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Abstract Phosphorus (P), an essential macronutrient

required for plant growth and development, is often limiting

in natural and agro-climatic environments. To cope with

heterogeneous or low phosphate (Pi) availability, plants

have evolved an array of adaptive responses facilitating

optimal acquisition and distribution of Pi. The root system

plays a pivotal role in Pi-deficiency-mediated adaptive

responses that are regulated by a complex interplay of

systemic and local Pi sensing. Cross-talk with sugar, phy-

tohormones, and other nutrient signaling pathways further

highlight the intricacies involved in maintaining Pi

homeostasis. Transcriptional regulation of Pi-starvation

responses is particularly intriguing and involves a host of

transcription factors (TFs). Although PHR1 of Arabidopsis

is an extensively studied MYB TF regulating subset of Pi-

starvation responses, it is not induced during Pi deprivation.

Genome-wide analyses of Arabidopsis have shown that low

Pi stress triggers spatiotemporal expression of several genes

encoding different TFs. Functional characterization of some

of these TFs reveals their diverse roles in regulating root

system architecture, and acquisition and utilization of Pi.

Some of the TFs are also involved in phytohormone-med-

iated root responses to Pi starvation. The biological roles of

these TFs in transcriptional regulation of Pi homeostasis in

model plants Arabidopsis thaliana and Oryza sativa are

presented in this review.
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Introduction

Phosphorus (P), a key element for plant growth, is absorbed

by root system in the form of inorganic phosphate (Pi) from

soil matrices [1]. Due to slow diffusion rates in rhizospheres

and/or fixation as immobile organic Pi or inorganic com-

plexes, it is often a limiting nutrient leading to loss of crop

productivity. Deciphering intricate adaptive mechanisms

that plants have evolved for coping with heterogeneous or

low Pi availability would be pivotal for developing crop

plants amenable for enhanced Pi acquisition and use under

low Pi conditions [2–4]. Model plants (Arabidopsis thali-

ana, Medicago truncatula, Oryza sativa, Phaseolus

vulgaris, Solanum lycopersicum, Zea mays) are often used

for elucidation of Pi-deficiency-mediated responses and

several reviews have provided valuable insights [3–14]. Pi

deficiency triggers an array of adaptive responses (altered

root system, accumulation of anthocyanins, attenuated plant

growth, secretion of organic acids, phosphatases and nuc-

leases) facilitating enhanced Pi acquisition and utilization

by plants [10, 15]. Genome-wide analyses using Affymetrix

microarrays, suppression subtractive hybridization, and

deep-sequencing techniques have led to the identification of

several Pi-starvation-responsive (PSR) genes involved in

acquisition, mobilization, and substitution of Pi, metabolic

pathways, signal transduction, transcriptional regulation,

and many processes related to growth and development
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[16–23]. In this review, we evaluate the regulatory influence

of functionally characterized PSR genes encoding TFs from

A. thaliana and O. sativa on various developmental, meta-

bolic, and/or molecular responses that affect Pi homeostasis.

TFs regulating Pi-starvation responses

The identification and characterization of PHO regulon in

unicellular prokaryotic and eukaryotic organisms and PSR1

in Chlamydomonas [24–28] provided the impetus to look

for similar regulatory and signaling mechanisms in plant

species. Increased Pi transport upon Pi starvation in roots

and cultured cells of plants suggested the presence of a

system analogous to the PHO regulon of yeast [29, 30].

Promoter analysis of a tomato phosphate starvation-

induced (TPSI1) gene further revealed the presence of a

cis-regulatory element (CACGTG/T) that was similar to

the one found in the promoters of PSR genes of yeast [31–

33]. Therefore, efforts were focused on the identification of

TFs that could have positive or negative regulatory control

on the hosts of PSR genes in plants. Transcriptome anal-

yses revealed several PSR genes encoding TFs that were

responsive to Pi deprivation and exhibited differential

spatiotemporal expression profiles [16–18, 23, 34, 35].

However, transcriptome analysis alone is not sufficient for

defining the potential roles of TFs in the maintenance of

Pi homeostasis. It is essential to functionally characterize

them by either suppressing (T-DNA knock-down or RNAi

gene silencing) or overexpressing their genes for elucida-

tion of their biological roles in acquisition and mobilization

of Pi [36–38]. TFs non-responsive to different Pi regimes

could also exert a regulatory control on the subset of

molecular events that govern Pi homeostasis [22, 39, 40].

Here, accounts of several genes of Arabidopsis and rice

encoding different TFs that have been characterized and

shown to play a role in the maintenance of Pi homeostasis

are presented

TFs constitutively induced irrespective of Pi status

Arabidopsis

PHR1 (At4g28610): This is one of the 15 members of the

MYB-CC gene family in Arabidopsis and is localized in the

nucleus irrespective of Pi status [39]. Gel mobility shift

assay revealed the binding of PHR1 as a dimer to an

imperfect palindromic 8-bp sequence (GNATATNC)

called P1BS (PHR1-binding sequence) found in the pro-

moters of many PSR genes [16, 18, 39, 41]. The P1BS

motif has also been identified near MYCS, an arbuscular

mycorrhizas (AM)-specific motif, and both motifs are

pivotal for activation of AM-induced Pi transporters [42].

Promoter deletion analyses of Pi transporters from Ara-

bidopsis (Pht1;4) and barley (HvPht1;1) have provided

further evidence towards the role of this cis-regulatory

motif in transcriptional regulation of PSR genes [43, 44].

SIZ1, PHO2, and microRNAs are important components

of PHR1-mediated regulation of PSR genes [45, 46].

Interestingly, though, Pi-starvation-suppressed genes do

not show enrichment with the P1BS motif [22].

PHR1-LIKE1 (PHL1): This is phylogenetically a close

relative of PHR1 and together these two functionally

redundant TFs act as key integrators of both specific and

generic Pi-starvation responses [22]. The expression of

PHL1 (At5g29000) overlapped with that of PHR1 in both

shoots and roots under varying Pi regime [22].

Rice

OsPHR1 and OsPHR2: These are two homologs of At-

PHR1 in rice that were isolated based on amino acid

sequence identity, and their role as transcriptional activa-

tors was demonstrated by yeast two-hybrid assay [47].

Similar to AtPHR1, neither OsPHR1 (AK063486) nor

OsPHR2 (AK100065) are responsive to Pi deprivation

[47].

TFs induced by Pi deprivation

Arabidopsis

MYB62: This is a member of R2R3 type MYB TF family

in Arabidopsis normally comprising three repeats of 52

amino acids, i.e., R1, R2, and R3 domains that bind DNA

in a sequence-specific manner [48]. MYB62 (At1g68320)

is induced specifically in the shoots during long-term Pi

deprivation [16].

ZAT6: In Arabidopsis, Cys-2/His-2 (C2H2)-type zinc

finger proteins (ZFPs) represent one of the largest families

of putative transcriptional regulators [49]. ZAT6 along

with most of the other C2H2-type zinc finger proteins

contain a DLN-box/EAR motif in their C-terminus which

functions as a transcription repression domain [37, 50].

Transcriptome analysis revealed the expression of ZAT6

(At5g04340) in shoots of long-term Pi-deprived seedlings

[16], and a subsequent study showed a noticeable increase

in its expression in both roots and shoots of Pi-deprived

young seedlings [37].

WRKY6 and WRKY75: The Arabidopsis WRKY fam-

ily comprises 74 members and some of them have been

implicated in plant responses to biotic and abiotic stresses

[36, 51, 52]. The C2H2 zinc finger domain of WRKY

proteins regulates the spatiotemporal expression of their
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target genes by binding to TTGAC/T (W box) elements

[51, 53]. One of the characteristic features of WRKY

proteins is the ability of auto-and cross-regulating their

own promoters and other WRKYs, respectively [54]. Pro-

moters of many of the PSR genes have one or more W

boxes [36]. For instance, two WRKY box (W-box) cis-

elements (TTGACC/T) are found in Pht1;5 promoter

[55]. Pi deficiency affects induction of both WRKY6

(At1g62300) and WRKY75 (At5g13080) [36, 52].

bHLH32: The basic helix-loop-helix (bHLH) proteins

are a superfamily of TFs that bind as dimers to specific

DNA target sites and are critical regulatory components in

transcriptional networks. The bHLH motif consists of

about 60 amino acids with two functionally distinct

regions; the basic region at the N-terminal end of the

domain facilitates DNA binding and the HLH region acts

as a dimerization domain at the C-terminal end. BHLH32

(At3g25710) encodes bHLH TF [56], and microarray

analysis showed its induction in leaves and roots of seed-

lings deprived of Pi for 48 h [34].

PRD (At1g79700): Transcriptomic and quantitative RT-

PCR analyses showed Pi-deficiency-mediated regulation of

genes encoding AP2/ERF TF PRD (phosphate root devel-

opment) belonging to the AINTEGUMENTA-like (AIL)

gene family [57, 58].

HRS1 (At1g13300): Bioinformatic analysis revealed

that HRS1 and its six homologs (HHO1 to HHO6) encode

G2-like TFs in Arabidopsis. G2-like TFs have a DNA

binding domain originally identified in maize Golden 2

protein [59]. Transcriptome analysis showed the induction

of HRS1 during long-term Pi deprivation [16]. HRS1 pro-

moter-driven GUS activity was detected in root hairs under

Pi-replete conditions, and Pi deficiency further augmented

the reporter activity [60].

Rice

OsPTF1: This TF from rice is characterized by a basic

helix-loop-helix (bHLH) domain. The expression of

OsPTF1 (AY238991) was induced in Pi-deprived roots,

while it remained constitutive in shoots [61].

Effects of mutation in TFs

The effects of mutation in TF on various morphophysio-

logical and molecular responses are often used as

yardsticks for evaluating its role in regulating the adaptive

responses of the plant to different Pi regime [4, 62–65].

Here, we present an overview on the effects of a mutation

in different TFs on Pi content and root traits (Table 1),

developmental responses and accumulation of anthocyanin

(Table 2), and expression of PSR genes (Table 3).

Effects of mutation in TF on Pi content

The phr1 mutant isolated from an EMS mutagenized

population showed significant reduction in Pi content of

P? seedlings compared to wild-type [22, 39]. Relatively,

P? phl1 mutant showed rather moderate reduction in Pi

levels, while a more accentuated drop in Pi content was

observed in P? double mutant phr1 phl1. This suggested a

prevalence of partial functional redundancy between these

two MYB-CC family genes [22]. Interestingly, a phr1

mutant isolated from T-DNA insertion gene knock-out

pools contained almost twice the amount of Pi in roots and

30 % less in shoots of Pi-deficient seedlings compared to

the wild-type [40]. Since the phenotype of phr1 resembles

the pho1 mutant defective in Pi loading, the likely

involvement of PHR1 in both acquisition and mobilization

of Pi from root to shoot can be assumed. Earlier study had

shown a pivotal role of PHO1 in Pi loading to the xylem

during Pi deprivation and a modest involvement of its

homolog PHO1;H1 [66]. This suggested a likely regulatory

effect of PHR1 on PHO1. However, contrary to this

assumption, Pi-starvation-mediated induction of PHO1;H1,

but not that of PHO1, was impaired in phr1 [66]. PHO1

appears thus to be regulated by a mechanism yet to be

identified [40]. Irrespective of the Pi regime, significant

increases in Pi content were noticed in roots and shoots of

WRKY75RNAi plants [36]. The bhlh32 mutant seedlings

revealed higher Pi content than the wild-type only under Pi

replete condition [56]. A similar trend of higher Pi content in

P? shoots was observed for wrky6-1 [52], whereas, Pi content

was comparable to the wild-type in prd and hrs1-1 mutants,

and RNAi lines of OsPHR1 and OsPHR2 grown under dif-

ferent Pi regime [47, 58, 60].

The regulatory role of MYB62, if any, in Pi acquisition

and accumulation could not be elucidated due to difficulties

in identifying homozygous T-DNA insertion mutants or

developing RNAi-lines [38]. Similarly, RNAi suppression

of ZAT6 yielded lethal phenotype and therefore the effect

of loss-of-function of this gene could not be functionally

characterized [37]. Information on analysis of loss-of-

function mutant of OsPTF1 is not yet available. Overall,

the TFs characterized so far show variable regulatory

influence on Pi contents of the mutant seedlings. Table 1

summarizes the effect of a mutation in TF on Pi content of

roots, shoots, and/or seedlings grown under P? and P-

conditions. These functionally characterized TFs represent

only a handful of those that have been identified from

different transcriptome analyses of spatiotemporal respon-

ses to Pi deficiency in Arabidopsis and rice [16–18, 23, 34,

35, 67, 68]. Characterization of other TFs identified from

these microarray databases could further add to our present

understanding of their influence on Pi contents in roots and

shoots of the plants grown under different Pi regime.

Transcriptional regulation of phosphate acquisition by higher plants 3209
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Effects of mutation in TF on local Pi-responsive

root traits

Since mutation in different TFs led to variable effects on

the spatial distribution of Pi, it is reasonable to assume that

one or more of the root traits that play a pivotal role in Pi

acquisition and mobilization is under their regulation.

Here, we present a comparative analysis of the effects of

mutation in different TFs on root traits that are responsive

to local Pi availability.

Root hairs

Root hairs mediate the uptake of Pi by expanding the

available absorptive surface area of root system thereby

facilitating exploration of a larger soil area [69]. In Ara-

bidopsis, there is only sparse development of root hairs

under P? condition whereas Pi deficiency triggers signif-

icant increases in both their number and length [69–74].

The significance of root hairs in Pi acquisition has been

demonstrated by the conspicuous presence of depletion

zones of 32P around root hairs [75], and by comparing Pi

uptake efficacies of wild-type and a hairless Arabidopsis

mutant [76]. Rapid elongation of Arabidopsis root hairs in

areas of agar Petri plates containing a low concentration of

Pi demonstrated the cell autonomous perception of local Pi

availability independent of plant Pi status [5, 7]. Even

though exogenous application of cytokinin resulted in the

suppression of some of the PSR genes in the roots, it did

not repress the Pi-starvation-mediated stimulation of root

hair length [77]. This does suggest the existence of inde-

pendent regulatory mechanisms governing systemic and

local Pi sensing responses. Table 1 gives a comparative

account of the effect of mutation in TFs on root hair

development under different Pi regime. Although increases

in root hair length and number of phr1 were comparable to

the wild-type when starved of Pi for 7 days [39], significant

reduction in root hair length was detected in both phr1 and

phr1phl1 during prolonged Pi deprivation for 12 days [22].

This suggested that PHR1 acts as a positive regulator of

root hair elongation at least during long-term Pi deprivation

and thus exerts some control on local Pi-dependent

responses. Root hair number was significantly higher in

WRKY75RNAi and bhlh32 when grown under P? condi-

tion [36, 56]. These studies highlighted the negative

regulatory effect of some of the TFs (WRKY75 and

BHLH32) on root hair development generating increased

total available root surface area for Pi acquisition, resulting

in elevated Pi content in the seedlings. Although expression

of HRS1 was induced in root hair zone and in root hair cells

during Pi deprivation, root hair development in hrs1-1 did

not differ from wild-type irrespective of Pi status [60]. The

lack of obvious phenotypic variations between the wild-

type and RNAi lines of OsPHR1 and OsPHR2 [47] also

Table 1 Effects of mutation in

TFs on Pi content and different

root traits

The effects of mutation in TFs

on Pi content in roots (R), shoot

(S), seedlings (SL), number [RH

(N)] and length [RH (L)] of root

hairs, primary root growth

(PRG), and number [LR (N)]

and length [LR (L)] of lateral

roots in the mutants were

compared with their

corresponding wild-types grown

under identical conditions

* The effects of overexpression

have been reported but no data

available for loss-of-function

mutant

TF mutants Ref. Pi (R ) Pi (S) Pi (SL) RH (N) RH (L) PRG LR (N) LR (L) 

    P+ P- P+ P- P+ P- P+ P- P+ P- P+ P- P+ P- P+ P- 

phr1 22 

phr1 39 

phr1 40 

phl1 22 

phr1 x phl1 22 

bhlh32 56 

WRKY75RNAi 36 

wrky6-1 52 

prd 58 

hrs1-1 60 

OsPHR1RNAi 47 

OsPHR2RNAi 47 

MYB62* 38 

ZAT6* 37 

OsPTF1* 61 
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suggested that there was no effect on root hair development

in these transgenics. At present, the regulatory roles of

ZAT6, MYB62, WRKY6, PRD, and OsPTF1 on root hair

development under different Pi regime are not known and

merit further studies [37, 38, 52, 58, 61].

Primary root length

Several studies demonstrated the influence of Pi depriva-

tion on remodeling of RSA [72, 73, 78–80]. RSA is a

pivotal part of plant adaptation to heterogeneous distribu-

tion of Pi in soils, and is an overall representation of the

spatial growth responses of ontogenetically distinct

embryonic and post-embryonically developed primary and

lateral roots, respectively. RSA exhibits extensive devel-

opmental plasticity that augments its exploratory capacity

for foraging top soils rich in Pi [81–83]. To determine

specifically the influence of local Pi availability on primary

root growth, Arabidopsis seedlings were grown on verti-

cally orientated agar Petri plates containing patches of

different Pi supply. The growth of primary root was

inhibited upon encountering a Pi-deficient patch suggesting

an influence of local Pi availability on this trait [84]. Low

Pi-mediated inhibition of primary root growth is caused by

reduction of cell elongation followed by progressive

exhaustion of meristematic cells, resulting in a shift from

an indeterminate to a determinate developmental program

[85–88]. In fact, the magnitude of gene expression trig-

gered by low Pi has been shown to be specified by root

meristem activity [89]. Transgenic Arabidopsis expressing

quiescent center (QC) identity marker QC46::uidA was

used for determining whether low Pi condition has any

effect on QC activity [88]. The study revealed that alter-

ation in QC preceded loss of meristematic activity in the

primary root, which led to the assumption that QC could

act as a sensor of Pi deficiency that eventually affects

meristem maintenance. Table 1 presents a comparative

account of the effects of mutation in TFs on different root

traits under P? and P- conditions. An inhibitory effect on

primary root growth was pronounced in P- prd seedlings

suggesting a positive regulatory effect of PRD on Pi-defi-

ciency-mediated growth response of primary root, which

was consistent with its expression specifically in the apex

of the primary root [58]. An impairment of local Pi sensing

ability of Arabidopsis primary root grown under P–Fe-

condition is well documented [90, 91]. Fe is a strong Pi

chelator and therefore there is a rationale for an antago-

nistic interaction between them [1, 92–95]. Elevated

concentration of Fe in Pi-deficient plants resulting in

coordinated suppression of iron transporter IRT1 in roots

and induction of FER1 (encoding a protein involved in iron

storage in the chloroplast) in leaves point to a link between

Pi-deficiency-mediated molecular responses and Fe

transport, accumulation, and homeostasis [16, 73, 96].

Therefore, it was hypothesized that primary root growth

inhibition during Pi deficiency may be a consequence of

elevated Fe availability and its presumed toxicity [91, 96].

In contrast, the root growth response of pdr2 (conditional

short root mutant) under conditions where Fe2? was made

bioavailable at each Pi concentration (0–2.5 mM Pi)

revealed that the sensitization of the primary root growth of

the mutant to an inhibitory effect of Pi deprivation is lar-

gely independent of external Fe availability [97]. These

studies thus provide differing views about the role of Fe in

mediating local Pi-sensing responses of primary root. It

would therefore be interesting to compare the growth of the

primary root of pdr2 seedlings under both P- and P–Fe-

conditions that may provide useful information towards the

role of this TF, if any, in regulating Fe-mediated local

Pi-sensing ability of this root trait. The majority of the

TFs studied so far either did not show any influence

(WRKY75RNAi, bhlh32, hrs1-1) or their effects are not

known/reported (phr1, phl1, phr1 phl1, wrky6-1) on

Pi-deficiency-mediated inhibition of primary root growth

of Arabidopsis seedlings [22, 36, 39, 52, 56, 60]. Also,

there was no noticeable phenotypic variation between

OsPHR2RNAi and wild-type [47].

Table 2 Effects of mutation in TF on developmental and metabolic

traits

TF mutants Ref R/S Gr R/S FW FW Sil/Pl Anth 

    P+ P- P+ P- P+ P- P+ P- P+ P- 

phr1 22 

phr1 39 

phr1 40 

phl1 22 

phr1 x phl1 22 

bhlh32 56 

WRKY75RNAi 36 

wrky6-1 52 

prd 58 

hrs1-1 60 

OsPHR1RNAi 47 

OsPHR2RNAi 47 

MYB62* 38 

ZAT6* 37 

OsPTF1* 61 

The effects of mutation in TFs on root/shoot growth ratio (R/S Gr),

root/shoot fresh weight ratio (R/S FW), fresh weight (FW), number of

siliques/plant (Sil/Pl), and anthocyanin accumulation (Anth) in the

mutants were compared with their corresponding wild-types grown

under identical conditions. The color code is the same as shown for

Table 1

* The effects of overexpression have been reported but no data

available for loss-of-function mutant

Transcriptional regulation of phosphate acquisition by higher plants 3211
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Table 3 Effects of mutation in Arabidopsis TFs on molecular responses

The effects of mutation in Arabidopsis TFs on molecular responses were compared with their corresponding wild-types grown under identical

conditions. The molecular responses were detected by one or more molecular techniques involving Northern analysis (A), qRT-PCR (B),

microarray (C), and/or RT-PCR (D). The color code is the same as used for Table 1

* Overlap in the suppressive effects of P-phr1 and P?pho2 on the expression of PSR genes [46]

3212 A. Jain et al.
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Lateral root development

Ontogenetically primary and lateral roots represent distinct

entities, and, unlike primary roots, Pi-deficiency-mediated

developmental responses of lateral roots are dependent on

both sucrose and auxin [72]. Despite these differences

between primary and lateral roots, the developmental

response of the former has a substantial influence on the

latter. For instance, lateral root formation could be stimu-

lated by removal of primary root tip or ablation of root cap

cells by the expression of diphtheria toxin [80, 98, 99]. Pi-

deficiency-induced exhaustion of the meristematic activity

in primary root could have a likely influence on auxin

movement in root tip and consequently on branching of

lateral root [7, 100]. Therefore, interaction between pri-

mary root growth and lateral root development is crucial

for establishing RSA, which enhances its exploratory

capacity particularly within the upper layers of soils. Sig-

nificant reduction in lateral root length of Pi-deprived prd

supported this assumption and highlighted its role in

mediating root architectural responses to Pi deprivation

[58]. In contrast, there were marked increases in number

and length of lateral roots in WRKY75RNAi under both P?

and P- conditions despite having primary root growth

comparable to the wild-type [36]. Broadly, the mutation in

majority of the characterized TFs [phr1, phl1, phr1 phl1,

bhlh32, hrs1-1, wrky6-1] either did not elicit any signifi-

cant effect on Pi-deficiency-mediated developmental

responses of lateral roots or it has not been reported [22,

39, 40, 52, 56, 60].

Reverse genetics approaches (T-DNA knock-down and

RNAi gene silencing) led to the characterization of a few

TFs (PHR1, WRKY75, BHLH32, PRD) that affected one or

more of the root traits in Arabidopsis either during Pi

deprivation or independent of Pi status [22, 36, 56, 58].

Among these TFs, elevated Pi content in bhlh32 and

WRKY75RNAi seedlings could possibly be correlated with

significant increases in their root hair numbers and/or

accentuated development of lateral roots [36, 56]. A more

direct role of other TFs in regulating Pi uptake and mobi-

lization by regulating developmental responses of different

root traits needs to be established. It would be interesting to

investigate the functional interactions across these TFs, and

whether their double or triple mutants could have any

additive regulatory influence on the root traits and thereby

on Pi content of the seedlings. This strategy may be helpful

in developing transgenics that could have higher Pi-use

efficiency under Pi-limiting condition.

Although genome-wide analyses of Arabidopsis led to

the identification of an array of PSR genes [16, 17], none of

these studies highlighted the role of local and systemic Pi

sensing. To address this issue, a split-root experiment was

designed facilitating exposure of two parts of the same root

system to separate media differing in their Pi content [23].

This approach led to the identification of several PSR genes

including TFs that were specific to either local or systemic

Pi sensing. It is therefore anticipated that functional char-

acterization of some of these TFs that are specifically

responsive to local Pi availability could shed more light on

local Pi sensing. A similar approach of using a split-root

system would be an attractive option for dissecting TFs

specific for local and systemic sensing in rice, which,

unlike Arabidopsis, stimulates the growth of primary and

adventitious roots during Pi deficiency [47, 61, 101]. On

the whole, our present understanding of the TFs regulating

local Pi-sensing responses has only begun to be unraveled

in plants.

Potential cross-talk of TFs with phytohormone

and sugar signaling pathways in mediating

root responses to Pi deficiency

Modifications in RSA are characteristic responses of plants

to Pi deficiency [83]. Among the phytohormones, ethylene

has been implicated in regulating Pi-deficiency-mediated

root hair development [55, 69, 102–104]. Ethylene also

integrates with auxin signaling by modulating tissue-spe-

cific responses, biosynthesis, and transport of auxin [105].

Interactions between these two phytohormones have a

synergistic effect on root hair development and root growth

[105, 106]. Auxin plays a pivotal role in development of

root system [107–109] and several studies have demon-

strated a cross-talk between Pi sensing and auxin signaling

[72, 78–80, 83, 86, 110–113]. Further, auxin has been

implicated in promoting root growth by modulating the

gibberellic acid (GA) response [114]. More conclusive

evidence toward the cross-talk between GA and Pi star-

vation responses is now beginning to emerge [38, 115].

Active photosynthesis or supplementation of the nutrient

medium with sucrose (Suc) or other metabolizable sugars

is pivotal for Pi-deficiency-mediated developmental

responses of root hairs and lateral roots [72]. Since muta-

tions in BHLH32 and WRKY75 significantly affected root

traits [36, 56], examining their cross-talk, if any, with one

or more of the phytohormones and/or sugar signaling

pathways would have broader implications in developing

strategies for generating transgenics with a better adapt-

ability towards Pi deficiency.

Effects of mutation in TF on systemic Pi sensing

Many Pi-deficiency-mediated adaptive responses are reg-

ulated by internal availability of Pi involving long-distance

signaling as deduced from split-root experiments [116–

118]. The roles of microRNAs and cation/H? exchangers

Transcriptional regulation of phosphate acquisition by higher plants 3213
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(CAX1 and CAX3) have been postulated in mediating

shoot-to-root Pi signaling, thereby establishing a paradigm

for systemic regulation of Pi homeostasis [46, 119–122].

The likelihood of Suc loading in phloem resulting in a

shoot-derived systemic signal for regulating Pi-deficiency-

mediated responses of root system has also been suggested

[123]. Sucrose is also vital for activation of several PSR

genes including Pht1;1, Pht1;4 [124–126], and therefore

the effects of TFs on systemic responses could possibly be

mediated through one or more of these signaling pathways.

Here, we give a brief account of various systemically

regulated developmental, metabolic, and molecular traits

that are affected by mutation in different TFs.

Developmental

Retarded growth of roots and shoots resulting in attenuated

fresh weight of the seedling is a typical developmental

response to Pi deficiency [15]. Table 2 summarizes the

effects of mutation in TFs on developmental responses of

the mutants. Compared to the wild-type, there were mar-

ginal but significant reductions in both root/shoot growth

ratios and total fresh weights of phr1 mutants, specifically

under Pi-deprived condition [39]. There were no effects on

these developmental traits either under P? condition or

when subjected to other nutrient deficiencies [39]. The

study clearly suggested a likely role of PHR1 in regulating

Pi-deficiency-mediated developmental responses. Simi-

larly, a T-DNA tagged knock-out phr1 mutant also showed

reductions in the fresh weights of shoot and roots and root/

shoot ratios under both P? and P- conditions compared to

the wild-type [40]. Although reduced fresh weights and

root/shoot ratios were also observed for both phr1 and

phr1phl1 mutants during Pi deficiency, there was no sig-

nificant effect on these development traits in phl1

irrespective of Pi regime [22]. When grown to maturity

under Pi-deprivation condition, both single (phr1 and phl1)

and double (phr1phl1) mutants senesced before flowering

[22]. The study suggested a degree of functional redun-

dancy between PHR1 and PHL1 and, importantly, the roles

of these TFs as positive regulators in providing some

protection against the stress imposed by Pi deficiency [22].

In contrast, under P- condition, wrky6-1 mutant showed

better growth than the wild-type indicating WRKY6 to be a

negative regulator of Pi-deficiency-mediated responses. At

present, a majority of the TF mutants (WRKY75RNAi,

bhlh32, prd, hrs1-1, OsPHR1RNAi, OsPHR2RNAi) have

not been evaluated for their developmental responses under

different Pi regime. For a holistic evaluation of the role of a

particular TF in the maintenance of Pi homeostasis, it

would be useful to compare developmental responses of

the mutant with the wild-type from seedling to maturity

stage under both Pi-deprived and Pi-replete conditions. In

this context, it would be worthwhile to follow a quantita-

tive framework that could be used routinely for inferring

developmental responses of the wild-type and different TF

mutants, which could be incorporated into a mechanistic

model. Various growth parameters could be collected from

dissected and living plants using nondestructive methods

for precisely capturing the developmental responses of

Arabidopsis [127]. Morphometric comparisons of vegeta-

tive and reproductive traits of wild-type and TF mutants

could be achieved using software such as ImageJ (a Java

image-processing program; http://rsb.info.nih.gov/ij),

WINRHIZO [128], or EZ-RHIZO [129]. This would give a

better perspective of the effects of mutations in different

TFs on the growth and development of the mutants grown

under different Pi conditions.

Metabolic adaptations

Plants have evolved an intricate mechanism of ameliorat-

ing adverse effects of Pi deprivation by modifying an array

of metabolic responses [13]. Among metabolic adaptations,

anthocyanin accumulation in shoots is a typical response to

Pi deficiency [15] and it is likely to provide protection to

nucleic acids and chloroplasts from UV and photo-inhibi-

tory damage [130]. Microarray analysis of global gene

expression during Pi deficiency revealed differential regu-

lation of several genes involved in various steps of

anthocyanin biosynthetic pathway leading to the synthesis

of cyanidin, flavonoids, and pelargonidin [16]. The com-

parative effects of mutation in TFs on anthocyanin

accumulation are presented in Table 2. Lack of anthocya-

nin accumulation during Pi deprivation was used as an

effective strategy for screening phr1 and phr1phl1 mutants

[22, 39, 40]. The effect on accumulation of anthocyanin

was rather marginal in the phl1 mutant [22], whereas sig-

nificant increases in accumulation were observed both

under P? and P- conditions in bhlh32 [56] and in

Pi-deprived WRKY75RNAi seedlings [36]. These studies

suggest the utility of this trait not only for screening the

mutants but also for evaluating a likely positive [PHR1,

PHL1] or negative [BHLH32, WRKY75] regulatory

influence of TFs on Pi-deficiency-mediated responses. The

effect on this trait has not been reported for other charac-

terized mutants (wrky6-1, prd, hrs1-1, OsPHR1RNAi,

OsPHR2RNAi) [47, 52, 58, 60].

Carbohydrate partitioning and accumulation of starch in

leaf are typical responses associated with Pi deficiency [73,

74, 131]. Starch biosynthesis is triggered by accumulation

of 3-PGA [17] which allosterically activates AGPase dur-

ing Pi deficiency [132]. The enzyme AGPase catalyzes the

first committed step in starch biosynthesis and its activity is

subject to allosteric inhibition by Pi [132]. Sugar also plays

a pivotal role in Pi-deficiency-mediated modulation of
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auxin-dependent lateral root development [72, 113]. The

expression of several genes involved in starch biosynthesis

is differentially regulated by Pi deprivation in Arabidopsis

[17, 18]. However, the carbohydrate accumulation pattern

in TF mutants has not been thoroughly examined, with the

exception of a study [40] evaluating its distribution in shoot

and root of a phr1 mutant grown under P? and P- con-

ditions. The study revealed significant decrease in

accumulation of sugars (Fru and Glc) and starch with a

concurrent attenuation in AGPase activity in Pi-deprived

phr1 plants compared to the wild-type. The study high-

lighted the role of PHR1 in regulating carbon metabolism

during Pi deficiency.

Molecular responses

TFs play a pivotal role in mediating adaptive responses to

Pi deprivation by altering the expression of genes [4, 9, 10,

12]. A comparative account of the effects of mutation in

different TFs on the expression of PSR genes belonging to

various functional categories is provided in Table 3.

Among the TF mutants characterized, phr1 has been the

most extensively studied for its effect on the regulation of

PSR genes in Arabidopsis [22, 39, 40, 46]. Unlike other

characterized TFs in Arabidopsis and rice (WRKY75, ZAT6,

MYB62, OsPTF1, OsMYB2P-1) that show significant

induction in response to Pi deprivation [36–38, 61, 133],

PHR1 is expressed irrespective of Pi regime [22, 39, 40,

46]. However, the expression of several PSR genes,

belonging to different functional categories, is attenuated

in phr1 mutants [22, 39, 40, 46].

One of the crucial adaptive responses to Pi deficiency is

the ability of plants to trigger molecular machinery for

scavenging/remobilization of available Pi. Purple acid

phosphatases (PAP), members of the metallo-phosphoest-

erase family, comprise the largest class of plant APases that

are involved in intra- and/or extra-cellular Pi scavenging

and recycling during Pi deficiency and are considered to be

attractive candidates for engineering Pi-efficient crops [13].

A family of 29 genes (AtPAP1–AtPAP29), sharing con-

served domains of PAPs, has been identified in Arabidopsis

genome [134] whose transcriptional expression is influ-

enced by a wide spectrum of environmental and

developmental cues [135]. Pi deficiency triggers the

expression of AtPAP17 [16, 136], AtPAP11 [134], AtPAP5,

AtPAP14, AtPAP22, AtPAP23, and AtPAP25 [16]. North-

ern blot analysis showed a reduction in the transcript levels

of AtPAP17 [39]. In a subsequent study, a qRT-PCR anal-

ysis of Pi-deprived phr1 seedlings revealed suppression in

the expression of several members (AtPAP5, AtPAP11,

AtPAP14, AtPAP16, AtPAP17, AtPAP19, AtPAP21,

AtPAP22, AtPAP23, AtPAP25) of this family [46]. RNAi-

mediated suppression of OsPHR1 and OsPHR2 also

resulted in the suppression of the Pi-starvation-inducible

expression of OsPAP10 in rice [47]. Further, members of

phosphatase family, i.e., AtPS2 in phr1 and wrky6-1 [46,

52] and AtPS2-1, and AtPS2-2 in WRKY75RNAi [36],

showed down-regulation under Pi-deprived condition. Pi

deficiency also induced ribonuclease gene AtRNS1, high-

lighting its role in Pi mobilization from RNA [16, 137].

Reduction in the expression of AtRNS1 in phr1 [22, 39, 40],

phr1phl1 [22], and wrky6-1 [52] provided some evidence

towards the role of some of the TFs as positive regulators of

Pi scavenging and/or recycling during Pi deprivation.

Phospholipids in cell membranes comprise a large

proportion of the P reserve. During Pi deficiency, phos-

pholipids are hydrolyzed, releasing diacylglycerol (DAG)

and Pi, and the former is converted into sulfolipids or

galactolipids [138, 139]. Microarray analysis identified an

array of Pi-deficiency-induced genes that are involved in

this substitution process for maintaining Pi homeostasis

[16]. Many of them (NPC4, NPC5, PLDZ2, MGD2, MGD3,

SQD2) showed reduced expression in Pi-deprived phr1

compared to the wild-type [46]. Relatively, the effect on

this substitution process was rather moderate in wrky6-1 as

indicated by reduced expression of only NPC5 and SQD1

[52]. These studies further highlighted the positive regula-

tory effect of PHR1 on phospholipid substitution. The wider

influence of PHR1 on Pi homeostasis by exerting a positive

regulatory influence on the acquisition and mobilization of

Pi was also substantiated by qRT-PCR analysis revealing

reduction in the expression of seven out of nine members

(Pht1;2, Pht1;3, Pht1;4, Pht1;6, Pht1;7, Pht1;8, Pht1;9) of

the Pht1 family in Pi-deprived phr1 seedlings [46]. Another

independent study corroborated the attenuated expression

of some of the members (Pht1;4, Pht1;7, Pht1;8, Pht1;9) of

the Pht1 family in roots and shoots of a P- phr1 mutant

[40]. Contrary to these studies [40, 46], northern analysis of

both Pi-deprived phr1 and phr1phl1 mutants showed lower

transcript levels of Pht1;1 [22, 39]. The incongruity

between these reports could possibly be due to a combi-

nation of factors including different analytical techniques

(northern analysis and microarray/qRT-PCR) used for

evaluating gene expression, variations in the experimental

design [111], and/or the likelihood of certain elemental

impurities in the agar [73] that would have been used for

preparing the growth medium. A revisit to this problem

could therefore provide a more pragmatic insight into the

role of PHR1 in regulating Pi acquisition and mobilization

mediated by one or more members of the Pht1 family. A

repressing influence was also explicit in the majority of the

members (Pht1;2, Pht1;3, Pht1;4, Pht1;5, Pht1;8, Pht1;9)

of the Pht1 family in wrky6-1 grown under P- condition.

Pi-deficiency-induced expression in majority of the Pht1

family members were affected in both phr1 and wrky6-1

except that of Pht1;5 in the latter mutant. Attenuated
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expression of Pht1;5 was also evident in WRKY75 RNAi

under both P? and P- conditions [55]. The presence of two

WRKY box (W-box) cis-elements (TTGACC/T) in Pht1;5

promoter suggests a potential interaction with WRKY TFs

[36, 55]. Unlike Pht1;1 and Pht1;4 that have been shown to

play a role in Pi acquisition [140], Pht1;5 has been impli-

cated in mobilizing Pi between sink and source organs and

mediating a cross-talk between Pi homeostasis and ethylene

signaling [55]. These studies thus point to the differential

regulatory influence of both PHR1 and WRKY TFs on

several members of the Pht1 family [22, 36, 39, 40, 46, 52].

A reduction in the expression of CHS and PAP1 in phr1

mutant [40] was consistent with impaired accumulation of

anthocyanin during Pi deficiency [22, 39]. In contrast, an

increase in the expression of DFR (dihydroflavonol reduc-

tase) in both P? and P- bhlh32 mutant seedlings suggested

a negative regulatory effect of BHLH32 on the metabolic

responses of Arabidopsis grown under Pi-deprived condi-

tion [56]. Since there was an elevated Pi content in the

bhlh32 mutant under Pi-replete condition, the negative

regulatory effect of BHLH32 on anthocyanin accumulation

could presumably be independent of Pi content [56]. In

addition, P- phr1 mutant showed a reduced expression of

BAM5 [46]; a gene involved in starch metabolism in Ara-

bidopsis. Since during Pi deficiency plants accumulate

sugars and starch in their leaves to provide a carbon pool for

reallocation to the roots [123], the regulatory effect of

PHR1 on BAM5 may have some indirect implications on the

root responses to Pi deficiency. AtIPS1 and At4, members of

the Pi-starvation-induced TPSI1/MT4 family, exhibited

reductions in their expression in phr1 [22, 39, 40, 46], and

WRKY75RNAi [36]. The transcript levels of AtIPS1 were

also attenuated in both roots and shoots of phr1phl1 [22].

Since AtIPS1 and At4 are induced rapidly and specifically

during Pi deficiency, they are useful candidates for deci-

phering Pi sensing mechanisms and the components of

signal transduction pathways that integrate plant responses

to Pi deficiency. In fact, this strategy was used successfully

by generating Arabidopsis transgenic harboring GUS

reporter gene under the control of IPS1 promoter that

showed strong GUS activity under P- condition, and

screening of the mutants with abnormal GUS activity led to

the isolation and characterization of phr1 [39]. A loss-of-

function mutant of At4 showed an aberration in the distri-

bution of Pi from shoot to root during Pi deficiency resulting

in greater accumulation of Pi in its shoots relative to the

wild-type [141]. Since the conserved sequence in IPS1/At4

non-coding RNA has partial complementarity to miRNAs

[121, 141, 142], thereby regulating the gene expression at

the post-transcriptional level [143]. Notably, the sequence

complementarity between a motif of IPS1 and miRNA is

interrupted by a mismatched loop at the miRNA cleavage

site resulting in ‘target mimicry’; a term coined for defining

this mechanism of sequestering miRNAs [142]. Arabidop-

sis genome encodes six miR399 genes (a–f) that show

induction during Pi deficiency [46, 119, 121, 144]. By

employing deep sequencing, several other miRNAs have

been identified that were either induced (miR156, miR399*,

miR399, miR778, miR827, and miR2111) or suppressed

(miR169, miR395, and miR398) by Pi deprivation [21].

There was an accentuated accumulation of Pi in P? shoots

of transgenic Arabidopsis overexpressing miR399, impli-

cating its positive regulatory effect on Pi homeostasis [46,

119, 144, 145]. The mobility of miR399* and miR399 from

scions to rootstocks across the graft junction suggested their

possible role during Pi signaling [21].

Arabidopsis mutant pho2 accumulates up to threefold

more Pi in leaves, often resulting in Pi toxicity as indicated

by necrosis or chlorosis at the tip of older leaves [146–

148], and several PSR genes (AtIPS1, At4, Pht1;8, and

Pht1;9) remain induced in the mutant even under P?

condition [46]. Subsequently, map-based cloning identified

PHO2 as E2 conjugase gene (At2g33770), and its potential

orthologs were identified in rice, M. truncatula, and Pop-

ulus trichocarpa, suggesting it to be conserved across

taxonomically diverse species [46]. Pi-sufficient transgenic

Arabidopsis overexpressing miR399 suppresses the

expression of PHO2 thereby phenocopying pho2 [46]. The

systemic regulation of PHO2 by long-distance movement

of miR399s from shoot to roots was demonstrated by

reciprocal grafting between transgenic Arabidopsis over-

expressing miR399 and the wild-type [149, 150]. Together,

these studies highlight the potential roles of Pi-responsive

small RNAs in influencing the expression of the target

genes involved in the adaptive responses to Pi deficiency.

In P- phr1 mutant, the expressions of five miR399 genes

(a–e) were reduced [46]. Another study confirmed the

suppression of miR399d in roots and shoots of a

Pi-deprived phr1 mutant along with an induction of PHO2

[40]. These studies showed that miR399 and PHO2 act

downstream of PHR1 in the Pi-signaling network [40, 46].

A reduction in the expression of AtSPX1 in both phr1

and phr1phl1 [22, 46] and of AtSPX3 in phr1 and wrky6-1

[46] suggested the involvement of genes encoding SPX

domain (SYG1, Pho81 and XPR1) that is similar to Pho81,

which is a positive regulator of Pi sensing mechanism in

yeast [151]. AtSPX1 positively regulates genes involved in

Pi mobilization (phosphatases and ribonucleases), and

AtSPX3 negatively regulates several PSR genes including

AtSPX1 [152]. At present, the role of SPX family proteins

in Pi signaling cascade is yet to be determined. Suppression

of CAX1 in wrky6-1 [52] suggested a likely involvement of

Ca2? in the maintenance of Pi homeostasis [9]. In addition,

phr1 showed attenuation in the expression of several other

genes belonging to different functional categories, i.e.,

loading of Pi into xylem of roots (PHO;H1), mitochondrial
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dicarboxylate carrier (DIC3), kinases (AtPPCK1, and At-

PPCK2), transcriptional regulation (AtMYB60, HDG8), and

genes with unknown functions [46]. Both PHO1 and PHO3

were down-regulated in wrky6-1 but not in phr1 [52]. It is

evident from the literature that phr1 has been extensively

characterized [22, 39, 40, 46] compared to other TF

mutants (wrky6-1, WRKY75RNAi, bhlh32, prd, hrs1-1)

[36, 52, 56, 58, 60]. A lack of suppression of these TFs in

phr1 suggests that they may be functioning independently

of PHR1. Whether PHR1 interacts and/or is influenced by

other Pi-responsive TF(s) in regulating Pi homeostasis are

yet to be explored. Functional redundancy across 14 other

PHR1-like genes in the regulation of Pi homeostasis has

been proposed, and it merits further investigations (39). At

present, the precise positions of other TFs in Pi sensing and

signaling pathway and epistatic interactions across them, if

any, have not yet been determined. A comprehensive

molecular analysis of other Pi-responsive TFs is needed to

build an integrated signaling model defining adaptive

responses of plants to different Pi regimes.

Regulatory mechanisms governing Pi signaling in rice

are also beginning to emerge through functional charac-

terization of OsPHR1 and OsPHR2 [47], OsPTF1 [61],

OsMYB2P-1 [133], and OsSPX1 [153, 154]. Although there

were no significant differences in Pi content and the phe-

notypic traits (primary root length and root hairs) between

RNAi-silenced lines of OsPHR1 and OsPHR2 and the

wild-type, there was distinct Pi-deficiency-mediated sup-

pression in the expression of OsIPS1, OsIPS2, OsPAP10,

and OsSQD2 [47]. The study thus assigned a role for Os-

PHR1 and OsPHR2 in regulating a subset of PSR genes.

The RNAi lines of OsSPX1 (OsSPX1-Ri) exhibited severe

signs of toxicity due to over-accumulation of Pi probably

as a consequence of elevated expression of Pi transporters

OsPT2 and OsPT8 [153]. In another study, it was demon-

strated that OsSPX1 acts as a negative regulator of

OsPHR2 which suggested a likely involvement of the SPX

domain on the maintenance of Pi homeostasis in rice [154].

The role of OsSPX1 in optimizing plant growth under Pi

deficiency condition by participating in a negative feed-

back loop could thus be hypothesized [153, 154]. The

suppression of OsMYB2P-1 by RNAi also accentuated

sensitivity towards Pi deficiency in Pi-deprived transgenic

rice as indicated by their growth inhibition, lower shoot

biomass, reduced Pi contents in roots and shoots, and

reduced expression of OsPT6, OsPT8, and OsPT10 [133].

Irrespective of the Pi regime, the expression of some of

the PSR genes was either suppressed (OsmiR399a,

OsmiR399j, OsIPS1, OsSQD, OsPAP10) or enhanced

(OsPHO2) in RNAi OsMYB2P-1 transgenic plants com-

pared to the wild-type [133]. Together, these studies

highlight the significant regulatory influence of some of the

characterized rice TFs (OsPHR1, OsPHR2, OsSPX1,

OsPTF1, OsMYB2P-1) on various morphophysiological

and molecular adaptive responses to Pi deficiency.

Overexpression of TFs for enhanced Pi-use efficiency

Diminishing Pi rock reserves and low Pi-use efficiency

have been major concerns around the world and have led

to several research studies for developing sustainable

strategies for Pi-use efficiency. Several Pi-use-efficient

genotypes of agronomic crop species have been identified

among landraces and wild ancestors that can sustain opti-

mal growth in Pi-deficient soils [155–161]. Often, this

process of selecting Pi-use-efficient genotypes is influenced

by various environmental factors and has met with a rather

modest success [162, 163]. Therefore, efforts are directed

towards dissecting the genetic and molecular basis of

Pi-use efficiency in plants [158, 164]. Diverse responses

exhibited by plants to Pi deficiency suggest an occurrence

of multiple control points that are likely involved in

defining Pi-use efficiency. Traditional plant breeding

approaches along with genomic studies have revealed that

Pi-use efficiency is governed by an array of genes in

quantitative trait loci (QTLs), whose cloning could be

expedited by developing near-isogenic lines (NILs) and

recombinant inbred lines (RILs) in conjunction with next

generation sequencing [11, 165–168]. An alternative

approach employed has been to manipulate functionally

characterized PSR genes that have been implicated in Pi

acquisition. Among the PSR genes, the pivotal role of high-

affinity Pi transporters Pht1;1 and Pht1;4 in Pi uptake in

Arabidopsis was demonstrated by analyzing single [169]

and double mutants [140]. Therefore, overexpression of

these genes encoding Pi transporters provided an attractive

paradigm to make the plant more Pi-use efficient. Consis-

tent with this assumption, overexpression of Pht1;1 in

Pi-deprived tobacco-cultured cells elevated the Pi uptake

rate resulting in higher biomass [170]. Likewise, transgenic

rice plants overexpressing high-affinity Pi transporters from

rice (OsPT1) and tobacco (NtPT1) accumulated signifi-

cantly higher amounts of Pi compared to non-transformed

controls [171, 172]. However, overexpression of HvPht1;1

did not result in increased Pi uptake or higher Pi accu-

mulation in transgenic barley under any of the conditions

tested [173]. This suggested that overexpression of indi-

vidual PSR genes may not always be ideal for enhanced Pi

acquisition and accumulation. Several TFs have been

functionally characterized in Arabidopsis and rice that have

been shown to regulate a subset of PSR genes including

members of the Pht1 family [22, 39, 40, 46, 47, 52, 61,

133]. Therefore, their overexpression could be relatively

more promising in achieving higher Pi-use efficiency. In

fact, overexpression of Dof1 TF from maize in Arabidopsis
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resulted not only in increased nitrogen content in the

transgenic plants but also conferred tolerance towards

nitrogen deficiency, emphasizing the benefits of TFs in

improving nutrient acquisition and use [174]. The feasi-

bility of increasing Pi content under both P? and P-

conditions in the shoots of transgenic Arabidopsis was

aptly demonstrated by overexpressing PHR1 under a strong

constitutive 35S promoter [40]. A significant increases in

the expression of miR399d, a decline in the levels of the

target PHO2, and an elevated expression of Pht1;7 in P?

and P- shoots of PHR1 overexpressing lines resulted in an

enhanced accumulation of Pi in the transgenic shoot [40].

Significant accumulation of Pi in shoots of P? rice trans-

genic plants could also be achieved by overexpressing

OsPHR2 which was attributed to an elevated expression of

OsPT9 in both roots and shoots [47]. Further, accentuated

growth of primary and adventitious roots and root hairs of

P? OsPHR2 overexpressing plants revealed the potential

role of OsPHR2 in mediating developmental responses of

the root system during Pi deprivation [47]. In addition,

significant induction in the expression of OsIPS1, OsIPS2,

OsPAP10, and OsSQD2 in both roots and shoots of P?

OsPHR2 overexpressing plants suggested the onset of

molecular responses that are normally triggered during Pi

deficiency. However, transcript abundance of OsPHO2 did

not change despite a significant increase in the transcripts

of OsmiR399 (OsmiR399a, OsmiR399d, OsmiR399f, and

OsmiR399j) in P? OsPHR2 overexpressing line [47]. This

pointed to different mechanisms that could be operating

downstream of miR399 in regulating Pi sensing and sig-

naling pathways in Arabidopsis and rice.

RSA plays a pivotal role in soil exploration and mobi-

lization of Pi from Pi-deficient zones in rhizospheres [11],

and even modest changes in root growth-related parameters

could have a significant influence on the Pi uptake ability of

plants [101]. Therefore, it would be worthwhile to identify

TFs whose overexpression could trigger appreciable chan-

ges in different root traits particularly under Pi-deficient

condition. In this regard, overexpression of OsPTF1

showed promising results as evidenced by significantly

higher total root length and root surface area, Pi content,

root and shoot biomass, tillering ability, and panicle weight

during growth in hydroponics, soil pot, and field experi-

ments under Pi-deprived conditions [61]. Likewise,

overexpression of Pi-deficiency-inducible OsMYB2P-1 in

rice and Arabidopsis made them more tolerant to Pi defi-

ciency [133]. In contrast, overexpression of OsSPX1 caused

a retarded growth phenotype irrespective of Pi regime [153]

and is thus an unlikely candidate for developing Pi-use-

efficient plants. Overexpression of AtSPX1 induced

increased transcript levels of acid phosphatases (PAP2,

PAP17) and RNS1 under both P? and P- conditions [152],

and therefore transgenic Arabidopsis could possibly be

more efficient in mobilizing Pi from soil to the root system.

These studies clearly reflect that overexpression of a par-

ticular TF in Arabidopsis generating desirable/undesirable

traits for higher Pi-use efficiency does not always guarantee

a similar result for its orthologs in rice, or vice versa.

Some of the overexpressors were also developed as an

alternative technique for the functional characterization of

TFs whose RNAi-mediated suppression was either lethal

[37] or failed to suppress the expression of the target gene

[38]. Under both P? and P- conditions, there were sig-

nificant increases in lateral root length and root:shoot ratio,

and elevated uptake of Pi and total Pi concentration in roots

and shoots of ZAT6 overexpressing (ZOe) plants [37]. The

expression of several PSR genes (At4, AtIPS1, AtPS2-1,

AtPS2-2, AtACP5, Pht1;1 and Pht1;4), involved in mobi-

lization, acquisition, and translocation of Pi, were

attenuated to varying levels during Pi deficiency in ZOe

plants compared to the wild-type plants [37]. Among the

PSR genes, AtIPSI contains a motif with sequence com-

plementarity to miR399 and overexpression of AtIPSI

triggers accumulation of PHO2 mRNA resulting in lower

shoot Pi content [142]. Pi-deprived ZOe plants not only

showed reduced expression of AtIPSI but also an increased

Pi content in shoots and roots, suggesting a likely cross-talk

of ZAT6 with one or more components of the PHR1-

miR399-PHO2 pathway. Unlike ZOe, the overexpression of

MYB62 resulted in lower shoot Pi content, reductions in the

lengths of primary and lateral roots, and systemic sup-

pression of several PSR genes [38]. MYB62 overexpressing

plants also revealed a GA-deficient phenotype that could be

partially restored upon exogenous application of GA [38].

This study provided some insight into a potential role of

Pi-responsive TF in regulating Pi-deficiency-mediated

responses through a phytohormone signaling pathway. It is

anticipated that more Pi-responsive TFs will be identified in

the near future whose manipulations would exert a signifi-

cant impact on Pi-use efficiency of plants.

Other regulatory mechanisms governing Pi-starvation

responses

Apart from transcriptional regulation by various TFs, other

mechanisms also exert significant influences in regulating

Pi-starvation responses. For instance, it was demonstrated

that PHR1 could be sumoylated by SUMO E3 ligase SIZ1

[45]. Unlike the phr1 mutant, the loss-of-function mutant

of SIZ1 exhibited hypersensitive responses during Pi star-

vation on different traits of the root system [45]. This

suggests that some of the regulatory effects of SIZ1 on Pi-

starvation-mediated responses are independent of PHR1.

Endoplasmic reticulum (ER)-localized phosphate trans-

porter traffic facilitator (PHF1) has also been shown to play
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a role in mediating the trafficking of PHT1 family proteins

[175]. PHF1 is homologous to the yeast SEC12 protein

which is involved in mobilization of cargo proteins in the

secretory pathway [175]. PHF1 is induced during Pi defi-

ciency and the phf1 mutant showed impaired uptake,

transport, and accumulation of Pi, and increased resistance

towards arsenate due to the defect in targeting the high-

affinity Pi transporter PHT1;1 to the plasma membrane

[175].

Epigenetic regulation mediated by histones equally

plays a crucial role in remodeling the chromatin, thereby

facilitating the association of TF with DNA resulting in

transcription [176]. ARP6 (actin-related protein 6) is a

component of the SWR1 (switch/sucrose non-fermentable-

related, SWI/SNF) chromatin remodeling complex that

regulates transcription via deposition of the H2A.Z histone

variant into the chromatin [177, 178]. Loss-of-function

mutants of ARP6 in Arabidopsis revealed a pleiotropic

phenotype with several developmental defects, including

altered leaf development, reduced fertility, and early

flowering [179]. The arp6-1 and arp6-2 mutants grown

under P? condition showed severely impaired Pi uptake

rate, lower Pi accumulation, increased acid phosphatase

activity, and induction of several PSR genes [74]. ChIP

analysis revealed higher enrichment of H2A.Z for a subset

of PSR genes under P? condition, suggesting that ARP6-

mediated H2A.Z deposition might maintain a subset of

PSR genes in a repressed transcriptional state. The study

thus provided evidence towards the role of ARP6 in

mediating H2A.Z deposition facilitating a chromatin-level

control of PSR genes, thereby affecting Pi-starvation

responses [74]. Overall, these studies highlight a complex

network of regulatory mechanisms that operate in concert

to maintain Pi homeostasis under different Pi regimes.

Future perspectives

Although TFs investigated thus far appear to regulate

overlapping subsets of PSR genes, epistatic interactions

across them in coordinating Pi deficiency responses are far

from being elucidated. In planta molecular interactions of

TFs in the regulatory pathway could be studied using

inducible RNAi/overexpressor and/or chimeric repressor

gene-silencing technology (CRES-T) by expressing a

fusion of TFs and the EAR motif plant-specific repression

domain (SRDX) [180]. Moreover, in vitro yeast two-hybrid

and/or in vivo bimolecular fluorescence complementation

(BiFC) assays could provide a better insight into the

mechanisms governing the level of interactions across TFs

involved in the maintenance of Pi homeostasis. Microarray

analysis based on ChIP (ChIP-on-Chip) is also a potent tool

for the identification of co-regulators that can interact with

TFs [181–183]. A more holistic understanding of the reg-

ulation of Pi homeostasis could be achieved by looking into

taxonomically diverse species. With the rapid advancement

of next generation DNA sequencing technology, such as

high-throughput 454 (microbead-based pyrosequencing),

the identification of newer gene-networks in organisms

with large genomes is in the offing [184]. Studies using

high-resolution deep sequencing has further facilitated the

identification of numerous small RNAs and their TF tar-

gets, which have been linked to novel functions during

nutrient starvation as well as plant growth and develop-

mental [21, 185]. In the recently sequenced soybean

genome, about 12 % of the genes encode TFs, and their

overall distribution pattern among other protein coding loci

was found to be largely similar to A. thaliana [186]. Thus,

the identification of novel regulatory components in agro-

nomically important crop species provides exciting

avenues for engineering transgenic crops with higher Pi-

use efficiency for meeting the growing demands of food

production in a sustainable manner.
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