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Abstract Natural killer (NK) cells are innate lymphocytes

involved in immunosurveillance through their cytotoxic

activity and their capacity to secrete inflammatory cyto-

kines. NK cell activation is necessary to initiate effector

functions and results from a complex series of molecular

and cellular events. We review here the signals that trigger

NK cells and discuss recent findings showing that, besides

antigen-presenting cells, T cells can play a central role in

the initiation of NK cell activation in lymph nodes.
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Introduction

Natural killer (NK) cells are innate lymphocytes that cir-

culate in the blood, lymphatics and tissues where they

sample their environment to detect abnormal cells [1].

Upon stimulation, they kill tumor cells and infected cells

thus contributing to tumor surveillance and pathogen

clearance [2]. Natural cytotoxicity results from a coordi-

nated series of events which include contact with target

cells, adhesion, synapse formation, granule polarization

and granule exocytosis [3–6]. NK cells also secrete

cytokines and chemokines which regulate and orientate

immune responses [7, 8]. Thus, NK cells actively interact

with their environment and contribute to the fine tuning of

immune responses. To exert their functions, NK cells are

stimulated by different mechanisms. Schematically, NK

cell activation results from a combination of soluble and

contact-dependent signals. It involves cytokines, the

engagement of a combination of activating and inhibitory

receptors and requires cellular interactions. NK cells con-

stitute quite a heterogeneous population of cells. They

express a combination of germline-encoded NK receptors

(NKRs) acquired in a stochastic and variegated manner and

can display different cytokine receptor profiles [9–11].

Interestingly, some subsets were found to be associated

with a specific location (i.e. decidual NK cells or mucosa-

associated NK cells) [12–20]. The signals required for their

activation differ with their stage of maturation, whether

they have been educated, primed or previously activated

(memory-like NK cells) [21].

In this review, we will examine the various components

triggering NK cell activation. We will not review signaling

pathways activated which are extensively described else-

where [6, 22–25]. Rather, we will focus on signals and

cellular interactions necessary to trigger NK cells in sec-

ondary lymphoid organs, at the sites of infection or within

tumors. Emphasis will be put on new players, CD4? T cells

which have recently been shown to be critical for the

regulation of the initiation of NK cell activation in lymph

nodes [26].

Mechanisms of NK cell activation: basic principles

In contrast to T cells and B cells which predominantly use a

single antigen receptor for their activation, NK cells are
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triggered by the combined action of cytokines and the

engagement of activating and inhibitory receptors. Cyto-

kines which have been involved in NK cell activation in

vitro and in vivo include IL-12, IFN-a/b, IL-15, IL-2 and

IL-18, [1, 7, 8, 27]. IL-12 is the most potent inducer of

IFN-c [28, 29] whereas type I IFNs are key regulators of

NK cell cytotoxicity in the context of viral infections [30].

In addition, IL-2 and IL-15 are implicated in NK cell

development, homeostasis and in activating NK cell cyto-

toxicity and secretion of cytokines [31]. IL-18 was also

found to trigger NK cell functions in combination with

IL-12 or type I IFNs [32]. Cytokines act individually or

in combinations. They also often contribute to augment

signaling through activating NKRs.

NK cell recognition of targets is largely dominated by

the interaction of germline-encoded activating and inhibi-

tory receptors with ligands expressed by targets [33]. The

permanent expression of inhibitory NKRs specific for

major histocompatibility complex (MHC) class I molecules

counterbalances activating signals and confers ‘‘missing

self’’ specificity to NK cell recognition [34–37]. Additional

non-MHC ligands binding to inhibitory receptors also

contribute to NK cell tolerance to self. This is the case for

the mouse Clrb molecule binding to NKR-P1B/D [38, 39]

and for human LLT1 binding to NKR-P1A (CD161) which

provide an inhibitory signal to NK cells independent of

MHC class I molecules ([40–42], and C. Germain and

V.M. Braud, unpublished data). Other examples include

mouse 2B4 binding CD48 [43], KLRG1 interacting with

cadherins [44–47], LAIR-1 binding to collagen [48], sig-

lecs binding to sialic acids [49] or CEACAM1 homophilic

interactions [50]. NK cell tolerance to ‘‘self’’ implies that,

in the absence of inhibitory signals, NK cells are turned on.

Activation is not ‘‘spontaneous’’, but it depends on the

triggering of activating receptors [3]. Some activating

NKRs have adapted to recognize ‘‘altered or induced’’ self

ligands. This is the case for NKG2D which interacts with

stress-induced ligands such as MICA/MICB or ULPBs in

humans and Rae1, H60 or MULT-1 in mice [51, 52] or for

DNAM-1 which binds to PVR or nectin-2 [53–55]. Acti-

vating KIRs may have adapted to more specifically

recognize MHC class I molecules loaded with viral pep-

tides [56, 57]. In addition, activating leukocyte

immunoglobulin-like receptors (LILRs) which were shown

to bind to unfolded HLA molecules may contribute to

recognition of infected cells [58]. Other activating recep-

tors interact with pathogen-encoded molecules. NK cells

expressing these particular activating NKRs are increased

following certain viral infections. Ly49H-expressing NK

cells are expanded during MCMV infection as a result of

binding to the MCMV-encoded cell surface ligand m157

[59–63]. Influenza hemagglutinin was found to interact

with NKp46 receptor and this interaction is critical for the

control of the infection [64, 65]. The CD94/NKG2C? NK

cell subset is increased in HCMV-seropositive individuals

suggesting that they recognize a viral ligand, although this

has not yet been formally demonstrated [66]. An increase

of NKp30? NK cells is also associated with chronic HCV

infection [67] while an expansion of the KIR3DS1? subset

is associated with acute HIV infection [68]. In addition to

this specific recognition, pathogens may also be directly

recognized by NK cells through the Toll-like receptors

(TLRs) they express [69–72]. Besides these mechanisms of

activation, most NK cells express the FccRIII CD16

responsible for antibody-dependent cellular cytotoxicity

(ADCC).

Signals from activating NKRs are tightly regulated. This

is needed to avoid uncontrolled immune response towards

self. As discussed previously, the expression of inhibitory

receptors to self ligands, in particular MHC class I mole-

cules, is a major regulatory mechanism [35]. In addition,

Long et al. demonstrated that cross-linking of a single

activating NKR on freshly isolated ‘‘resting’’ NK cells was

not sufficient to trigger NK cell functions. Rather, a syn-

ergy among activating receptors was needed to reach a

threshold of signaling [4, 5, 73]. This threshold can also be

reached when cytokine stimulation is combined with cross-

linking of activating NKRs [74]. In addition, chronic

exposure to activating ligands contributes to NK cell

hyporesponsiveness by inducing the downregulation of the

corresponding activating NKRs or signaling molecules.

This was demonstrated when NK cells developed in the

continuous presence of NKG2D [75–77], Ly49D [78] or

Ly49H [79, 80] ligands and for mature NK cells [79]. Low

level expression of NKp46, NKp44 and NKp30 has also

been associated with defects in NK cell functions in human

healthy donors and patients suffering from chronic myeloid

leukemia [81, 82] or infected with HIV [83].

NK cell responsiveness also depends on whether NK

cells are ‘‘educated’’, ‘‘licensed’’ or ‘‘armed’’ [84–87].

Many reviews have covered this topic, which will therefore

not be discussed in detail here [88–92]. Briefly, NK cells

are hyporesponsive when they cannot recognize self-MHC

class I molecules via their inhibitory receptors. The

mechanism of ‘‘hyporesponsiveness’’ is hotly debated and

may either imply that MHC class I molecules instruct NK

cells to become responsive (‘‘licensing model’’) or be due

to the fact that a lack of this interaction ‘‘disarms’’ NK cells

[85, 93]. This was originally demonstrated in developing

NK cells and was later shown to be quantitative, depending

on the strength of the MHC class I signal. More recent

studies have also shown that this process can occur in

mature NK cells which can be re-programmed [94–96].

These data suggest that a certain plasticity of NK cell

responsiveness exists. In vivo, both unlicensed and licensed

NK cells seem to be able to be activated, but unlicensed
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NK cells provided better protection to MCMV infection

[97]. Whether this suggests that expression of inhibitory

receptors for MHC class I molecules could be detrimental

or whether other receptors such as CD94/NKG2A play a

role remains to be assessed.

Specific subsets of NK cells and their location

Until recently, NK cells have been regarded as a func-

tionally rather uniform population of cells which kill and

secrete cytokines such as IFN-c under the influence of

defined stimuli. It has now become clear that NK cell

diversity is broad and so are NK cell activation signals.

Diversity comes partly from different development path-

ways [98]: NK cells originate not only from the bone

marrow but also from the thymus [99]. Different stages of

maturation have been identified based on the expression

profile of CD11b and CD27 markers [100–102]. Signals

required for their full maturation still need to be identified

and may depend on the tissue-specific environment. In

addition, several groups have recently demonstrated that

some subsets of NK cells can become long-lived cells that

mount a secondary response to specific antigens [21, 103–

105]. It will be interesting to define whether this property is

intrinsic to NK cells or results from a specific mode of

activation or if specific NK-cell extrinsic signals generate

these long-lived cells.

Diversity in NK cell subsets is often associated with

distinct effector functions in specific locations. New NK

cell subsets have been identified at epithelial surfaces

(uterus, tonsils, intestinal mucosa and skin) [16–20, 106,

107]. Interestingly, these subsets display different tran-

scriptional profiles and respond to specific cytokines and

signals from the microflora environment [18, 20, 106–108].

Uterine NK cells seem to be specialized in the secretion of

cytokines and angiogenic factors rather than cytotoxicity to

allow normal placentation and successful pregnancy. Sig-

nals regulating their effector functions are still to be fully

characterized but are in part regulated through inhibitory

and activating NKRs [109, 110]. They likely depend on the

specific local cytokine environment and on the interaction

with fetal trophoblast cells. Mucosa-associated NK cells

were identified in human tonsils and Peyer’s patches as

NK-like cells secreting IL-22 in response to IL-23 [16].

They may correspond to human stage 3 NK cells that

secrete IL-22 and require IL-1b for their maintenance and

expansion [101, 111, 112]. Interestingly, they seem to

display some plasticity depending on whether IL-1b, IL-7

or IL-2 are used to sustain their survival and proliferation

[112]. In mice, a similar population of intestinal NK-like

cells has been described with a phenotype resembling but

in some aspects also distinct from lymphoid tissue inducer

(LTi) cells [17–20, 113, 114]. Further investigations are

needed to define the lineage relationship and physiological

role of these new NK cell and NK-like cell subsets as well

as the signals required to trigger their effector functions.

NK cell activation requires cellular interactions

with APCs

An optimal NK cell activation results from cytokine

stimulation and engagement of activating receptors, and it

requires interaction with immune cells and in particular

with antigen-presenting accessory cells (APCs). Initially,

dendritic cells (DCs) were described to contribute to NK

cell-mediated anti-tumor responses by enhancing NK cell

cytotoxicity and IFN-c production [115]. In vitro studies

later confirmed that mature DCs can activate NK cell

effector functions and proliferation [116–118]. DCs were

also found to be required for in vivo NK cell activation

upon MCMV infection [119]. Since these pioneer works,

the central role of DCs and also macrophages on NK cell

activation has been demonstrated in various experimental

systems [120–125]. They activate NK cells via the cyto-

kines they produce and through membrane-bound

molecules. APCs seem to be crucial at several levels. First,

at the initiation of NK cell activation, a first step of priming

seems to be required to allow naı̈ve NK cells to acquire NK

cell functions [124, 126]. Lucas et al. [124] demonstrated

that this priming occurred in the draining lymph nodes and

was provided by DC trans-presenting IL-15. Membrane-

bound IL-15Ra-IL-15 complexes were found to activate

NK cells through direct cell–cell contact [127]. Interest-

ingly, IL-15, together with IL-2, was found to be the most

potent cytokine which induced translation of granzyme B

and perforin in resting NK cells [128]. In addition, priming

may involve IL-18 signaling, as the IL-18R/MyD88/

IRAK4 pathway is required for ex vivo IFN-c production

by NK cells in response to IL-12 and IL-18 contributing to

the NK cell response in visceral leishmaniasis [129, 130].

In addition to NK cell priming, evidence has also accu-

mulated to show that DC/NK cross-talk is central to NK

cell triggering of effector functions. Indeed, DC-derived

type I IFNs mostly produced by plasmacytoid DC (pDC)

stimulate NK cell cytotoxic activity but limit IFN-c pro-

duction through a control of IL-12 secretion by DCs

[30, 131–133]. DC-derived IL-12 is the most potent stim-

ulator of IFN-c and other cytokines secreted by APCs as

IL-18, IL-15 and IL-2 synergize with IL-12 to induce IFN-

c and enhance NK cell cytotoxicity [27–29, 31, 32, 134].

APCs not only produce cytokines that activate NK cells but

they also physically interact with them [135–137]. This is

required for several reasons. First, this interaction allows a

better delivery of cytokines through the formation of

NK cell activation 3459
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immunological synapses. These synapses have been shown

to promote the polarization of IL-12 or IL-18 and their

delivery at the synaptic cleft [138, 139]. In addition,

NK/DC interactions permit trans-presentation of IL-15

[124, 126, 127]. Interestingly, a rapid accumulation of

IL-15Ra was observed at the synapse formed following

NK/DC conjugate formation [140]. Lastly, direct contact of

NK cells with APCs provides stimulatory and co-stimula-

tory signals. Expression of ligands for activating receptors

such as NKG2D or NKp46 were detected on DCs, mac-

rophages or monocytes following TLR stimulations or

infections with bacteria, viruses or parasites [64, 65, 122,

141–145]. Similarly, ligands of co-stimulatory molecules

have been detected on activated APCs and contribute to

NK cell activation. This is the case for activation-induced

C-type lectin (AICL) found expressed on activated mono-

cytes which interacts with NKp80 on NK cells [146]; for

CD48 expressed on LPS-stimulated macrophages and

interacting with 2B4 [145]; for CD80 induced upon Tox-

oplasma gondii infection which binds CD28 on NK cells

[147]; for CD40 expressed on activated macrophages

interacting with CD40L [148]; and for glucocorticoid-

induced TNF-receptor-related protein ligand (GITRL)

expressed on virus- or CpG-activated pDCs which interacts

with GITR on NK cells [149].

NK cell interactions with APCs occur primarily in sec-

ondary lymphoid organs where the initiation of NK cell

activation takes place. They also occur at the infection or

tumor sites where NK cell effector functions participate in

the control of immune responses. In draining lymph nodes,

murine NK cells are detected in the paracortex in direct

contact with DCs [135]. In humans, NK and DCs colo-

calize in T cell areas of lymph nodes [150–152]. NK cells

were initially found to be slowly motile [135], but it was

later established that the positive selection of NK cells

using CD49b mAb decreased their motility in lymph nodes

once transferred into naı̈ve animals [135, 137]. Transfer of

labeled NK cells purified by negative selection or the use of

NCR1GFP/? mice demonstrated that NK cells are in fact

highly motile in lymph nodes and that they engage short

and dynamic interactions with DCs or B cells [136, 137].

Such behavior may allow them to rapidly sample the local

cytokine environment of DCs that contribute to their acti-

vation [136]. This finding is consistent with the observation

that NK cells establish dynamic contacts with their targets

[153]. Besides draining lymph nodes, NK/DC cross-talk

has been reported in the spleen of animals infected with

MCMV, in particular contributing to expansion of Ly49H?

NK cells [119]. NK cells were also detected in close

proximity to APCs at the site of inflammation or infection.

They were, for example, detected in the skin of patients

infected with the yeast Malassezia [154]. Cell contact with

autologous activated monocytes or macrophages was also

found to be required to activate NK cells to secrete IFN-c
upon challenge with Staphylococcus aureus and Lactoba-

cillus johnsonii [155], Influenza A or Sendai virus [142],

Plasmodium falciparum [156] or Salmonella enterica

[157].

A previously unappreciated role for CD41 T cells in NK

cell activation in vivo

Secondary lymphoid organs are key sites where adaptive

immune responses are initiated. As discussed above, they

are also sites where NK cell cross-talk with DCs has been

visualized [135, 136]. NK cell activation has long been

considered to precede T cell activation and therefore the

contribution of T cells to NK cell activation has been

poorly analyzed. However, clusters of DCs, T cells and

IFN-c-secreting NK cells could be visualized very early on

in the lymph nodes draining the inoculation site in Leish-

mania major-infected mice [135]. This suggested that a

cross-talk between T cells and NK cells could occur there.

How can T cells contribute to NK cell activation? Early in

vitro work by Fehniger et al. [152] demonstrated that IL-2

secretion by a T cell clone could stimulate CD56bright NK

cells in the presence of APCs and recombinant IL-12. In

addition, He et al. [158] found that IFN-c secretion by NK

cells in PBMCs incubated with Influenza A virus was

dependent on the presence of CD4? T cells and could be

abolished by neutralization of IL-2. More recently, a sim-

ilar observation was made when PBMCs were challenged

in vitro with P. falciparum-infected red blood cells [159].

Depletion of either CD4? T cells, CD8? T cells, abTCR?

T cells or cdTCR? T cells significantly reduced IFN-c
secretion by NK cells. In this situation, there was no

requirement for NK cell contact with T cells, but T cell

help was provided by the secretion of IL-2. It is clear from

these in vitro studies that T cell-derived IL-2 is one

mechanism that activates NK cells. This is consistent with

the widely established role of IL-2 in the stimulation of NK

cell proliferation and effector functions in vitro [160]. The

key question remaining to answer was whether NK/T

cross-talk occurs in vivo and whether T cell-derived-IL-2

also plays a central role in vivo. In humans, two popula-

tions of NK cells are distinguished based on the level of

expression of CD56 [9, 161]. The CD56bright CD16- KIR-

NK cell subset, which expresses the high affinity IL-2

receptor composed of IL-2R a-chain (CD25), b-chain

(CD122) and c-chain (CD132), is enriched in secondary

lymphoid organs [150, 152]. The NK cell subset which is

the most responsive to IL-2 therefore co-localizes with T

cells, suggesting that T cell-derived IL-2 could regulate NK

cell activation in vivo. Formal demonstration was provided

when NK cell activation was shown to be specifically
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abrogated in draining lymph nodes of L. major-infected-

CD4? T cell-deficient mice [26]. Importantly, newly

primed antigen-specific CD4? T cells secreting IL-2 were

required to initiate NK cell activation. But in contrast to the

above in vitro studies, this work also highlighted that the

role of CD4? T cells was not simply to provide IL-2 but

also to regulate DC maturation and DC secretion of IL-12.

Indeed, the in vivo neutralization of both IL-2 and IL-12

was needed to significantly decrease IFN-c secretion by NK

cells in draining lymph nodes. In addition, CD4? T cell help

was found to be dependent on CD40/CD40L interaction

[162, 163]. These findings indicate that the activation of

antigen-specific CD4? T cells primed by DCs presenting

MHC class II/peptide complexes is a prerequisite for NK

cell secretion of IFN-c upon L. major infection. These data

could be related to observations made in cancer models in

which CD4? T cell control of tumor growth was found to be

dependent on a cooperation with NK cells [164] or innate

immune cells expressing markers of NK cells [165]. In

these situations, IFN-c which is essential for the control of

tumor growth was secreted by NK cells with the help of

CD4? T cells and a contribution of IL-2. A similar

requirement for CD4? T cells is also found following

immunization with OVA where NK cell secretion of IFN-c
early on in draining lymph nodes only occurs in the pres-

ence of activated OVA-specific CD4? T cells [26]. Based

on these data, one can propose a sequential model of acti-

vation involving DC, CD4? T cells and NK cells in lymph

nodes (Fig. 1). The first event which occurs is the presen-

tation of antigenic peptides by DC to CD4? T cells. This

step of priming triggers the activation of T cells and the

secretion of IL-2. Activated CD4? T cells upregulate CD25

to respond more efficiently to IL-2 and they also upregulate

CD40L. IL-2 secreted by T cells contributes directly to NK

cell activation and this is amplified as NK cells acquire the

high affinity IL-2R upon activation. In addition, activated T

cells contribute to the maturation of DC in a CD40/CD40L-

and IL-2-dependent way resulting in the secretion of IL-12

by DCs. This cytokine synergizes with IL-2 to activate NK

cells. Based on this model, one would expect that NK cells

are efficiently activated by IL-2 produced by endogenous

memory CD4? T cells after a secondary challenge. Con-

sistent with this, augmented CD4? T cell-dependent NK

cell responses were observed in PBMCs restimulated with

inactivated rabies virus in vaccinated individuals [166]. But

the requirement for T cell help is likely to be less critical

in situations where efficient maturation of DCs can be

achieved by other means and in particular through TLR

stimulation. This may be the case in Listeria monocytoge-

nes or Mycobacterium tuberculosis infections where NK

cell activation has been observed in Rag-/- animals and

therefore does not require CD4? T cells [167, 168].

Interestingly, iNKT cells may play a similar role.

Injection of alpha-galactosyl ceramide (aGalCer) intrave-

nously led to the activation of NK cells which was

dependent on prior activation of iNKT cells and their

secretion of IFN-c [169]. Whether IL-12 also plays a role

has not been examined, but activated iNKT cells have been

found to contribute to DC maturation in a CD40/CD40L-

dependent way [170].

Lastly, the cross-talk of NK cells with T cells may not

always lead to NK cell activation but also to suppression of

Fig. 1 CD4? T cell-dependent activation of NK cells in lymph

nodes. Upon immunization or infection, DCs present antigen to naı̈ve

CD4? T cells in lymph nodes draining the immunization or

inoculation sites. This event results in the activation of T cells which

secrete IL-2 and upregulate the high affinity IL-2 receptor and

CD40L. Activated CD4? T cells contribute to further maturation of

DC and their secretion of IL-12. Both cytokines, IL-2 and IL-12,

synergize to initiate NK cell activation which results in the secretion

of IFN-c and TNF-a, critical for the development of subsequent

adaptive immune responses

NK cell activation 3461
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NK cell effector functions. Indeed, regulatory T cells have

also been involved in dampening NK cell functions

[171, 172].

Concluding remarks

An increasing interest to better understand the molecular

and cellular requirements for NK cell activation in vivo

correlates with accumulating evidence of the importance of

NK cells in controlling diseases. Their role in tumor

immunosurveillance in mice and humans is now well

documented [2, 173]. NK cell activation is also thought to

limit pathogen invasion until the adaptive immune

response establishes long-lasting immune control [174].

This was elegantly illustrated recently in a model of

infection with mousepox in which mice genetically resis-

tant to mousepox lose resistance at mid-age because NK

cells are no longer efficiently recruited in lymph nodes

draining the primary site of infection [175]. Pursuing our

efforts to decipher signals regulating NK cell activation

will be useful for the development of novel NK cell-based

immunotherapies as NK cell clinical relevance is emerging

[173, 176–178].
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