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Abstract The relatively homogenous clinical features

and poor prognosis of chronic myelomonocytic leukemia

(CMML) are associated with a molecular heterogeneity,

with various mutations impacting several convergent

pathways. Due to the restricted understanding of the

mechanism involved in leukemogenesis, CMML still

appears as a diagnostic and therapeutic undertaking, and

poor prognosis of leukemia. Contrary to chronic myelog-

enous leukemia, BCR–ABL1-positive, cytogenetic, and

molecular abnormalities of CMML are not specific and not

pathognomonic, confirming the different levels of hetero-

geneity of this disease. Various mutations can be associated

with a common phenotype not distinct at the clinical level,

further demonstrating that molecular probings are needed

for choosing individual targeted therapies.
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Introduction

Myelodysplastic/myeloproliferative neoplasms (MDS/

MPN) form an independent group in the WHO (World

Health Organization) classification of malignant myeloid

diseases. Since 2008, this group includes chronic myelo-

monocytic leukemia (CMML), juvenile myelomonocytic

leukemia (JMML), atypical chronic myeloid leuke-

mia BCR–ABL1-negative, unclassifiable MDS/MPN, and

refractory anemia with ring sideroblasts and thrombocy-

tosis (RARS-T). Chronic myelomonocytic leukemia, which

is the more frequent of these rare diseases, is characterized

by a wide heterogeneity of clinical presentation and cour-

ses. The recent identification of a variety of somatic gene

mutations provides a new level of heterogeneity. The

present article summarizes the present knowledge of

genetic abnormalities in CMML cells and their prognostic

significance.

Clinical features of CMML

Chronic myelomonocytic leukemia is a rare malignancy

with an estimated incidence of\1 case per 100,000 persons

per year. The median age at diagnosis is approximately

70 years, with a male predominance of 1.5–3:1. In the

majority of patients, the white blood cell (WBC) count is

increased at the time of diagnosis, and the disease appears

as an atypical MPN. In other patients, the WBC is normal

or slightly decreased with variable level of neutropenia and

the disease resembles MDS. The main symptoms at the

presentation of the disease correspond to fatigue, weight

loss, fever, and night sweats. Although splenomegaly and

hepatomegaly may be found, they are more frequent in

patients with leukocytosis.
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The diagnostic criteria for CMML according to WHO

classification include persistent peripheral blood monocy-

tosis [1 9 109/l, lack of Philadelphia chromosome or

BCR–ABL1 fusion gene, lack of rearrangement of PDGFRA

or PDGFRB (should be specifically excluded in cases with

eosinophilia), a blood and bone marrow blast count lower

than 20%, and dysplasia in one or more myeloid lineages. If

dysplasia is absent or minimal, the diagnosis of CMML may

still be made if the other requirements are met, and asso-

ciated with an acquired, clonal cytogenetic or molecular

genetic abnormality present in the hemopoietic cells, or if

the monocytosis has persisted for at least 3 months and all

other causes of monocytosis have been excluded.

Chronic myelomonocytic leukemia is further subdivided

into two subsets, CMML-1 and CMML-2, depending on

the number of blast cells plus promonocytes in the

peripheral blood (PB) and bone marrow (BM).

CMML-1: blasts are less than 5% in peripheral blood

and less than 10% in bone marrow. CMML-2: blasts rep-

resent 5–19% in peripheral blood and 10–19% in bone

marrow, or Auer rods are present and blasts are less than

20% in peripheral blood or bone marrow.

Prognosis and predictive factors in CMML

Survival of patients with CMML is reported to vary from

one to more than 100 months, but the median survival time

in most series is 20–40 months. Progression to acute mye-

loid leukemia (AML) occurs in approximately 15–30% of

cases. A number of clinical and hematological parameters,

including splenomegaly, severity of anemia, and degree of

leukocytosis, have been reported to be important factors in

predicting the course of the disease [1]. Nevertheless, the

percentage of PB and BM blasts is the most important factor

in determining survival. Factors predicting the course of

disease are poorly understood and, thus far, rely on clinical

parameters, such as anemia, splenomegaly, or leukocytosis.

Cytogenetic alterations associated with CMML

Contrary to chronic myelogenous leukemia (CML), CMML

is not associated with a specific cytogenetic or molecular

abnormality, which contributes to the disease heterogeneity.

Clonal cytogenetic abnormalities are found in 20–40% of

patients. The most frequent recurring abnormalities include

?8, -7/del(7q) and structural abnormalities of 12p. Com-

plex caryotypes are rare and the frequency of reciprocal

translocations is exceptional. A recent survey of 414

CMML patients at diagnosis found abnormal caryotype in

27% of the patients. Multivariate analysis of survival and

progression to AML allowed three cytogenetic risk

categories to be identified: (1) low-risk (normal karyotype

or loss of Y chromosome as a single anomaly) (median

survival 37 months); (2) high-risk (presence of trisomy 8 or

abnormalities of chromosome 7 or complex karyotype)

(median survival 11 months); and (3) intermediate risk (all

other abnormalities) (median survival 18 months) [2].

Uniparental disomy (UPD) is the presence of a chromosome

pair derived only from one parent present in a disomic cell

line [3]. Somatic UPD were observed in 48% of CMML

patients [4]. In these cases, various homozygous mutations

were associated with regions of UPD [4, 5].

Molecular mutations

A number of somatic gene mutations identified in other

myeloid malignancies were investigated in CMML. A

recent study analyzed 81 characterized patients with

CMML (45 CMML type 1; 36 CMML type 2) by applying

next-generation sequencing (NGS) technology to study

CBL, JAK2, MPL, NRAS, and KRAS at known hotspot

regions. At least one molecular mutation was observed in

72.8% of patients (59 of 81 patients) [6]. However,

although the occurrence of gene alterations started to be

identified, their respective role in leukemogenesis or the

clonal progression of the tumoral pathology remain to be

elucidate, especially as most of abnormalities described are

not specific of CMML.

The frequency of somatic mutations leads to a classifi-

cation in three groups:

• Frequent mutations (30–50%) include somatic muta-

tions of TET2 (tet oncogene family member 2) [7],

RUNX1 [8, 9], ASXL1 (additional sex combs like 1)

[10], and SRSF2 (serine/arginine-rich splicing factor 2,

also known as SC35) [11].

• Aberrations with an intermediate frequency (10–30%)

include mutually exclusive mutations of RAS and CBL

[8, 12].

• Abnormalities with a rare frequency (\10%) are found

in JAK2 [13], FLT3 [14], and genes involved in Notch

signaling [15].

The complex combination of these various abnormali-

ties makes difficult the distinction between the oncogenic

initial mutation and secondary mutations responsible for

the clone evolution. Another way to distinguish these

abnormalities corresponds to gene functions: RUNX1,

ASXL1, UTX, EZH2, DNMT3A, and TET2 regulate tran-

scription and chromatin conformation, while RAS, CBL,

JAK2, and FLT3 play a role in cytokine receptors signaling.

A few studies investigated the frequency and prognostic

impact of these mutations in CMML [6, 9, 10]. These

different alterations are not considered as formally speci-

fied markers of prognostic subsets or as responses to
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therapies, e.g., demethylating agents. Some of these novel

markers seem to be over-represented in CMML, e.g., the

TET2 and the CBL mutations [6] as compared to other

myeloid malignancies.

Mutations in genes affecting transcription and epigenetics

TET2 TET2 (Ten-eleven translocation 2) is one of three

homologous human proteins (i.e., TET1, TET2, and TET3)

catalyzing conversion of 5-methylcytosine (5mC) to

5-hydroxymethylcytosine, and thus impacting the epige-

netic regulation of transcription. Human TET2 is located on

chromosome 4q24, a breakpoint that is also found in other

AML-associated translocations, including t(3;4)(q26;q24),

t(4;5)(q24;p16), t(4;7)(q24;q21), and del(4)(q23q24) [16].

Ten-eleven translocation 2 has multiple isoforms and iso-

form A, which includes 12 exons, is affected by most of the

TET2 mutations described so far. The higher frequencies of

TET2 mutations or deletions in myeloid malignancies have

been observed in CMML [5, 7, 17–21]. Ten-eleven trans-

location 2 mutations have limited impact on survival and

do not appear to predict the clinical outcome upon deci-

tabine therapy [7, 22].

IDH IDH1 (Isocitrate dehydrogenase), located on chro-

mosome 2q33.3, and IDH2, located on chromosome

15q26.1, encode for isocitrate dehydrogenase 1 and 2,

respectively, which are enzymes catalyzing oxidative

decarboxylation of isocitrate to a-ketoglutarate, generating

NADPH from NADP?. As TET2, IDH1/2 mutations may

provoke a decrease in 5mC hydroxylation. Isocitrate

dehydrogenase 1/2 mutations were identified in 1–4% of

CMML patients [20, 23] and are exclusive of TET2

mutations [24].

ASXL1 ASXL1 (Additional sex combs like 1) is located

on chromosome 20q11.1 and is part of the enhancer of

trithorax and Polycomb gene family. Its function seems to

correspond to transcription factor modulation through

epigenetic regulation, probably through interaction with

Polycomb regulatory complex 2 (PRC2). Mutations have

been reported in 30–45% of CMML patients [10, 20, 25].

The worse prognosis and acute transformation associated

with ASXL1 mutations in some CMML series remains

controversial [20, 26].

UTX UTX (Ubiquitously transcribed tetratricopeptide

repeat) located on chromosome Xp11.2, which encodes for

a demethylase specific for H3K27, has been found mutated

in myeloid malignancies [27, 28]. Ubiquitously transcribed

tetratricopeptide repeat mutations identified in CMML are

mainly present in the region adjacent to the JmjC domain

required for UTX activity [23]. Ubiquitously transcribed

tetratricopeptide repeat mutations are less frequent than

mutations in TET2 or ASXL1 and in some cases were

simultaneously present. Ubiquitously transcribed tetratric-

opeptide repeat mutations were identified in more

aggressive forms of CMML and AML derived from

CMML [23]. Therefore, inactivation of UTX in hemato-

poietic stem cells should induce the maintenance of

H3K27me3 transcription repressive marks on specific

genes and should alter differentiation.

EZH2 EZH2 located on chromosome 7q35–q36, encodes

for a histone H3 lysine 27 (H3K27) methyltransferase.

Enhancer of zeste 2 was recently found mutated in CMML

[17, 19]. Enhancer of zeste 2 mutations were found in 11–

13% of CMML [19, 20]. Enhancer of zeste 2 mutations

affect DNA methylation likely because EZH2 interacts

with DNA methyltransferases 1, 2, and 3 [29]. These

mutations are associated with poor survival. Indeed,

according to the clinical data, a poor outcome was

observed for these patients [19, 20].

DNMT3A DNMT1 (DNA (cytosine-5)-methyltransferase

1), DNMT3A (DNA (cytosine-5)-methyltransferase 3)

located on chromosome 2p23, and DNMT3B encode DNA

methyltransferases catalyzing the addition of a methyl

group to the cytosine residue of CpG dinucleotides. Clus-

ters of CpG dinucleotides (CpG islands) are found in

regions located upstream of genes. An increased methyla-

tion of CpG islands is usually correlated to a reduced gene

expression. DNA (cytosine-5)-methyltransferase 3A

mutations are highly frequent in patients with de novo

AML with an intermediate-risk cytogenetic profile and are

independently associated with a poor outcome [30]. On the

basis of the recent discovery of DNMT3A mutations, their

presence was identified in 10% of CMML patients [23].

The occurrence of DNMT3A mutations was increased in

patients with normal karyotype [23].

RUNX1 RUNX1 (Runt-related transcription factor 1

gene), located on chromosome 21q22, encodes a subunit of

a DNA core-binding factor that is a regulatory transcription

factor essential for normal hematopoiesis [31]. Runt-rela-

ted transcription factor 1 somatic mutations are highly

frequent in human MDS [32]. Runt-related transcription

factor 1 alterations (mutations and cryptic rearrangement)

were also identified in 8–38% of CMML patients [8, 20].

Mutations affecting cell signaling

RAS The signaling kinase RAS (Rat sarcoma) oncogene

has been found mutated in a high number of malignancies

comprising MDS. It was established that 10–15% of MDS

patients harbor RAS mutations, usually codon 12 NRAS
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mutations [33]. In CMML, a mutation rate of 22 and 12%

has been observed in NRAS and KRAS, respectively [19,

20] while a burden of 30.8% in N/KRAS has been mea-

sured [6]. In the future, CMML patients having RAS

pathway mutations may take advantage of pharmacological

molecules targeting the RAS/RAF/MAPK pathway

[34, 35].

CBL CBL (Casitas B-lineage lymphoma), located at

11q23.3, encodes for a cytosolic protein harboring two

roles, i.e., a negative regulator of kinase signaling mediated

by E3 ubiquitin ligase activity, and an adaptor protein with

a positive effect on downstream signaling [36]. Casitas B-

lineage lymphoma catalyzes the ubiquitination of FLT3,

KIT, and MPL [37, 38]. Casitas B-lineage lymphoma

mutations in myeloid malignancies are mainly associated

with 11q acquired uniparental disomy [39]. Further studies

have demonstrated that CBL mutations were most often

associated with JMML and CMML (5–22%) [20, 39–43].

Casitas B-lineage lymphoma mutations associated with

JMML and CMML usually correspond to missense sub-

stitutions or in-frame deletions. In addition, mutant CBL is

co-expressed with TP53, JAK2, FLT3, and RUNX1 mutants

[39, 41].

JAK2 JAK2 (Janus kinase 2) located on chromosome

9p24, belongs to the JAK family (Janus family non-

receptor protein tyrosine kinases), which comprises four

kinases (JAK1, 2, and 3 and TYK2) that attach to cytokine

receptor cytosolic domains. Janus kinase 2 has a crucial

function in the signaling pathways coming from ‘‘myeloid’’

cytokine receptors [44]. The JAK2V617F mutation impacts

the non-catalytic ‘‘pseudo-kinase’’ domain and disrupts its

kinase-regulatory function. In addition, JAK2V617F acts

on epigenetic regulation through nuclear translocation by

directing histone H3 phosphorylation [45]. This mutation

has been found in the majority of BCR–ABL-negative

MPNs (95% of patients with PV, 50–70% with ET, and 40–

50% with PMF), as well as in some cases of atypical MPN

(30–50% splanchnic vein thrombosis and sideroblastic

anemia associated with a thrombocytosis) [46]. Finally, it

was also identified JAK2V617F in 1–10% of CMML

patients [20, 23].

FLT3 FLT3 (Fms-like tyrosine kinase 3), located on

chromosome 13q12, is often mutated in AML, and con-

tributes to a damaging prognosis, most likely by triggering

a proliferative advantage to the leukemic cells [47]. Fms-

like tyrosine kinase 3 mutations have also been rarely

described in MDS. The majority of FLT3 mutations iden-

tified in MDS corresponds to internal tandem duplication

(ITD) events in high-risk MDS patients, and could be one

of the genetic alterations leading to their transformation

into AML [48]. Furthermore, FLT3-ITD knock-in gener-

ates a CMML-like phenotype in mice and 3.1% of CMML

patients have been found positive for FLT3-ITD [14].

NOTCH Notch signaling is an essential modulator of

differentiation in tissue and cell types. Its activity is reg-

ulated by the multi-subunit c-secretase (cSE) complex [49].

This signaling was already shown to have both oncogenic

and tumor-suppressor functions in solid tumors and in T

cell acute lymphoblastic leukemia (T-ALL), a leukemia

characterized by Notch1 activating mutations [50].

Recently, 12% of CMML patients have been found to

harbor somatic heterozygous mutations in multiple notch

pathway genes including NCSTN, APH1, MAML1, and

NOTCH2 [15]. Interestingly, CMML patients with notch

mutations also had somatic alterations in JAK2, KRAS,

TET2, and ASXL1, suggesting molecular cooperation

between notch signaling and other oncogenic pathways in

CMML. Activation of Notch signaling using peptides or

specific antibodies will be certainly investigated in the near

future.

Other gene mutations

NPM1 NPM1 (Nucleophosmin 1), located on chromo-

some 5q35.1, encodes for a nucleolar shuttling protein.

This protein is localized primarily in the nucleolus, but

shuttles rapidly between the nucleus and cytoplasm. Nu-

cleophosmin has been shown to have a crucial role in a

high number of cellular processes. C-terminal somatic

mutations in NPM1 were described in 35% of karyotypi-

cally normal AML [51]. Nucleophosmin 1 mutations are

rare in chronic myelogenous diseases. In CMML, 1–5% of

patients have been found positive for mutated NPM1 [20,

52]. When present, they may forewarn about rapid pro-

gression to AML and likely a poorer prognosis.

Mutations of splicing components

It was recently reported that genetic alterations of the

major splicing components could be involved in myeloid

neoplasms with features of myelodysplasia [11]. The

splicing machinery components were mutated in 16 out of

29 cases (55.2 %) of MDS in a mutually exclusive manner.

This novel pathway of mutations involves multiple com-

ponents of the RNA splicing machinery, i.e., SF3B1,

SRSF2, U2AF35, and ZRSR2, and to a lesser extent,

SF3A1, SF1, U2AF65, and PRPF40B. Mutations of the

splicing machinery were highly specific to MDS either

with (84.9%) or without (43.9%) increased ring sidero-

blasts, CMML (54.5%), and therapy-related AML or AML
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with myelodysplasia-related changes (25.8%), but were

rare in de novo AML (6.6%) and MPN (9.4%). SRSF2

(serine/arginine-rich splicing factor 2, also known as SC35)

mutations were more frequent in CMML cases [11]. Ser-

ine/arginine-rich splicing factor 2 is also involved in the

regulation of DNA stability and depletion of SRSF2 can

lead to genomic instability [53]. This very frequent new

mutation (47%) is characterized by higher age, higher

hemoglobin levels, and a high coincidence with TET2 and

RUNX1 mutations (Schnittger S, ASH congress, 2011).

Moreover, it is mutually exclusive of EZH2 mutations.

Finally, in the subset of RUNX1-mutated CMML, SRSF2

mutations showed a favorable impact on outcome

(Schnittger S, ASH congress, 2011).

Gene downregulation through promoter

hypermethylation

TIF1c

TIF1c (Transcription intermediary factor 1 gamma, also

called TRIM33) located at 1p13.1, encodes for an E3

ubiquitin ligase, as CBL, which belongs to the TRIM

(tripartite motif) family. Four TIF1 members (a–d) have

been identified in mammals, and orthologs are present in

organisms such as Drosophila [54–64].

Mutations in the zebrafish mon (tif1c) gene cause a

disruption in both primitive embryonic and definitive

adult hematopoiesis, resulting in a severe loss of erythroid

cells [65]. In zebrafish and human stem/progenitor

CD34? cells, TIF1c functionally links positive elongation

factors to blood-specific transcription complexes to regu-

late the erythroid commitment [66]. Recently, we and

others have identified TIF1c as a tumor suppressor in

murine hematopoietic cells [67, 68], mimicking the

essential features of human CMML [67]. This finding

prompted us to investigate TIF1c expression in CMML

patients. Transcriptional Intermediary Factor 1c level was

very low and almost undetectable in leukemic cells of

35% of patients. We have shown that TIF1c decreased

expression is not due to gene mutation but to the gene

promoter hypermethylation [67].

The demethylating agent decitabine induces a clinical

and a biological response in about 30% of high-grade

CMML [69]. We demonstrated that the gene expression

increases in peripheral blood monocytes of patients who

respond to decitabine, which was confirmed in leukemic

cells cultured ex vivo in presence of decitabine. Hence, our

data identify TIF1c as an epigenetically regulated tumor

suppressor gene in hematopoietic cells, and suggest that

changes in TIF1c expression may be a biomarker of

response to demethylating agents in CMML.

Mouse models of CMML

Tif1c

As mentioned above, two mouse models for Tif1c were

generated so far. Loss of Tif1c leads to severe defects in

hematopoiesis from the HSC compartment to myelomon-

ocytic lineages. Indeed, the effects of hematopoietic tissue-

targeted deletion of Tif1c in mice (Mx-Cre and cFES-Cre

mouse models) were examined [67, 68]. Transcription

intermediary factor 1 gamma deletion affects the transition

from very primitive progenitors (i.e., LT-HSCs population)

to common myeloid progenitors, and leads to a selective

expansion of granulo-monocytic progenitors [67, 68]. At

older age ([6 months), the phenotype recapitulates the

human CMML [67].

Cbl

Casitas B-lineage Lymphoma knockout mice present an

expanded hematopoietic stem cell population, splenomeg-

aly, and increased cytokine sensitivity of hematopoietic

progenitor cells [39]. In addition, primary murine bone

marrow retrovirally transduced with c-Cbl mutants and

transplanted into mice led to a generalized mastocytosis, a

myeloproliferative disease, and myeloid leukemia [37].

Notch

To investigate hematopoiesis in the absence of any notch-

derived signal, Nicastrin (Ncstn), a member of the cSE

complex and one of the few non-redundant members of the

pathway has been targeted. Nicastrinf/f mice were crossed

to both an inducible (Mx1-cre) and a hematopoietic-spe-

cific (Vav-cre) recombinase strain [15]. Both models

developed a myeloproliferative/myelodysplastic disease

resembling human CMML.

Ras

By using an improved mouse bone marrow transduction

and transplantation model, it was demonstrated that onco-

genic Nras induced CMML- or AML-like disease in mice

[70]. Interestingly, palmitoylation as well as farnesylation

are essential for leukemogenesis by oncogenic Nras in this

model [71]. A mouse bone marrow transplantation model

harboring an oncogenic G12D mutation in the Nras locus

was also generated [72]. Around 95% of recipient mice

developed a myeloproliferative disease resembling the

myeloproliferative variant of CMML, with a prolonged

latency and acquisition of multiple genetic alterations,

including uniparental disomy of oncogenic Nras allele.
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Flt3

A mouse model harboring an ITD in the murine Flt3 locus

has been generated [14]. These mutant mice displayed a

myeloproliferative disease mimicking CMML. These mice

harbored an increase number of multipotent stem and

progenitor cells in an ITD dose-dependent manner and

exhibited alterations within their myeloid progenitor

compartments and a block in normal B cell development.

Development of novel therapies in CMML

Age and co-morbidity participate to the therapeutic deci-

sion. Before the area of the epigenetic therapy, hydroxyurea

was the therapy most used and other chemotherapeutic

approaches, including cytarabine and etoposide, were not

better [73]. Allogenic stem cell transplantation, which is the

only curative therapy, can be considered only in younger

patients (\55 years) with a matched donor as transplant-

related mortality increases with age. The first studies of

efficiency of demethylating agents (i.e., azacitidine and

decitabine) in CMML therapies came from investigations of

MDS patients [74, 75]. Other clinical investigations con-

firmed these results [22, 76–78]. Azacitidine is a US Food

and Drug Administration (FDA)- and European Medicines

Agency-approved agent for the treatment of CMML-2,

whereas decitabine is only FDA-approved. A phase 2 trial

of decitabine in CMML patients with characteristics of

advanced disease was performed [22]. Biological parame-

ters predicting drug efficacy were examined. Overall

response rate was 38%. With a median follow-up of

23 months, overall survival was 48% at 2 years. Mutations

in ASXL1, TET2, RUNX1, NRAS, KRAS, CBL, FLT3, and

JAK2 genes, and hypermethylation of the promoter of

TIF1c, did not presage effect or survival on decitabine

therapy. In contrast, low expression levels of cJUN and

cMYB predicted improved overall survival.

The association of DNA methyltransferase and histone

deacetylase inhibition seems to be promising in the treat-

ment of myelodysplastic syndrome or acute myeloid

leukemia. Indeed, molecular mechanisms responsible for

responses to DNA methyltransferase/histone deacetylase

inhibitor combinations may include reversal of aberrant

epigenetic gene silencing [79]. Other interesting therapies

to be studied consist of take in azacitidine and thalidomide

as shown in MDS and AML [80], or azacitidine and far-

nesyl transferase inhibitors [81].

Contrary to CML, in which a single molecular defect was

observed (BCR–ABL), leading to the targeting of one type of

small molecule such as tyrosine kinase inhibitors, the various

gene alterations found in CMML seem to not be correlated

with a homogeneous phenotype at the clinical level, further

prompting to develop molecular diagnostics for decision-

making of targeted therapeutics for each patient.

Conclusions

Although clonal cytogenetic abnormalities have been usu-

ally associated so far with CMML, molecular alterations

correlating with these cytogenetic abnormalities were

recently evidenced. The role of each gene deficiency in

disease occurrence and progression is not characterized yet.

The main challenge for the next years is to determine how

these molecular alterations (mutations or gene promoter

hypermethylation) may be directly responsible either in the

development, progression of CMML, or in the evolution of

CMML to AML.
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