of both North American and Euroasian

origin [51, 52] (see Table 1).

Temporins are one of the largest families of AMPs

(more than 100 members), and they have unique properties.

(1) They are among the smallest amphipathic a-helical

AMPs found in nature (10–14 amino acids, with a few

longer exceptions with 16–17 amino acids). (2) Most of

them have a low net positive charge at a neutral pH,

ranging from ?2 to ?3, due to the presence of only one or

two basic residues in their sequence. This is in contrast

with most AMPs, which have a higher content of positive

charges. (3) Some of them act efficiently and rapidly
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against a wide range of pathogens (including bacteria,

yeasts, and protozoa of Leishmania genus) and are in

general not toxic to mammalian cells. (4) Their killing

kinetic is concomitant with that of membrane perturbation.

(5) Some temporins have selective cytotoxic activity

against neoplastic cells, such as erythroleukemic cells and

cutaneous T lymphoma [53]. (6) Some have immuno-

modulatory activities (chemotactic to human phagocytes)

[54]. (7) They retain almost all biological functions in

serum. (8) Some of them have an antiendotoxin activity.

(9) They show synergy with other members in their anti-

microbial and antiendotoxin activity [52]. These unique

properties will be outlined in the paragraphs below. Inter-

estingly, a unique ultrashort temporin (only eight residues)

has been recently isolated from the skin of the frog

Phelophylax saharica. It represents the smallest naturally

occurring linear AMP identified so far. It has a highly

hydrophobic sequence, with the highest percentage of Phe

residues (50%) of any known peptide or protein, and folds

into a nonamphipathic a-helix when bound to the microbial

membrane surface [55].

Among engineered small AMPs, the USLiPs represent

the shortest LiPs reported so far. They are composed of two

to four amino acids linked to a fatty acid (12–16 carbon

chain). The net charge is positive, ranging from 1 to 4 [56,

57] (Table 1). The fatty acid tail has been shown to com-

pensate for the hydrophobic amino acids within the peptide

chain. Moreover, substituting only one out of the two to

four amino acids is sufficient to create molecules with

different biological functions. For example, broad

Table 1 Designation and

sequence of selected temporins

and LiPs

a Basic residues are indicated

by red letters. Underlined and

bold amino acids are D-

enantiomers. All the peptides

are amidated at their C-terminus

Peptide 
Designation

Sequencea Ref

Native temporins 

ALa FLPIVGKLLSGLSGLL-NH2 [144]
1ARa FLPIVGRLISGLL-NH2 [145]
1AUa FLPIIGQLLSGLL-NH2 [146]
1BYa FLPIIAKVLSGLL-NH2 [147]
1Ca FLPFLAKILTGVL-NH2 [148]
1Rc FLPVIAGLLSKLF-NH2 [149]

1DRa HFLGTLVNLAKKIL-NH2 [150]
1Ga SILPTIVSFLSKVF-NH2 [151]
GH FLPLLFGAISHLL-NH2 [152]

1HKa SIFPAIVSFLSKFL-NH2 [153]
1La VLPLISMALGKLL-NH2 [154]
1M FLPIVGKLLSGLL-NH2 [155]
1Oa FLPLLASLFSRLL-NH2 [156]

1OLa FLPFLKSILGKIL-NH2 [156]
1P FLPIVGKLLSGLL-NH2 [154]

1SHf FFFLSRIF-NH2 [55]
1SPa FLSAITSILGKFF-NH2 [157]
1TGa FLPILGKLLSGIL-NH2 [158]
1Ta FLPLIGRVLSGIL-NH2 [50, 52]
1Va FLSSIGKILGNLL-NH2 [159]
1Vb FLPLVGKILSGLI-NH2 [160]

Engineered  
USLiPs

C16-KKKK CH3(CH2)14CO-KLLK-NH2 [56]
C14-KLLK CH3(CH2)12CO-KLLK-NH2 [56]
C16-KAAK CH3(CH2)14CO-KAAK-NH2 [56]
C16-KKKK CH3(CH2)14CO-KKKK-NH2 [56]
C16-KGGK CH3(CH2)14CO-KGGK-NH2 [56]
C16-KKK CH3(CH2)14CO-KKK-NH2 [56, 57]
C16-KK CH3(CH2)14CO-KK-NH2 [57]

C16-KAK CH3(CH2)14CO-KAK-NH2 [57]
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spectrum compounds with activity against all strains of

bacteria and fungi become selective toward Gram-positive

bacteria and fungi, but not against Gram-negative bacteria

[57]. USLiPs are amphiphilic molecules mimicking deter-

gents, in which one side is hydrophilic (the peptidic side)

and the other one is hydrophobic (the fatty acid side).

Therefore, they can form a hydrophobic core through self-

association. However, the tendency to oligomerize is offset

by the resulting close proximity of the positively charged

peptide moiety. For this reason, the hydrophobic moiety

needs to be a long fatty acid, usually comprising at least 14

carbons [31, 56]. The finding that a single lysine attached

to a palmitic acid (16 carbon atoms) is not active supports

the notion that the activity of these LiPs is not dictated

solely by the hydrophobic aliphatic chain, but also requires

a specific amino acid sequence. Elongation of the peptide

chain above four amino acids can allow the shortening of

the conjugated fatty acid [31]. Regarding LiPs with a long

peptide chain (more than ca. eight amino acids), oligo-

merization can be the result of peptide–peptide, peptide–

fatty acid, and fatty acid–fatty acid interactions [58].

However, the structure and organization of the peptidic

chains in solution are different for different LiPs. Most of

them are found unstructured. Nevertheless, it was observed

that, in solution, the peptide chains can bend and interact

with the hydrophobic fatty acid part of the LiP micelles and

acquire an a-helical conformation [31, 39]. Peptides that

oligomerize in solution are significantly more protected

from proteolytic degradation compared with peptides that

do not oligomerize. Therefore, the existence of antimi-

crobial LiPs as aggregates may be an advantage in vivo

where resistance to proteolytic degradation can influence

the half-life of the peptide and its efficacy [59–62]. The

self-assembly ability of antimicrobial LiPs in solution has

been demonstrated with tri-amino acid LiPs of different

sequences. They can form nanostructures with different

morphologies, as seen by electron microscopy [57]. The

different structures and the size of the assemblies deter-

mine the activity and the possibility that these LiPs will

dissociate and penetrate the microorganism’s cell wall.

Similarly, light microscopy analysis has shown that a new

family of antimicrobial agents named oligoacyllysines

tends to aggregate and form nanotubes [63–65].

A role for the microbial membrane phospholipids

and outer cell wall components in the function and cell

specificity of AMPs and LiPs

The inner phospholipid membrane

Although the exact mode(s) of action of AMPs remains a

matter of controversy, there is a consensus that the

membrane of the pathogen is one of the major targets of the

AMPs. This has been highlighted in various studies

showing that an ample number of AMPs selectively per-

meate the membrane of microbial cells, causing

irreversible physical damage [66–69]. Nevertheless, there

is convincing evidence that membrane permeation is not

the only mechanism of microbial killing. Indeed, peptides

can translocate the membrane and subsequently alter the

membrane septum formation, or inhibit cell-wall, nucleic-

acid, protein synthesis as well as the activity of enzymes or

protein folding [41, 46, 70–72]. In addition, besides a direct

antimicrobial activity, AMPs from higher eukaryotes also

possess anticancer activity; immunomodulatory properties

(as they can activate specific immune receptors such as the

TLR2/1 complex [73–75]); the ability to influence cytokine

release, cell proliferation, angiogenesis, wound healing,

and chemotaxis [76, 77]; and the capacity to neutralize

microbial endotoxins [52, 78] (see also the review by

Hancock and collaborators in this MAR).

As mentioned above, temporins and USLiPs represent

two unique families of antimicrobial agents. There is a

consensus that, in general, cationic AMPs and some LiPs

recognize and interact with the acidic phospholipids (e.g.,

phosphatidylglycerol, cardiolipin) exposed on the outer

leaflet of the bacterial membrane. In contrast, in mamma-

lian cells, the outer leaflet is zwitterionic, which should

reduce the binding capacity of the cationic AMPs. This can

account for the preferential activity of AMPs against bac-

teria and partially against fungi [79, 80]. Note that

temporins can also disintegrate the membrane of Leish-

mania parasites, causing a loss of intracellular material.

The membrane of Leishmania protozoa is less anionic than

that of bacteria and is devoid of phosphatidylglycerol [81].

To the best of our knowledge, temporins are among the

smallest natural antiparasitic peptides reported so far that

exert their activity by disrupting the parasitic membrane.

Regarding LiPs, due to their high hydrophobicity some

behave as non-cell-selective antimicrobials.

General models for membrane permeation

Based on the classical amphipathic a-helical or b-sheet

structures of the early discovered families of AMPs, sev-

eral models were proposed that could explain the

mechanism of membrane permeation. These models vary

from the classical ‘‘barrel stave’’ transmembrane pore

formation mechanism [82] to a very general mechanism of

membrane destabilization via the ‘‘carpet’’ model [83] that

can involve the generation of ‘‘toroidal’’ pores [84, 85],

channel aggregates [86], or more complex structures,

depending on the length and the sequence of the peptide.

An important feature of the ‘‘barrel-stave’’ mechanism is

that it characterizes peptides that can cross the lipid
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bilayers regardless of the charge of the phospholipid head-

group. This is because these peptides do not have a high net

positive charge and therefore they are not selective to

anionic membranes. Their interaction with the phospho-

lipid bilayers is driven by hydrophobic and not electrostatic

interactions. Such peptides self-associate either in solution

prior to binding and insertion into the membrane, or

alternatively, bind to the membrane followed by peptide

oligomerization and insertion. In these oligomers, the

hydrophobic surfaces of the helices interact with the fatty

acid chains of the membrane phospholipids, while the

hydrophilic surfaces point inward, producing a transmem-

brane pore. Because such AMPs interact with both

zwitterionic and negatively charged membranes, they are

non-cell-selective [83]. In contrast, in the ‘‘carpet model,’’

peptides first bind to the surface of the target membrane via

electrostatic interactions and cover it in a carpet-like

manner. Next, the peptides reorient themselves such that

their hydrophobic face points toward the lipids, and the

hydrophilic face toward the phospholipid head-groups. At

very high peptide concentrations the membrane can be

disintegrated in a detergent-like manner, resulting in the

collapse of the membrane packing into fragments with

physical dissolution of the cell wall. This mechanism does

not require a specific structure, length, or specific amino

acids.

In the case of LiPs, they can bind to the membrane as

large oligomers followed by subsequent multimer dissoci-

ation and insertion into the phospholipid bilayers. This

would be accompanied by a structural transition of LiPs

and membrane perforation leading to cell death [20].

General models for cell killing

Extensive research on the mode of action of temporins has

suggested the plasma membrane as their principal site of

action. This has been established based on the following

data: (1) a rapid induction of the collapse of membrane

potential; (2) a rapid killing kinetics (within 15–20 min)

concomitant with that of membrane permeation; (3) a

correlation between the extent of membrane damage and

the microbial killing; (4) an injured pattern of microbes

(bacteria and parasites) as visualized by both transmission

and scanning electron microscopy; and (5) leakage of large

intracellular components (e.g., the enzyme b galactosidase)

in a dose-dependent manner and with a kinetic superim-

posable to that of bacterial death [51, 87]. Note that the

ability to strongly alter the acyl chain packing of anionic

phospholipid bilayers, thereby triggering local cracks and

microbial membrane damage, is maintained in the 8-mer

ultrashort temporin [55].

However, the ability of several temporins to perturb the

cytoplasmic membrane is not necessarily the lethal step.

Some temporins can permeate the plasma membrane even

at peptide concentrations markedly lower than those

required to inhibit bacterial growth. This was demonstrated

by using a triple-color staining method that enables

simultaneous visualization of the effects of the peptide on

the viability and membrane integrity of individual cells

[87]. Therefore, it is reasonable to speculate that temporins

can display different molecular mechanisms, depending on

their concentration. Note that in contrast to other mem-

brane-active AMPs [88], temporins do not lyse bacteria or

do not induce an authophagic cell death in parasites (like

indolicidin [89]), but cause the cells to have a ghost-like

appearance with a deep roughening of their surface. The

cell structure collapses, while membrane folding occurs

with loss of intracellular material.

Despite differences in the composition between AMPs

and USLiPs, mode of action studies have indicated a

similar general mechanism. Most native LiPs act via two

major mechanisms: (1) inhibiting the synthesis of cell wall

compounds such as (1,3)-b-D-glucan or chitin [90–93], and

(2) inducing membrane lysis [20–22, 28, 42–44, 94, 95].

However, the following data suggest that, similarly to most

natural AMPs, a major target of the USLiPs is the mem-

brane of the pathogenic microorganisms. Indeed, a direct

correlation is found between the antimicrobial activity of

the LiPs on different microorganisms and their ability to

increase the permeability of their membranes, as well as to

damage the structure of the corresponding pathogens, as

shown from electron microscopy images [56]. A schematic

representation of the mode of action of both short AMPs

and USLiPs is shown in Fig. 1.

The outer cell wall

Despite the fact that reaching the anionic bacterial mem-

brane is the goal of most AMPs, the first step in the

selection of target cells is governed by the electrostatic

interactions between the positively charged side chains of

the amino acids and the negatively charged components of

the microbial cell wall, mainly lipopolysaccharide (LPS or

endotoxin) in the outer membrane (OM) of Gram-negative

bacteria, or lipoteichoic acid (LTA) in Gram-positive

bacteria [96, 97]. Since LPS rather than LTA is the focus of

a huge number of studies, it will be largely analyzed in this

review. The repulsive forces of adjacent LPS molecules are

neutralized by Mg2? cations, making the OM an oriented

and tightly cross-linked barrier that protects bacteria from a

variety of hydrophobic molecules [98, 99], including some

AMPs [100–102]. Note that for all enterobacterial and most

nonenterobacterial strains, LPS is composed of three parts:

(1) a hydrophobic moiety, the lipid A, consisting of fatty

acid chains linked to two phosphorylated glucosamine

residues; (2) an oligosaccharide core, covalently bound to

Mode of action of short AMPs and lipopeptides 2271
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the lipid A, via ketodeoxyoctonic acid; and (3) a hydro-

philic O-antigenic domain, containing repeating saccharide

units, which protrudes into the surrounding medium. The

saccharide portion is diverse in length and composition

amongst the different Gram-negative bacterial species

[103, 104]. LPS covers more than 90% of the outer leaflet

of the OM, whereas the inner membrane (IM, i.e., the

cytoplasmic membrane) is composed of phospholipids that

are distributed similarly on both sides of the bilayer. After

crossing the LPS, AMPs meet this IM, which serves as an

additional physical barrier to shield bacteria from anti-

bacterial agents [105–107]. The fact that the LPS layer can

protect bacteria from AMPs has been evidenced in several

studies revealing that some AMPs are active against one

bacterial strain but not against others, although the IMs of

these bacteria have similar phospholipids composition [70].

Mode of action studies suggested that this is because of the

differences in the LPS structure of the various strains [98].

Indeed, removal of the LPS from sensitive and nonsensitive

bacteria ended with both bacteria being equally susceptible

to the AMPs. Further support for the role of LPS in bacteria

protection is manifested in studies showing lower activities

for some AMPs against smooth bacteria (with a full length

LPS saccharidic portion) compared to bacteria with a deep

rough phenotype, characterized by the absence of LPS

O-chains [108, 109].

Another factor that can affect the ability of AMPs to

insert and traverse the LPS-OM relates to their biophysical

properties, specifically to their oligomeric state. When

peptides’ aggregation is triggered upon binding to LPS, or

it is an intrinsic property of an AMP when in solution, they

tend to form bulky compounds that prevent them from

crossing the OM into their target IM (Fig. 1) [107]. Once

such oligomers are dissociate, the AMPs become active on

Gram-negative bacteria. Three examples validate this

hypothesis. Firstly, an all-L 15-amino acid peptide was

compared to its D,L analog (diastereomer). Antimicrobial

assays showed that the D,L peptide was more active against

Gram-negative bacteria compared to the all-L counterpart

(the MICs were 5 and [100 lM against E. coli, respec-

tively). However, membrane permeation assays with

spheroplasts of E. coli (lacking the cell wall) indicated that

the activity of the all-L-amino acid peptide was equal to

that of its diastereomer [107]. In contrast, the diastereomer

was much more active (up to ten-fold) than the all-L-pep-

tide when membrane permeation was tested on intact

E. coli cells. Interestingly, biophysical studies showed that

whereas the all-L-peptide formed oligomers when bound to

LPS, only the diastereomer existed in a monomeric state.

The second example that supports this hypothesis

involves temporins, which consist of a large number of

isoforms. It has been found that isoforms that have a

similar capability to permeate both zwitterionic and anionic

lipid vesicles are not active towards Gram-negative bac-

teria and human red blood cells [110]. In another study, it

was shown that whereas some isoforms oligomerized in

Fig. 1 Schematic

representation of a plausible

mode of action of short native

AMPs and USLiPs on Gram-

negative bacteria. Both peptides

can aggregate upon binding to

the LPS outer layer or diffuse

through it into the target

cytoplasmic membrane. Then,

the peptides can permeate the

membrane through local

breakages
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LPS, the combination of each of them with another isoform

interfered with the assembly of the peptides and high

activity was observed against Gram-negative bacteria.

The final example in support of the hypothesis involves

other studies of LiPs self-assembly that affected cell wall

penetration and biological function of LiPs [58]. The

USLiP C16-KLLL is highly potent against all microor-

ganisms except for Gram-negative bacteria [56]. Although

it strongly damages model membranes mimicking those of

Gram-negative bacteria, it cannot perturb the membrane of

living E. coli cells, as measured by its inability to induce an

intracellular influx of the vital dye Sytox Green. A possible

explanation is that the highly hydrophobic C16-KLLL

organizes into aggregates that are unable to traverse the

cell wall of E. coli.

Indeed, recent studies have indicated that some of the

USLiPs can form fibrils similarly to amyloids [57]. How-

ever, the shape and organization of the fibrils differs for

LiPs having different peptide sequences [57]. For example,

LiPs composed of dodecanoic acid attached to 12-mer

peptide moiety form oligomers in solution, most probably

with the hydrophobic core made by the oligomerized ali-

phatic chains [111]. Interestingly, it has been found that

temporins can also generate amyloid-type fibrils in the

presence of acidic phospholipids [112, 113].

Overall, as proved for both temporins and LiPs, LPS can

induce oligomerization of peptide molecules. Because of

the larger size of the aggregates it is difficult for the pep-

tides to diffuse through the LPS-leaflet into the target

cytoplasmic membrane, and therefore they lose activity

against Gram-negative bacteria. However, the length of the

fatty acid and the amino acid composition of the peptide

chain can control aggregate formation as well as the ease at

which they can dissociate. Therefore, finding the correct

fatty acid length and peptide sequence is important for the

peptides’ ability to traverse the outer LPS barrier and hence

be active against Gram-negative bacteria [56].

In the case of other microorganisms, such as parasites of

Leishmania genus, the cell surface of procyclic prom-

astigotes (the insect stage of the parasite) is surrounded by

a glycocalix layer, composed mainly by the lipophospho-

glycan (LPG), a highly anionic molecule encompassing

phosphorylated disaccharide repeating units and bound to

the membrane through a glycosylphosphoinositol anchor

[114]. LPG is absent in amastigotes (the intracellular

pathological form of the parasite for vertebrates) [115], and

this might explain the weak activity of the majority of

cationic AMPs towards this stage of the parasite. Also

metacyclic promastigotes (the circulating form of Leish-

mania in the blood of an infected mammal for about 24 h,

before being engulfed by macrophages and transformed

into amastigotes) are less sensitive to the activity of AMPs.

This could be related to the fact that the number of

repetitive units of LPG is double on the metacyclic stage of

the parasite, favoring electrostatic interactions with AMPs,

and thereby limiting the peptides’ partitioning into the

cytoplasmic membrane. The small size and the low net

positive charge of temporins could make it easier for them

to cross the parasite’s glycocalix and permeate the mem-

brane compared with other AMPs that have a higher net

positive charge and can stick easily to the negatively

charged cell surface. Furthermore, unlike a few natural

AMPs that exhibit antiparasitic properties, temporins pre-

serve activity against the more resistant morphological

stage of Leishmania, the amastigote [116]. This suggests

that ionic interactions between the peptide and the parasite

do not contribute significantly to the potency of temporins.

Indeed, electrostatic interactions between these peptides

and the anionic components of the parasitic cells are not

critical for their mechanism of action. This argument is

corroborated by (1) the marginal decrease in antiparasitic

activity in the presence of the anionic heparin; (2) the

invariant peptide activity under marked changes in the

ionic strength of the incubation media; and (3) the strong

activity against the amastigote form of the parasite in

which the LPG layer is replaced by glycosylphosphoinos-

itol of neutral or zwitterionic character [81].

Combination of AMPs in the control of cell specificity

Cell specificity can also be controlled by a combination of

AMPs. As described above, the frog skin contains a wide

number of isoforms of the same AMP family. Studies

aimed at understanding the biological significance of the

presence of closely related AMPs in a single living

organism have shown a synergistic effect among several of

them, suggesting that a combination of various AMPs

provides the animals with maximum coverage over a broad

range of possible pathogenic microbes. This has been

demonstrated with dermaseptins [117] and temporins

[100]. The molecular basis of this synergism was investi-

gated by using different temporin isoforms. It was found

that two isoforms, not active on Gram-negative bacteria,

can synergize to overcome bacterial resistance imposed by

the LPS barrier when combined each with the temporin

isoform active on Gram-negative bacteria [118]. More

specifically, the two inactive isoforms oligomerize when in

contact with the LPS-OM. As explained before, the larger

size of the peptide oligomers should hamper their translo-

cation into the IM of these bacteria. Mechanistically, the

synergistic activity between temporins on Gram-negative

bacteria is related to the ability of the active peptide to

prevent the self-association of the inactive isoforms. Also,

spectroscopic measurements have suggested that the inac-

tive temporin isoforms bind mostly to those portions of

LPS facing the solution and not to those in proximity with
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the inner lipid moiety, as in the case of the active temporin,

which, instead, is able to penetrate into the hydrophobic

region of LPS [119]. This synergism is highly dependent

on the length of the polysaccharide region of LPS and tends

to disappear as the length of the carbohydrate domain

becomes shorter [52, 118]. It should be noted that mech-

anisms underlying the synergism between AMPs in the

antibacterial activity have been reported only with peptides

isolated from amphibian skin. Nevertheless, they probably

exist in other families of AMPs.

LPS-neutralizing activity

The immune system has evolved to recognize LPS as a

pathogen-associated molecular pattern. Upon its recogni-

tion, LPS stimulates the innate immune cells (mainly

mononuclear cells and macrophages), inducing the secre-

tion of pro-inflammatory cytokines (e.g., tumor necrosis

factor alpha, TNF-a, IL-1, IL-6) [120–122]. Antibiotic

treatment is frequently associated with the release of LPS

from the microbial cell wall [123, 124], giving rise to a

prolonged activation of the immune system, accompanied

by a massive extracellular release of cytokines. This causes

a systemic inflammatory syndrome or sepsis, which, in

extreme cases, leads to death [125, 126]. In contrast with

conventional antibiotics, several AMPs possess dual func-

tions: they kill bacteria and detoxify LPS. Although the

exact mechanism is not yet well understood [70, 127–129],

the activation mechanism of macrophages by LPS starts

when LPS (through its toxic entity, lipid A) binds to the

LPS-binding protein (LBP), accelerating the transfer of

LPS to CD14, the primary receptor of LPS, mainly

expressed on macrophages [130–132]. The LPS-CD14

complex initiates the intracellular signaling pathway by

interacting with the transmembrane protein Toll-like

receptor-4, which activates the NF-jB transcription factor,

resulting in the production and secretion of pro-inflam-

matory cytokines [133–135]. In aqueous solution, LPS

molecules aggregate into micelles, the biologically active

form of the endotoxin. Note that disaggregation of these

LPS micelles by the peptides is important to neutralize the

toxic effect of LPS [100, 136] (see Fig. 2).

In the case of temporins, recent studies emphasized that

the combination of the isoforms that synergize in the

antimicrobial activity can also display a synergistic effect

in the LPS-neutralization activity, by causing the breakage

of LPS aggregates into smaller size particles, to a greater

extent than that induced by each temporin alone. Impor-

tantly, this synergistic effect inversely correlates with the

length of the polysaccharide chain of the endotoxin mole-

cule and only occurs with LPS having short saccharidic

portions [52].

In vivo activities of temporins and USLiPs

Both temporins and USLiPs have been shown to be active

in vivo. The in vivo activity of temporins was recently

analyzed using the well-characterized invertebrate Caeno-

rhabditis elegans. C. elegans is a free-living, transparent

nematode, about 1 mm in length that lives in temperate soil

environments. It is a differentiated roundworm with a

specialized nervous system, intestine, reproductive organs,

and with relevant biological processes, i.e., absorption,

transport, and distribution of nutrients through various

tissues and cell types. Different species of microbes such as

Pseudomonas aeruginosa, Staphylococcus aureus, and

Candida albicans can pass through the mouth of the animal

and invade its gut, where they proliferate and kill the worm

in an infection-like process. It is worthwhile noting that

many virulence factors used by these microorganisms to

kill C. elegans also play an important function in inducing

pathogenesis in mammals. In light of these features and

considering the simple structure and short life cycle

(\3 days) of the nematodes as well as the ability to grow

them easily in the laboratory, C. elegans represents a very

suitable and convenient animal model for identifying

antimicrobial compounds lacking toxicity in vivo. In

addition, the C. elegans genome has been fully sequenced

and annotated (http://www.wormbase.org). Even if there is

Fig. 2 Schematic representation of the LPS-neutralizing activity of

HDPs. Following the interaction between LPS micelles (the biolog-

ically active form of the endotoxin) and the carrier LBP protein, the

LPS–LBP complex interacts with the CD14 membrane receptor (on

macrophages) and together they bind and activate the TLR4-mediated

intracellular signalling pathway for the cytokine secretion (e.g., TNF-

a). If peptides bind and disaggregate LPS micelles to smaller size

particles, the interaction of LPB with LPS is prevented, thereby

blocking the production of TNF-a and hence limiting the develop-

ment of septic shock
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a huge difference between C. elegans and mammals, it can

certainly provide an advanced tool for rapid and low-cost

screening of antimicrobial substances in a living organism.

It has been found that almost all temporins tested reduced

lethality of nematodes infected by a multidrug-resistant

strain of P. aeruginosa. Interestingly, an isoform of tem-

porins appeared to be the most active molecule in vivo,

although not active in vitro. The peptide increased worm

survival by approximately fourfold after 40 h of peptide

treatment. Furthermore, the number of Pseudomonas col-

onies in the intestinal lumen of the animal dropped fivefold

in comparison to untreated infected worms, within 1 day of

peptide treatment [137]. The ability of this temporin to

reduce Pseudomonas cells within the worm gut was also

visualized by fluorescence microscopy, using nematodes

infected with a strain of P. aeruginosa expressing the

green-fluorescent protein (GFP). Treated animals exhibited

a clear and fast decrease in fluorescence intensity along the

entire intestine already within the first 90 min incubation

with the peptide, due to the death of GFP-expressing

Pseudomonas. This finding suggests that the mode of

action used by this peptide to promote worm survival is

based on its direct effect on the pathogen growth, rather

than making bacteria avirulent and therefore harmless

[137].

The in vivo activity of the USLiPs was analyzed in mice

models for fungal infection. The USLiPs were first tested

against two models: invasive aspergillosis and invasive

pulmonary aspergillosis. The data indicated that the US-

LiPs could specifically damage fungi structures in vivo in a

mouse model. Moreover, one of the USLiPs was more

efficient than amphotericin B at nontoxic doses. Indeed,

intratracheal treatment with this USLiP provided prolonged

survival and 25% total recovery among infected immuno-

suppressed mice, with fungal clearance revealed by

histological examination [138]. In addition, no toxic effects

associated with the treatment were noticed. Observation of

lung sections of USLiP-treated mice revealed phagocy-

tosed conidia within macrophages and dendritic cells on

day 4 of treatment, which could be the origin of further

invasive aspergillosis once the treatment is stopped.

In another study, the skin of the mouse was infected

with the pathogenic C. albicans by subcutaneous injection

of yeast spores complexed to cytodex beads [139]. Note

that fungi of the genus Candida are part of the normal

human flora; however, C. albicans can cause disease, and it

is the most frequently isolated pathogen in humans [140,

141]. It is an ubiquitous fungal organism that often colo-

nizes the skin and the mucosal surfaces of healthy

individuals giving rise to a variety of different superficial

diseases. However, when the host-defense mechanisms are

impaired, C. albicans can cause serious systemic infections

[142, 143]. The animals were treated by administering the

USLiPs subcutaneously 1 h post infection, and the treat-

ment was repeated for the next 3 days, at a single dose,

every day. Histological examination of skin samples

stained with periodic acid-Schiff indicated that the USLiPs

significantly reduced the number of fungal spores and

hyphal forms and inhibited C. albicans skin infection [57].

Conclusions

The extensive search for alternative therapeutics has led to

the discovery of cationic antibiotic peptides as potential

new anti-infective compounds with new modes of action.

Because of the high cost for the commercial production of

long peptides, particular interest has been given to small

linear peptides that can be efficiently made by chemical

synthesis at competitive costs and that have reduced or no

immunogenicity. Although the number of promising can-

didates is very high and continues to increase, we focused

this review on the largest family of short naturally occur-

ring AMPs (i.e., the temporins), as well as on the

engineered USLiPs. They are different in structure and

composition, yet both classes of peptides share the fol-

lowing features: (1) an ability to permeate both artificial

and natural biological membranes and (2) an ability to

drastically change the target cell morphology, thus limiting

the induction of microbial resistance.

Despite their similar mechanisms of microbicidal

activity, it is not an easy task to predict the target cell

selectivity of these molecules, since parameters such as

their particular combination, their biophysical properties,

and their interactions with components on the target cell

surface all play a role. However, simple modification such

as acylation of very short cationic peptides has resulted in a

family of compounds named USLiPs, which show an

improved antimicrobial activity and a higher stability to

proteolysis in solution. This attractive alternative platform

provides a way to rationally design novel anti-infective

agents.
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