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Abstract The adult brain most probably reaches its

highest degree of plasticity with the lifelong generation and

integration of new neurons in the hippocampus and olfac-

tory system. Neural precursor cells (NPCs) residing both in

the subgranular zone of the dentate gyrus and in the sub-

ventricular zone of the lateral ventricles continuously

generate neurons that populate the dentate gyrus and the

olfactory bulb, respectively. The regulation of NPC pro-

liferation in the adult brain has been widely investigated in

the past few years. Yet, the intrinsic cell cycle machinery

underlying NPC proliferation remains largely unexplored.

In this review, we discuss the cell cycle components that

are involved in the regulation of NPC proliferation in both

neurogenic areas of the adult brain.
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Proliferation � Cdks � Cyclins � Dentate gyrus �
Subventricular zone

Introduction

Several decades of substantial advances in the field of

neurosciences have highlighted the outstanding plasticity

of the adult mammalian brain. One intriguing facet of brain

plasticity is its ability to generate new neurons in two

discrete areas [1]. Indeed, neural precursor cells (NPCs) of

both the dentate gyrus (DG) of the hippocampus and the

subventricular zone (SVZ) retain the ability to proliferate

and undergo neuronal differentiation throughout adulthood

[2]. Consequently, understanding the mechanisms of adult

neurogenesis will contribute to the development of novel

stem cell-based strategies to replace neuronal loss follow-

ing neurodegenerative disorders such as Alzheimer’s

disease, Parkinson’s disease or stroke [3, 4].

In mammals, the cell cycle is driven by the concerted

action of cyclin-dependent kinases (Cdks) and their acti-

vating partners, the cyclins (Fig. 1) [5]. During the G1 phase,

Cdk4/6-cyclin D complexes progressively phosphorylate the

retinoblastoma protein (pRb), causing E2f transcription

factors to promote the transcription of the genes required for

cell cycle progression, including cyclin E [6, 7]. Cdk2-cyclin

E complexes further phosphorylate pRb, leading to its

complete inactivation and to a wave of transcriptional

activity essential for DNA replication phase (i.e., S phase)

entry [6, 7]. Cdk2 then partners with cyclin A to drive the cell

through S phase, and at the end of this cell cycle phase, cyclin

A associates with Cdk1 (Fig. 1). The resulting complexes

facilitate the completion of the G2 phase. Finally, Cdk1-

cyclin B complexes contribute to G2-M transition [8], and

direct the structural and regulatory events during mitosis.

Importantly, Cdk activity is negatively regulated by the

members of the Ink4 and Cip/Kip family, the so-called Cdk-

inhibitors (CKIs) (Fig. 1) [9]. Altogether, these elements

orchestrate the progression through the different phases of
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e-mail: bmalgrange@ulg.ac.be

G. Moonen

Department of Neurology, C.H.U. Sart Tilman, B35,
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the cell cycle that ultimately leads to the mitotic segregation

of the two daughter cells [10, 11].

A number of studies over the past few years have

challenged the importance of the canonical cell cycle

pathway to organismal development. Notably, the use of

mutant mouse models has revealed that a considerable

number of cell cycle regulators are not essential for the

survival of the organism [12–14]. Indeed, the requirement

for particular cell cycle regulators is often cell-type spe-

cific, and functional redundancy occurs frequently within

families of cell cycle regulators. Altogether, these data

highlight the need for a more integrative view of the

requirement for specific cell cycle regulatory molecules in

defined tissues [15], including the adult brain.

Although several studies have highlighted the importance

of intrinsic cell cycle components in regulating NPC pro-

liferation during development [16–24], their putative role in

the regulation of NPC proliferation in the adult neurogenic

niches has received only minor consideration. However, we

believe that an improved knowledge of the intrinsic cell

cycle regulation of adult NPCs will be necessary to develop

new cell-based regenerative therapies. In this context, we

summarise the research that has already been done on the cell

cycle constituents as key regulators of adult neurogenesis.

Cdks

Five Cdks directly control the progression through the

mammalian cell cycle: Cdk1, Cdk2, Cdk3, Cdk4 and Cdk6,

Cdk2/3/4/6 being considered as ‘‘interphase Cdks’’ [25].

However, although Cdk3 is expressed in human cells [26],

most laboratory mouse strains lack Cdk3 owing to a nat-

urally occurring mutation [27]. Beyond these cell cycle-

related Cdks, an atypical Cdk, Cdk5, has been character-

ised. Unlike Cdk1 and interphase Cdks, Cdk5 is regulated

by its own activators p35 and p39 rather than by cyclins

[28–30], plays no apparent role in cell cycle regulation and

is predominantly expressed in postmitotic neurons [31].

The case of Cdk1 is special as mice lacking Cdk1 fail to

reach the morula stage (i.e., E2.5) [32], precluding any

study of its requirement for the proliferation of a specific

cell type at a given developmental time point or during

adulthood using Cdk1 knockout mice. This issue will be

discussed below (see ‘‘Conclusions and future direc-

tions’’). The remaining cell cycle-related Cdks were

studied in various tissues using mutant mouse models.

Surprisingly, several studies reported that knockout mice

mutant for a single interphase Cdk (i.e., Cdk2, Cdk4,

Cdk6) were viable and developed normally until adulthood

[12, 14, 33, 34].

In addition, even if combined deletion of Cdk4/6 [12] or

Cdk2/4/6 [32] causes late embryonic lethality because of a

major failure in haematopoiesis, most organogenesis and

tissue development appear unaffected [12, 32]. From these

observations emerged the idea that Cdks are endowed with

interspersed compensatory functions and that specific Cdks

are required in defined proliferative niches.

Cdk2

Albeit Cdk2 was thought to be essential to promote G1/S

transition [26], knockout mice for this protein are viable

Fig. 1 Cell cycle regulation in the adult SGZ and SVZ compared to

the classical model of the cell cycle. The dashed line on Cdk2 in the

SGZ cell cycle indicates its dispensability to the process. Variations

of cell cycle and cell cycle phase durations may represent a key aspect

of the regulation of NPC proliferation in the adult brain, as it does

during embryonic brain development
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and develop normally with a minor body weight reduction

[14, 35]. Unexpectedly, Cdk2 is only essential for meiosis,

and mice lacking Cdk2 are sterile because of defects in

germ cell production [14]. In the adult brain, Cdk2 has

been shown to be dispensable for DG neurogenesis [36]

(Table 1). Indeed, Cdk2 deletion neither impairs prolifer-

ation of adult hippocampal NPCs in basal conditions nor

following seizures [36]. In addition, while Cdk2 has been

involved in the regulation of neuronal survival in vitro

[37–39], no defect in newborn neurons survival/apoptosis

was found in the DG of Cdk2-deficient mice [36]. Accord-

ingly, Cdk2 might be absent in DG cells or functional

redundancies among Cdks likely occur in this neurogenic

niche. In contrast, in vivo and vitro gain- and loss-of-func-

tion approaches established a requirement for Cdk2 in cell

proliferation and self-renewal capacities of adult SVZ-

derived precursors [40]. Interestingly, no defects were

observed in Cdk2-deficient SVZ precursors during early

postnatal life thanks to a transient functional compensation

by Cdk4 [40]. Therefore, in the postnatal/adult brain, the

Cdk2 requirement is highly age and cell type dependent.

Cdk4/6

Since Cdk4 and Cdk6 amino acid sequences share 71%

homology, it was thus suggested that these two kinases

play similar activities. However, Cdk4-deficient mice

exhibited pancreatic hypoplasia because of the reduced

numbers of b cells [33, 34], and Cdk6-deficient mice dis-

played erythropenia [12]. Our laboratory recently described

the expression pattern of Cdk4 and Cdk6, and showed

exclusive expression in dividing NPCs of the adult SVZ

and DG. Surprisingly, Cdk6 was the only one to drive NPC

proliferation in vivo [41]. Specifically, the absence of Cdk6

induces a lengthening of G1 phase in neuronally committed

NPCs [41]. According to the ‘‘cell cycle length hypothe-

sis’’, which predicts that G1 length influences differ-

entiation[42], the lengthening G1 phase observed in the

absence of Cdk6 may cause neuronally committed NPCs to

prematurely withdraw from the cell cycle, thereby imped-

ing their expansion capacity and thus the production of

neurons in the adult brain.

Altogether, these studies demonstrate that, contrary to

what occurs during embryonic development and in most

adult proliferating tissues, proliferation of adult NPCs is

highly dependent on the presence of specific interphase

Cdks. A yet unsolved question is: why are these enzymes

functionally distinct in the context of adult NPCs prolifera-

tion? A plausible explanation is that the required Cdks

phosphorylate substrates that are unique to adult NPCs. It is

also possible that only these Cdks can generate the necessary

levels of kinase activity to drive adult NPCs division. Finally

it would be interesting to determine whether or not Cdk1, the

only Cdk required for embryonic development [32], is cru-

cial for NPCs proliferation in the adult brain.

Cdk5

Cdk5 regulates multiple cellular processes of both the

developing and mature CNS. Particularly, this enzyme

mediates cytoskeletal changes involved in neuronal

migration during embryonic development [43, 44]. Using

in vitro and in vivo conditional knockout experiments,

Hirota and colleagues demonstrated that Cdk5 is also a key

molecule controlling migration of neuroblasts in the post-

natal/adult SVZ [45]. For instance, Cdk5 deficiency

impairs the chain formation, speed, directionality, and

leading process extension of migrating cells in a cell-

autonomous manner. Similarly, using retroviruses

expressing either a dominant negative version of Cdk5

(DNCdk5) or a shRNA targeting Cdk5 mRNA, it was

recently found that Cdk5 is critical for migration, dendritic

extension and pathfinding of adult newborn dentate granule

cells [46]. Interestingly, whereas viral expression of

DNCdk5 only moderately reduced the survival of adult-

born hippocampal neurons, genetic deletion of Cdk5 in

adult hippocampal precursors using Nestin-CreERT2

transgenic mice resulted in dramatic reduction of neuronal

survival [47], suggesting that low levels of Cdk5 activity

are compatible with neuronal survival, but inadequate to

promote neuritic pathfinding. Of note, ablation of Cdk5

expression only in mature dentate neurons decreases the

number of neuroblasts without affecting cell proliferation,

suggesting a non-cell autonomous role for Cdk5 in the

survival of newborn neurons in the adult DG [47]. Overall,

these studies highlighted crucial and non-redundant roles

for Cdk5 during adult neurogenesis, but the molecular

mechanisms underlying Cdk5 functions in that context

remain to be elucidated.

D cyclins

Cyclin D family members are the regulatory subunits

controlling Cdk4/6 activity [5]. Three D-type cyclins, D1,

D2 and D3, have been described in mammals. Most cells

express multiple D cyclins [48, 49], but studies in mutant

mice revealed key roles for these proteins in specific cell

types. For instance, mice lacking cyclin D1 display

abnormalities in the retina and mammary glands [48–50],

while mice lacking cyclin D2 have defects in the ovaries

and testes [51, 52]. Finally, cyclin D3-deficient mice are

less susceptible to T cell malignancies triggered by specific

oncogenic pathways [53].
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In the adult brain, analysis of bromodeoxyuridine

(BrdU) incorporation revealed that mice deficient for

cyclin D2, but not cyclin D1, showed reduced cell prolif-

eration in the DG and SVZ [54, 55]. Of note, the few cells

that are generated within the adult DG of cyclin D2 KO

mice belong to the astroglial lineage [55], suggesting that

loss of cyclin D2 mostly impedes neuronally committed

NPC proliferation. Moreover, an enriched environment

[56–58] failed to increase neurogenesis in mice lacking

cyclin D2 [55]. Altogether, these experiments revealed

how essential cyclin D2 is to adult neurogenesis [55]. This

is consistent with D-type cyclins being the primary cell

cycle core constituents that sense growth factor stimulation

to initiate cell cycle entry [59, 60].

Noteworthy, mRNA analysis suggested that cyclin D2 is

the only D-type cyclin to be expressed in the adult mouse

brain [55]. Using immunolabellings, another study reported

that cyclin D1 is expressed in the adult DG [61]. However,

the finding that adult neurogenesis is virtually absent in

cyclin D2 KO mice indicates that cyclin D1 is not able to

compensate for cyclin D2 during adult neurogenesis in the

DG. In contrast, at early stages of life (P5), WT and cyclin

D2 KO mice display strikingly similar rates of proliferation

and neurogenesis [55]. Interestingly, all D-type cyclins are

present at P5, and they can compensate for each other to

ensure NPC proliferation and neurogenesis [55]. It has

been shown that early postnatal neurogenesis is responsible

for the generation of most of the granule cell neurons

present in the adult DG [62, 63] and that adult neurogenesis

poorly contributes to the production of granule neurons

[64]. Consistently, GCL volume is only slightly reduced in

the cyclin D2-deficient mice [55]. Together, these data

indicate that the requirement for the different D-type cyc-

lins varies along developmental stages, with cyclin D2

being exclusively required for adult neurogenesis. More

globally, it suggests that adult neurogenesis is a specifically

regulated process.

Endogenous cdk inhibitors

p16Ink4a

The four members of the Ink4 family (i.e., p16Ink4a,

p15Ink4b, p18Ink4c and p19Ink4d) are specific inhibitors of

Cdk4/6 activity. Among these, p16Ink4a expression

increases with age in a variety of tissues [65, 66],

including the brain [67]. Age is a well-described negative

regulator of NPC proliferation and neurogenesis [68–70],

and loss of p16Ink4a partially rescued the age-related

decline in NPC proliferation in the SVZ [67]. Interest-

ingly, in vitro and in vivo experiments showed that lack of

p16Ink4a expression increased the proliferation of early/

uncommitted NPCs in the SVZ (i.e., type-B stem cells) to

a larger extent than lineage-determined transit-amplifying

type-C cells and type-A neuroblasts [67]. This was con-

sistent with previous findings showing that the deletion of

p16Ink4a impedes embryonic neural stem but not lineage-

restricted progenitor cell proliferation [71–73]. This raises

the hypothesis that lineage determination modifies the cell

cycle regulation of neural precursors in addition to

restricting their developmental potential, causing the pro-

liferation of lineage-determined cells to become p16Ink4a-

independent [72]. In addition, neurogenesis, but not glio-

genesis, in the OB was also increased in p16Ink4a-deficient

old mice [67]. Altogether, these data indicate that

increased expression of p16Ink4a may account for an age-

related decline of type-B cell proliferation and neurogen-

esis in the SVZ and OB, respectively. Conversely, the

absence of p16Ink4a did not detectably affect proliferation

or neurogenesis in the aged DG [67], suggesting that, as

exemplified by the deletion of Cdk2, the intrinsic cell

cycle machinery driving NPC proliferation in the SVZ and

DG is not always equivalent.

Cip/Kip family

The three members of the Cip/Kip family (p21Cip1, p27Kip1

and p57Kip2) have a broader range of Cdk inhibitory

activity compared to the Ink4 inhibitors [9, 74–76]. They

form stable complexes with the Cdk enzyme before cyclin

binding, thereby preventing their association [9, 77, 78].

p21Cip1

Analysis of p21Cip1-deficient mice has provided new

insights into the comprehension of quiescence and stem

cell longevity (i.e., long-term maintenance of self-renewal

ability) within the adult brain. In vitro, p21Cip1 deficiency

increases the proliferation rate of SVZ-derived neuro-

spheres from young adult (P60) mice, while the opposite

situation occurs in old age (P480) [79]. However, some

discrepancies were reported for in vivo analyses [79, 80],

as no overall proliferation defect was reported in young

adult p21Cip1 knockout mice [79, 80]. In contrast, there was

a marked reduction of the number of Ki67-positive NPCs

in old mice lacking p21Cip1 [79]. The reason for such a

difference may be explained, as for p16Ink4a knockout mice

[67], by a loss of p21Cip1 primarily affecting the prolifer-

ation of the more quiescent type-B NPCs [79], which

account for a minority of actively dividing cells in the adult

SVZ [81, 82]. It is possible that some rate variations of

type-B precursor proliferation may not be detected when

diluted within the overall cycling cell population from the

young adult SVZ in vivo. However these results suggest

that type-B NPCs that lack p21Cip1 expression expand

Cycling or not cycling: cell cycle regulatory molecules 1497
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themselves to a higher rate during early adult stages, but

are more rapidly exhausted during ageing [79].

Altogether, these data suggest that p21Cip1 constrains

SVZ NPC proliferation (i.e., the so-called relative quies-

cence), allowing their maintenance throughout the lifetime

of the organism. This hypothesis is supported by the find-

ings that haematopoietic stem cell quiescence is also

maintained by p21Cip1 [83].

On the other hand, data regarding the importance of

p21Cip1 in DG precursors are quite conflicting. For

instance, although Pechnick et al. [84] observed an increase

in cell proliferation in the DG in the absence of p21Cip1,

another study did not report any significant modification of

the mitotic activity of p21Cip-deficient DG precursors,

except following ischemia. Since the genetic background

and age of the animals used by these studies are similar, the

observed discrepancies come probably from their different

ways of evaluating cell proliferation.

p27Kip1

The absence of p27Kip1 in the adult SVZ leads to an

increase in precursor proliferation [85], establishing

p27Kip1 as a negative regulator of proliferation in the adult

brain. Interestingly, p27Kip1 deletion induces a selective

increase in transit-amplifying precursors (type-C) prolif-

eration in the SVZ, while more quiescent precursors (type-

B) are unchanged and neuroblasts (type-A cells) are

decreased [85].

p27Kip1 was previously shown to induce cell cycle

withdrawal in oligodendroglial precursors [86–88]. It is

thus tempting to speculate that the absence of p27Kip1

prevents type-C cells from exiting the cell cycle, allowing

them to perform extra rounds of divisions at the expense of

lineage progression towards type-A neuroblasts [85]. This

proposal correlates with findings in the haematopoietic

system where p27Kip1 deletion markedly affects the pro-

liferation of actively dividing progenitors [83, 89].

In the DG, p27Kip1 is particularly expressed in the SGZ

[90]. A more detailed characterisation of its expression

pattern revealed its localisation in the nucleus of neuronally

commited NPCs [90], which reflects its cell cycle-active

form where it can effectively inhibit Cdks [91, 92]. Upon

deletion of the p27Kip1 gene, the proliferation is increased

in the DG [90], just as it is in the SVZ [85]. The possibility

that the lack of p27Kip1 selectively enhances the prolifer-

ation of neuronally committed NPCs requires further

investigation. However, it was found that the number of

newly born neurons in the DG is increased in the absence

of p27Kip1 [90].

Although a growing body of literature has substantiated

our knowledge of the function of CKIs in adult neuro-

genesis, many questions remain unanswered. For instance,

the reason why p16Ink4a deficiency in old animals specifi-

cally rescues the rate of neurogenesis in the SVZ-OB niche

but not in the DG remains to be fully elucidated. It is well

known that there is an age-related decline of neurogenesis,

but this decrease is much faster in the DG as compared to

the SVZ-OB system [68]. Consequently, one reasonable

hypothesis is that Molofsky et al. [67] analysed DG neu-

rogenesis in excessively old mice, when the relative

paucity of dividing precursors may mask effects of p16Ink4a

deletion. Hence, it will be interesting to analyse DG neu-

rogenesis in younger p16Ink4a-deficient mice to determine if

the latter may transiently increases neuronal production. In

addition, it is reasonable to assume that, in the SVZ,

p21Cip1 and p16Ink4a maintain precursor quiescence in the

young and old animals, respectively.

Considering the Cdk-cyclin specificity of the CKIs, it

appears that type-B stem cells in the old SVZ are more

likely to depend on D-type cyclin activation by growth

factors [59, 60] to ensure their entry into the cell cycle.

This last hypothesis is strongly supported by the fact that

neurogenesis in the ageing brain can be stimulated by

increasing the level of FGF-2[69, 93]. On the other hand,

p27Kip1 may belong to a molecular timer that defines the

rate of expansion of type-C transit amplifying cells, indi-

cating that the cell cycle machinery is clearly precursor

type-specific. The expression and function of p27Kip1 in

neuronally determined NPCs is likely to be the preamble of

its additional role(s) in the migration and differentiation of

the newly generated neurons [94, 95]. Alternatively, the

functions of both p16Ink4a and p21Cip1 in type-B stem cell

proliferation and p27Kip1 in type-C actively dividing NPCs

might reflect the need of stem cells for an utter level of

regulation of their proliferation compared to actively

dividing cells. Finally one must emphasise that all studies

dealing with CKI regulation of adult neurogenesis have

been using germline KO mouse models. This suggests that

the self-renewal phenotypes observed in these models

could be at least partially non-cell autonomous and/or did

not give acute information on the role of CKI in adult

NPCs, specifically. Using inducible conditional gene

inactivation or gene silencing is thus clearly required for

deciphering the precise role of these molecules during adult

neurogenesis.

Cdk-cyclin substrates (pRb/E2f)

Phosphorylation of the closely related Rb family members

(i.e., pRb/p105, p107, p130) by Cdk4/6-cyclin D com-

plexes leads to their partial inactivation and to the release

of the E2f transcription factors. Among the three Rb family

members, pRb function is by far the better studied and

characterised [96]. However, both germline [97–99] and

nervous system [100, 101] specific deletions of pRb result
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in embryonic/perinatal lethality, preventing any analysis of

the role of pRb during adult neurogenesis. On the other

hand, mice deficient in either p107 or p130 develop nor-

mally on a C57Bl/6 genetic background [102, 103]. In the

adult brain, p107 is highly expressed in the SVZ, and p107-

deficient mice show a twofold increase in the number of

type-B stem cells compared to their WT littermates in vivo

and in vitro [104]. It was later suggested that p107 regu-

lates the neural precursor population and differentiation by

the repression of Hes1, a downstream mediator of the

Notch signalling pathway [105, 106]. p130 is thought to be

upregulated and to maintain neurons in a differentiated

state, but no specific analysis of the putative role of p130 in

adult neurogenesis has been done yet.

The E2f family contains eight members most recognised

for their ability to regulate cell cycle progression [107].

According to whether E2fs act positively or negatively on

gene transcription, they are grouped into transcriptional

activators (E2f1 to E2f3a) or suppressors (E2f3b, E2f4,

E2f5, E2f7 and E2f8), E2f7 and 8 being considered as

atypical E2fs [108]. As for cyclins, analysis of mutant mice

revealed broad compensatory mechanisms among the E2f

family members during development [109, 110]. E2f1 is

the most prominently expressed in the embryonic nervous

system [111, 112]. Mice with a targeted deletion of E2f1

depict testis atrophy while brain development proceeds

normally [109, 110]. However, in adulthood, mice lacking

E2f1 show half of the number of dividing cells within both

the DG and SVZ [20]. The deficit of NPC expansion fur-

ther impedes production of new neurons in the DG and OB

[20]. The fact that embryonic brain development is not

affected in these mutant mice [20] further suggests that cell

cycle progression in adult neurogenesis is a specifically

regulated process. However, the persistence of dividing

cells in adult E2f1-deficient neurogenic niches indicates

that other members of the E2f family are capable of some

compensatory function. Supporting this is recent evidence

that E2f3a or b proteins, the two products of the E2f3 gene,

also sustains NPC proliferation in the adult SVZ, as mice

deficient for E2f3 show a one-third reduction in NPC

numbers [107].

Maintenance of adult NPCs niches: self- renewal

and quiescence

A hallmark feature of adult stem cells is their capacity to

self-renew over the lifespan with a very slow rate of cell

division as compared to their foetal counterpart. It is

widely accepted that this is linked to a quiescent state, a

functionally important characteristic of adult stem cells

[113]. Quiescence can be defined as a non-dividing state

outside of the cell cycle (i.e., G0) where a cell can remain

in stasis until activated by appropriate proliferative signals.

This state is necessary in the adult brain (1) to limit the

accumulation of mutations in NPCs leading to cancer and

(2) to prevent the exhaustion of the NPCs pool [114].

Characterisation of the molecular regulation of NPCs-

specific CDK inhibitors may provide insights into the

signalling pathways underlying quiescence of adult NPCs.

Recent results showed that Bmi-1 promotes the self-

renewal of NSCs by repressing the expression of p16Ink4a

and p19Arf [71, 115]. However, despite ongoing Bmi-1

expression, p16Ink4a expression increases with age, poten-

tially reducing stem cell frequency and function [67]. p53,

the well-known tumour suppressor gene, is also a critical

regulator of cdk inhibitors. Loss of p53 results in increased

proliferation of adult NPCs by a decrease of p21cip1

expression, allowing the escape of NPCs from quiescence

and promoting their entrance into the cell cycle [116, 117].

Adult NPCs lacking expression of phosphatase and tensin

homolog (Pten), or forkhead box Os (FoxOs) show a

similar phenotype to that of p21cip1 in terms of cell cycling

and exhaustion [118–120]. Whether these effects are a

consequence of the regulation of cell cycle inhibitors

remains to be demonstrated.

Conclusions and future directions

The ability of the brain to undergo neurogenesis in two

restricted regions has challenged our view of brain plas-

ticity. Given that new neurons are added or replace old

ones in the DG and OB, respectively [64], one can easily

understand that an accurate regulation of NPC proliferation

is needed to produce the correct amount of newly generated

mature neurons, particularly in a perspective of cell

replacement following neurodegenerative disorders [3]. In

this context, cell cycle regulatory molecules represent an

attractive basis of investigation. Evolution has endowed

higher mammals with a wide panel of cell cycle regulatory

molecules capable of redundancy in order to prevent the

catastrophic consequences upon the loss of a single cell

cycle component. However, recent results show that

redundancy is not complete, and a careful study of

knockout mouse models reveals unique functions of many

of these proteins. This specificity appears at the tissue

level, and even more importantly at the cell scale. There-

fore, in the brain, one should determine the cell cycle

machinery in proliferating cells in the DG and the SVZ,

and even in each neurogenic area in different subtypes of

proliferating cells, e.g., uncommitted versus neuronally

determined precursors.

Besides, Cdk1 deficiency is lethal at E2.5 in mice [32],

precluding any analysis of its putative roles in NPC pro-

liferation in the adult brain using a constitutive Cdk1-

mutant mouse model. This particular point highlights a
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significant drawback to the studies that have so far

addressed the contribution of cell cycle regulatory mole-

cules to adult neurogenesis. To our knowledge, there are

currently no reports examining the function of core cell

cycle components in adult neurogenesis using conditional

gene manipulation. Such experiments will be necessary to

fully determine the cell cycle machinery governing cell

proliferation in the two neurogenic regions of the adult

brain, and constitute a prerequisite for manipulating NPC

proliferation and neurogenesis in the frame of stem cell-

based therapies.

In conclusion, much has been uncovered in the regulation

of NPC proliferation in the adult brain, but a lot remains to be

determined regarding the contribution of a basic biological

process that is the cell cycle to adult neurogenesis. In our

view, an in depth understanding of this issue is of utter

importance to foresee the use of endogenous adult NPCs as a

source for regenerative therapies.
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