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Abstract The intestinal mucosa faces the challenge of

regulating the balance between immune tolerance towards

commensal bacteria, environmental stimuli and food anti-

gens on the one hand, and induction of efficient immune

responses against invading pathogens on the other hand.

This regulatory task is of critical importance to prevent

inappropriate immune activation that may otherwise lead to

chronic inflammation, tissue disruption and organ dys-

function. The most striking example for the efficacy of the

adaptive nature of the intestinal mucosa is birth. Whereas

the body surfaces are protected from environmental and

microbial exposure during fetal life, bacterial colonization

and contact with potent immunostimulatory substances

start immediately after birth. In the present review, we

summarize the current knowledge on the mechanisms

underlying the transition of the intestinal mucosa during

the neonatal period leading to the establishment of a stable,

life-long host–microbial homeostasis. The environmental

exposure and microbial colonization during the neonatal

period, and also the influence of maternal milk on the

immune protection of the mucosa and the role of antimi-

crobial peptides, are described. We further highlight the

molecular mechanisms of innate immune tolerance in

neonatal intestinal epithelium. Finally, we link the descri-

bed immunoregulatory mechanisms to the increased

susceptibility to inflammatory and infectious diseases

during the neonatal period.
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Introduction

The mammalian mucosal surfaces such as the lung,

reproductive tract, urinary tract and intestine are in direct

contact with the external environment populated with

bacteria, fungi, viruses and parasites. This is particularly

evident in the intestine where a dense and highly diverse

microbiota exists in a mutually beneficial relationship with

the host. Yet, the bacterial colonization of the intestinal

mucosa requires a tight epithelial barrier and functional

mucosal immune system to ensure maintenance of the

epithelial integrity and tissue homeostasis. In addition, the

intestinal mucosa is intermittently exposed to potentially

harmful pathogenic microorganisms. Thus, the establish-

ment of a mature mucosal immune system able to restrict

the microbiota to the intestinal lumen and to discriminate

invading pathogens from commensal members of the

microbiota is required and represents a unique regulatory

challenge for the mucosal immune system.

The mammalian small intestine is composed of three

tissue layers consisting of an outer smooth muscle layer,

stromal tissue and an inner mucosal layer covered by a

single sheet of cuboideal epithelial cells. The epithelial cell

layer comprises four different cell types: enterocytes

(secreting hydrolases and absorbing nutrients, ions and

fluid), goblet cells (producing the mucus layer), enteroen-

docrine cells (secreting hormones, like serotonine,

substance P and secretine), and Paneth cells (secreting

antimicrobial peptides like cryptidins or defensins and

enzymes like lysozyme). All four lineages derive from

pluripotent continuously proliferating intestinal stem cells
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that are situated in a protected niche close to the bottom of

intestinal crypts. The intestinal epithelium regulates the

selective entry of fluids, minerals, vitamins and nutrient

substrates, but also forms an active barrier separating the

10–100 trillion microorganisms of the gut microbiota from

the largely sterile submucosal tissue [1].

Intestinal epithelial cells express innate immune pattern

recognition receptors (PRR), such as Toll-like receptors

(TLRs), Nod-like receptors (NLRs) and helicases, and

thereby are able to actively respond to exposure of

microbe-associated molecular patterns (MAMPs) [2, 3].

The factors that allow the host to discriminate between

colonization by commensal microbiota and infection by

pathogenic bacteria are still largely undefined [4], but an

increasing number of studies start to shed light on the

molecular and cellular mechanisms underlying the main-

tenance of gut homeostasis under conditions of mucosal

stress, in most cases using the model of oral dextran sul-

phate sodium (DSS) treatment. Mucosal host–microbial

homeostasis is the result of a complex cross-talk between

microbiota, the epithelium and host immune cells [5–8].

Several studies using chimeric animals or mice with cell

lineage-specific gene deletions showed that epithelial cells,

which were originally considered a simple physical barrier,

actively contribute to the regulation of immune responses

in the gut [2, 9–11]. Hyporesponsiveness to the microbiota

and mucosal homeostasis thus appears to be an interactive,

dynamic, regulatory mechanism, rather than be caused by a

non-responsive surface layer of cells. In fact, there is evi-

dence that intestinal epithelial-specific dysfunction of

innate immune signaling pathways and an impaired inter-

action between epithelial and submucosal cells might lead

to mucosal inflammation or colitis-associated cancer

[7, 12].

Several functional and structural aspects of the intestinal

mucosa have been identified to contribute to homeostasis in

adult mice and may also support the mucosal barrier for-

mation during the postnatal period. Epithelial barrier

integrity is enforced by intercellular tight junctions that

block paracellular transcytosis and actin-rich microvilli that

form a dense brush border to prevent microbial attachment

and invasion [5]. Goblet cells produce mucins, heavily gly-

cosylated interlinked protein chains that form a hydrophilic

matrix overlaying the epithelial cell layer. The mucus layer

physically separates the great majority of luminal microbiota

from the apical epithelial surface [13, 14]. The critical

importance of an intact mucus layer is illustrated by mice

lacking the major mucin protein MUC2 that develop spon-

taneous colitis [15]. Goblet cells additionally secrete the

resistin-like molecule (RELM) b and trefoil factors (TFF)

that play a role in intestinal homeostasis, wound healing and

the host defense against worm infection [16]. Paneth cells

produce antimicrobial peptides (AMPs) to limit bacterial

growth and shape the microbiota composition [17, 18].

Resident CD103- CX3CR1? phagocytic cells generate

dendrite-like protrusions that reach into the intestinal lumen

and allow uptake of bacteria and sample luminal antigens

[19, 20]. They control T cell activation via secretion of IL-10

and TGF-b but are also able to promote Th1 and Th17 dif-

ferentiation during inflammation. Also, migratory CD103?

CCR7? dendritic cells are conditioned by microbial and

epithelial-derived factors and promote the differentiation of

CD4? Foxp3? regulatory T cells (Treg) and the secretion of

immunoglobulin A (IgA) by B cells [21]. Under inflamma-

tory conditions, they also promote IL-17-producing helper T

(TH17) cells that in turn induce infiltration by professional

immune cells via secretion of IL-17 and IFN-c [22]. Treg and

Tr1-like cells regulate inflammation through IL-10- and

TGF-b-dependent mechanisms [21]. RORct? innate lym-

phoid cells (ILCs), including lymphoid tissue-inducer (LTi)

cells and IL-22-producing NKp46? cells, synthesize IL-22

which induces expression of the antimicrobial protein

Reg3c. Epithelial IL-25 induced by the microbiota is able to

control IL-22 production [23]. Also, lymphotoxin (LT)

expression by RORct? cells favors epithelial cell repair and

and induces epithelial secretion of CXCL1 and CXCL2 and

the recruitment of neutrophils and macrophages during

infection [24]. Enterocytes inhibit TH1 differentiation via

soluble thymic stromal lymphopoietin (TSLP) [25] and

control tumor necrosis factor (TNF)-induced epithelial

apoptosis [9]. Finally, continuous signaling in epithelial cells

through PRRs like TLR4, TLR5, Nlrp3, Nlrp6 and associ-

ated molecules like Myd88, NEMO, IKK1 and 2 as well as

Caspase-1 has been shown to protect against colitis [11, 26–

28] suggesting an active role of epithelial cells in the main-

tenance of host–microbial balance.

Whereas the mechanisms that ensure maintenance of

immune tolerance and gut homeostasis in the adult host

begin to be unraveled, the factors that facilitate the estab-

lishment of this surprisingly stable and life-long host–

microbial interaction after birth and during the neonatal

period are largely unknown. The healthy mammalian fetus

develops in a bacteria- and microbial ligand-free environ-

ment. Upon rupture of the amniotic membranes and

passage through the birth canal, the neonate organism is

exposed to maternal bacteria from the vaginal tract, skin

and feces and to environmental microbial ligands such as

endotoxin [29–31]. During this time, the neonate intestinal

epithelium has to adapt to facilitate the robust adaptation

from a sterile protected site to a densely colonized surface

and to establish a symbiotic interaction with the bacterial

microbiota, in order to establish a stable host–microbial

homeostasis [32, 33]. Alterations of the microbiota com-

position have been linked to several diseases such as

allergies, vascular diseases, cancer and autoimmunity, as

well as inflammatory bowel disease (IBD) and necrotizing

3700 S. Stockinger et al.

123



enterocolitis (NEC) [34–37]. In this review, we will focus

on the development of the neonatal mucosal immune sys-

tem, the formation of the intestinal microbiota and the

establishment of the host–microbe homeostasis during the

neonatal period. Additionally, we will address infant dis-

eases that might result from a dysregulated adaptation

process during the postnatal period leading to an impaired

immune homeostasis in the gut.

Development of the intestinal mucosa

During the fetal period, tissue morphogenesis and cell dif-

ferentiation prepare the epithelium for absorption of

colostrum and milk. The primitive gut is a pseudostratified

layer of endodermal origin surrounded by mesenchymal

tissue, appearing early during ontogeny [38]. Later on

(around embryonic day E15 in mice), an anterior-to-poster-

ior wave of morphogenic changes occurs and the

undifferentiated group of cells converts into a single-layered

epithelium with columnar cells and nascent villi [39]. The

mesoderm differentiates into smooth muscle and stromal

tissue. Cell proliferation, first homogenously present along

the intestinal tract, becomes restricted to the intervillus

regions, where the crypts begin to develop as soon as epi-

thelial cells penetrate the underlying mesenchyme. Crypts

contain a small group of proliferating stem cells, giving rise

to the different cell phenotypes that migrate along the crypt–

villus axis. The maturity of the epithelial tissue at birth

depends on the length of the gestation period. Early crypt

development occurs in species with a long gestational period

including humans, but not rodents, where crypts develop

only after the immediate postnatal period [40]. In some

vertebrate species, such as zebrafish, crypts never appear and

stem cells remain localized within the intervillus region [41].

Intercellular communication between epithelial cells, which

facilitates a coordinated epithelial response upon microbial

challenge [42], also represents one of the key mechanisms

driving epithelial morphogenic movements, differentiation

and migration. The composition of the extracellular matrix

detected via cell surface receptors such as E-cadherin and

integrins determines intestinal epithelial polarization char-

acterized by the separation of the apical and basolateral

plasma membrane through the expression of intercellular

tight junction molecules [43, 44]. Hedgehog signaling,

through Sonic hedgehog (Shh) and Indian hedgehog (Ihh),

plays a role in endodermal and mesodermal patterning, crypt

formation and spacing [45]. Conditional deletion of b1

integrins in the intestinal epithelium of mice results in a loss

of Hedgehog expression and early postnatal lethality [46].

Forkhead box transcription factors, Homeobox genes and

Parahox genes, as well as GATA/FOG transcription factors,

regulate intestine-specific developmental genes during fetal

development [45]. The immature primitive polarized cells

lead to the formation of the four different lineages of IECs,

enterocytes (90% of epithelial cells), goblet cells (5%),

enteroendocrine cells (\1%) and Paneth cells (10–15 per

crypt, restricted to the small intestine), that are maintained in

the adult gut [47]. Nevertheless, the four cell types do not

emerge synchronically, since active enteroendocrine cells

are already present around E10 whereas Paneth cells in mice

appear only after birth. LGR4, an orphan G-protein coupled

receptor, has been shown to be required for Paneth cell dif-

ferentiation [48]. Epithelial proliferation is known to be low

in the intestine of suckling mice and starts to increase

approximately at postnatal day P15, correlating with the

adaptation of the gut to utilize solid nutrient components and

the formation of the crypt–villus architecture of the intestinal

epithelium [49–51]. The pool of stem cells, confined to the

crypt, allows constant and rapid renewal of the adult gut

epithelium. Transit-amplifying cells, the progeny of stem

cells, divide approximately five times and then differentiate

into specialized epithelial cells [51]. Differentiated cells of

the upper crypt and villus epithelium continuously migrate

towards the villus tip and are replaced by newly formed cells

from the stem cell pool in the crypts, making the small

intestinal epithelium an extremely dynamic surface struc-

ture. Epithelial cells differentiation and proliferation are

controlled by several major signaling pathways. Wnt sig-

naling maintains cellular proliferation in crypts and controls

the development of the secretory lineage and the migration

along the crypt–villus axis. Bone morphogenetic protein

(BMP) signaling negatively regulates cell proliferation.

K-RAS regulates cell proliferation and survival. Finally,

notch signaling regulates secretory lineage development and

crypt proliferation [41, 45]. Recently, an interesting study

connected the age-dependent expression of the transcrip-

tional repressor Blimp1 to the developmental adaptation of

the murine intestinal epithelium during the postnatal period.

Blimp1 expression is high in the embryonic gut and starts to

decrease at birth in cells of the intervillus region which

subsequently gives rise to developing crypts. Adult entero-

cytes completely lack expression of Blimp1. Intestinal

epithelial-specific deletion of Blimp1 leads to enhanced

postnatal lethality with disturbance of small intestinal tissue

architecture, vacuolation of intervillous cells and altered

differentiation, illustrating the critical importance of the

switch in the global transcription profile between fetal and

adult intestinal epithelial cells [52].

Also, posttranscriptional regulatory mechanisms such

as microRNAs (miRs) have been implicated in the

development of the intestinal epithelium. In mice, epithe-

lial-specific ablation of Dicer1, essential cofactor in the

maturation of miRs, leads to a disorganization of the epi-

thelium, decrease in the number of goblet cells and an

increase in the apoptosis rate [53, 54]. miR-145 has been

Intestinal epithelial cells in immune homeostasis of the gut 3701

123



shown to play a critical role in promoting the maturation of

the zebrafish gut epithelium through the regulation of

gata6, essential for intestinal morphogenesis [55]. Also,

miR-194 regulates the expression of HNF1a, a Notch sig-

naling activator expressed during organogenesis in the gut,

which determines epithelial cell maturation and differen-

tiation in mice [56]. Finally, miR-103 has been shown to

control the expression level of proteins involved in the

G1/S transition regulatory network during intestinal stem

cell proliferation [57]. miRs may also play an important

role for epithelial differentiation and barrier homeostasis

after the immediate postnatal period [58]. For example, the

epithelial di/tripeptide membrane transporter PepT1 was

shown to be downregulated by miR-92b. PepT1 is

expressed in differentiated IECs at the top of the villi and

is involved in the transport of formyl-methionyl-leucyl-

phenylalanine (fMLP), muramyl dipeptide (MDP) and

L-Ala-D-Glu-meso-DAP (Tri-DAP), and thus contributes

to innate immune stimulation via NOD2 [58]. miR-92b via

the regulation of PepT1 thereby inhibits the inflammatory

response induced by bacterial peptidoglycan fragments

[58]. Also, enhanced expression of miR-29a was found in a

fraction of patients with irritable bowel syndrome (IBS).

The same patients exhibited increased intestinal membrane

permeability associated with decreased expression of the

glutamine synthetase GLUL (glutamate-ammonia ligase), a

target of the miR-29.

In addition to the maturity of the intestinal epithelium,

the development of the gut-associated lymphoid tissue

(GALT) also correlates with the length of gestational per-

iod. Lymphomyeloid precursor cells are present during

early development and disseminate to seed progenitors in

early structures of Peyer’s patches and mesenteric lymph

nodes [59]. In mice, the initiation of Peyer’s patches gen-

esis starts around E15–E17 [60, 61]. The migration of

mature lymphocytes begins at postnatal day P2 and fully

organized Peyer’s patches with follicular DCs, germinal

centers, a B cell and a T cell region are evident at P4 [62].

In contrast, mouse cryptopatches and isolated lymphoid

follicles (ILF) are only formed after microbial exposure

[63]. In human fetuses, Peyer’s patches outlines appear at

11 weeks gestation and functional T cells and B cells are

found at 16 and 12 weeks gestation, respectively [64]. At

16 weeks gestation, fully formed Peyer’s patches are

present and progressively expand. During the neonatal

period, the gut immune system is structurally complete, but

still undergoes significant expansion and maturation. Also,

innate and adaptive immune responses of intestinal

immune cells during the neonatal period are different from

the adult situation [59, 65]. Neonatal CD4? T cell are more

prone than adult CD4? T cells to differentiate into TReg

cells upon stimulation [66]. In addition, B cells expand

during the postnatal period and develop into plasma cells

that produce large amounts of secretory (S)IgA [67]. SIgA

prevents inappropriate immune activation by binding to

nutritional and microbial antigens. Thus, interactions with

microbial ligands and food antigens facilitate the matura-

tion of dendritic cells, T cells and B cells during the

postnatal period and drive the development of immune

tolerance mechanisms to avoid an inappropriate immune

response [64]. As described below, the immature neonate

immune system also renders the organism more susceptible

towards microbial infection [32, 65, 68].

Maternal influence on postnatal mucosal homeostasis

One unique feature of the neonatal mucosal immune system

is the link to maternal immunity through breast feeding.

Breast milk stimulates cellular growth and tissue repair,

enhances the immunocompetence and provides significant

immunoprotection [68, 69]. Early breast milk (called

colostrum) contains large amounts of IgA, and also immune

cells such as neutrophils, macrophages/colostral corpuscules

and lymphocytes, and soluble mediators such as cytokines

(interleukins [IL], interferon [IFN]-c, and TGF-b), hormones

and growth factors (insulin, insulin-growth factors [IGF],

erythropoietin, colony-stimulating factor [CSF], vascular

endothelium factor [VEGF], epidermal growth factor [EGF],

nerve growth factor [NGF], hepatocyte growth factor

[HGF]), non-specific immune factors (sphingomyelin, oli-

gosaccharides, lactoferrin), and certain miRs [64, 68, 70].

The functional importance of breast milk for the developing

intestinal mucosa is highlighted by the finding that breast

feeding reduces the risk to acquire inflammatory enteric

diseases, such as Crohn’s disease, coeliac disease, gastro-

intestinal infections, NEC and food allergies [64].

Breast milk has been shown to modulate neonatal TLR-

mediated microbial recognition. For example, soluble

TLR2, found in the maternal milk, may help to restrict

innate immune stimulation induced by Gram-positive

bacteria in the neonate gut [71]. Milk-derived growth

factors contribute to the maturation of the mucosa, rein-

force epithelial barrier formation and enhance the ability to

selectively transport and absorb nutrients [68]. Macro-

phages present in colostrum and mature breast milk persist

in the lumen of the neonate’s gut during the first postnatal

week and are able to translocate and reach the systemic

circulation [68]. Macrophages are able to secrete cytokines

and growth factors that favor epithelial maturation and bind

SIgA to enhance the neonate’s own immune system [72].

Maternal SIgA also restricts immune activation and

microbial attachment by binding to nutritional and micro-

bial antigens. Importantly, the spectrum of the maternal

IgA reflects the geographical and temporal environment of

both the mother and the child and thus provides highly

3702 S. Stockinger et al.

123



specific protection. Maturation of the SIgA-producing

plasma cells in the GALT and expression of the polymeric

immunoglobulin receptor (pIgR), a molecule that translo-

cates SIgA into the intestinal lumen, occur gradually during

the neonatal period and are influenced by environmental

conditions [73].

Lactoferrin contained in breast milk limits the pool of

free iron and suppressed bacterial growth in addition to its

interference with the nuclear transcription factor-jB (NF-

jB) [68, 70]. Interestingly, miR-584 has recently been

shown to induce expression of the lactoferrin receptor in

epithelial cells during the neonatal period [57]. Further-

more, the breast milk constituent lysozyme inhibits

bacterial growth by disrupting the peptidoglycan layer of

the microbial cell wall [70]. Oligosaccharides have prebi-

otic effects, but also act as receptor analogs to inhibit

attachment of commensal bacteria to the epithelial surface

[74]. Maternal cytokines also influence the neonates’s

immune system. IFN-c stimulates phagocyte function and

TGF-b acts as an immunosuppressor and maintains the

integrity of the mucosal barrier. Significant levels of miRs

have been detected in breast milk despite the low pH

indicating their stability and thereby potential regulatory

function of the intestinal mucosa [49, 53]. Particularly,

miRs associated with T cell and B cell differentiation and

regulation have been observed in breast milk [70].

In addition to their nutritional and innate immune

functions, factors present in breast milk also play a role in

wound healing and tissue repair. Insulin-like growth factor

(IGF) 1 is induced after mucosal injury to promote cell

proliferation and is present in the maternal milk. Also,

epidermal growth factor (EGF) has been shown to play a

role in cell proliferation, maturation and differentiation,

and is protective against NEC, a devastating intestinal

inflammatory disease predominantly of premature neo-

nates. EGF downregulates pro-inflammatory cytokines

such as IL-18, increases anti-inflammatory cytokines such

as IL-10, and restores the intestinal barrier [75]. EGF also

promotes the generation of the mucus layer by goblet cells

which is formed by complex interlinked mucin glycopro-

teins and shields particularly the colon epithelium from

direct exposure to luminal substrates [76].

Immune tolerance of IECs after birth

With rupture of the membranes and passage through the

birth canal, the neonate becomes exposed to the maternal

microbiota, environmental bacteria and microbial con-

stituents such as lipopolysaccharide (LPS). This first

exposure occurs prior to ingestion of breast milk, and thus

encounters the naı̈ve fetal intestinal mucosa. Intestinal

epithelial cells have been shown to express innate

immune receptors, such as TLRs throughout fetal, neo-

natal, and adult life. Both TLR2 and TLR4 expression

were found in human fetal tissue from 18 weeks of ges-

tation [77]. Also, in mice, TLR4 and the accessory protein

MD2 are expressed in fetal IECs [78, 79] that are able to

respond to LPS [49, 79].

Interestingly, we observed a transient transcriptional

postnatal activation of epithelial cells, with a peak of Cxcl2

chemokine expression between 2 and 4 h after birth fol-

lowed by rapid normalization [79]. This transient

transcriptional epithelial activation was induced by orally

ingested LPS since it was absent in vaginally delivered

TLR4-deficient mice or mice born by caesarian section and

thus without exposure to the maternal mucosal secretions

during birth. In accordance, low but detectable amounts of

LPS were measured in the neonatal intestinal tissue shortly

after birth and oral administration of LPS to cesarean

section-born mice readily induced epithelial activation [49,

79]. Immunofluorescence studies confirmed epithelial

stimulation demonstrating p65 nuclear translocation and

IjB-a phosphorylation in small intestinal epithelial cells

after vaginal delivery. These analyses also demonstrated

epithelial internalization of orally administered LPS in

accordance with the previous finding that TLR4 is local-

ized intracellularly in intestinal epithelial cells and requires

ligand internalization [80]. Surprisingly, intracellular epi-

thelial LPS could be detected during the complete postnatal

period. Since epithelial activation after vaginal delivery

was transient and not accompanied by the recruitment of

professional immune cells, the induction of negative reg-

ulators of the TLR4 signaling were subsequently studied.

However, no increase in the expression of well-established

regulator molecules such as Sigirr, ST-2, the spliced form

of Myd88, or Tollip was detected in isolated IECs after

birth. Yet, an almost complete disappearance of the

essential TLR signalling molecule interleukin 1 receptor-

associated kinase (IRAK) 1 in epithelial cells isolated from

mice shortly after birth was noted. Epithelial IRAK1 down-

regulation was observed in vaginally delivered mice but

neither in caesarian section-delivered animals nor in TLR4-

deficient mice, suggesting that it might be a direct conse-

quence of the described postnatal epithelial activation [49,

79]. Also, IRAK1 downregulation might cause epithelial

TLR hypo-responsiveness and thus contribute to the

observed epithelial innate immune tolerance during the

neonatal period. Indeed, significant apoptosis was observed

in IRAK1 expressing intestinal epithelial cells from

cesarean section-born neonates but not epithelial cells from

vaginall delivered mice with reduced IRAK1 expression

after oral administration of bacteria.

A similar effect of post-stimulatory IRAK1 downregu-

lation associated with an impaired immune responsiveness

had previously been demonstrated in macrophages and
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suggested to contribute to the well-known refractory state

to secondary TLR4 stimulation named endotoxin tolerance

[81]. Subsequent in vitro studies using a well-established

murine intestinal epithelial cell line [82] confirmed the

downregulation of IRAK1 protein expression following

TLR4 activation associated with a lack of responsiveness

upon secondary stimulation. In contrast to the situation in

macrophages, both proteasomal and lysosomal degradative

mechanisms were shown to contribute to IRAK1 down-

regulation in epithelial cells [49], and the functional

relevance was also confirmed in vivo. Administration of

proteasome and lysosome inhibitors to vaginally delivered

newborns prevented the downregulation of epithelial

IRAK1, and also caused epithelial apoptosis following oral

administration of bacteria after vaginal delivery. In addi-

tion to the proteasomal/lysosomal degradation of IRAK1,

translational repression of Irak1 mRNA by strongly

enhanced miR-146a expression was identified in epithelial

cells [49, 83, 84]. Epithelial miR-146a expression was

induced by the initially observed postnatal epithelial

activation and absent in caesarian section-delivered or

TLR4-deficient mice. Although initial studies had descri-

bed miR-146a-mediated Irak1 mRNA degradation, our

results both in vitro and in vivo indicated solely tran-

scriptional repression by miR-146a without any alteration

in the level of Irak1 mRNA [49, 85, 86]. In accordance

with a critical importance of enhanced postnatal epithelial

miR-146a expression, administration of anti-miR-146a to

vaginally delivered newborns restored epithelial IRAK1

expression and epithelial apoptosis upon oral bacterial

challenge. Conversely, administration of a miR-146a

homologue to caesarian section-delivered mice was suffi-

cient to cause IRAK1 downregulation and protect the

epithelium from bacteria-induced damage.

Strikingly, enhanced miR-146a, IRAK1 downregulation

and lack of LPS-induced chemokine expression persisted in

epithelial cells throughout the postnatal period until

weaning, associated with the above-mentioned persistence

of intraepithelial LPS. Further analyses revealed that con-

tinuous TLR4 stimulation and signal transduction possibly

provided by the intraepithelial LPS maintained elevated

miR-146a levels and ongoing IRAK1 degradation. In

addition, this constant signaling under conditions of high

miR-146a and low IRAK1 protein (IRAK1low) induced a

discrete program of gene transcription, different from the

gene pattern induced in naı̈ve, high IRAK1 protein-

expressing cells. This gene expression included genes

associated with epithelial cell survival, proliferation, cell

differentiation, and metabolism [49, 83, 84]. Of note, a

similar change in the gene expression pattern after acute

(M1 state) versus chronic stimulation (M2) has also been

observed in macrophages [87]. In the intestine, the

described adaptive process might thus simultaneously

protect from inappropriate pro-inflammatory innate

immune activation during bacterial colonization of the

naive fetal mucosa and drive maturation of the epithelium

to establish host–microbial homeostasis.

During the third week after birth, profound changes

occur with enhanced stem cell proliferation, crypt forma-

tion and the start of the continuous crypt–villus migration

and constant renewal of the epithelium. The loss of intra-

epithelial LPS coincided with reduced miR-146a

expression, reappearance of high epithelial IRAK1 levels

and inducible chemokine expression, thus providing a fully

competent epithelial innate immune system to protect from

enteropathogens that might encounter the adult host upon

uptake of solid food.

Antimicrobial peptides as a host defense mechanism

of the intestinal epithelium

Antimicrobial peptides are ancient gene-encoded natural

peptide antibiotics. In mammals, two dominant antimi-

crobial peptide families are found: defensins and

cathelicidins. Defensins are characterized by the presence

of three intramolecular disulfide bonds and can be sub-

categorized into a- and b-defensins based on the

interlinkage of the cysteine bonds. Mature defensins con-

sist of approximately 30 amino acids and form a triple-

stranded b-sheet structure. In the gastrointestinal tract,

expression of a-defensins is confined to Paneth cells which

are located at the base of the crypts of Lieberkühn in the

small intestine and display a highly secretory phenotype

filled with granules [88]. Whereas only two a-defensins,

human a-defensins 5 (HD5) and HD6, are expressed in the

human small intestinal tissue, more than 20 a-defensins

(also named cryptdins) have been sequenced from murine

small intestinal tissue. In addition, murine Paneth cells

express a related large family of covalently linked homo-

or hetero-dimeric antimicrobial peptides, the cryptdin-

related sequence (CRS) peptides [89]. The distribution of

b-defensins includes the stomach and colon. Although

b-defensin mRNA has been detected in small intestinal

tissue, its expression on the protein level has not been

confirmed. b-defensins are regulated on the transcriptional

level and their expression occurs either constitutively or

after stimulation by endogenous proinflammatory stimuli

or innate immune activation. In contrast, a-defensins are

constitutively produced by Paneth cells and posttranscrip-

tionally regulated by proteolytic processing. Proteolytic

cleavage in mice is performed by the matrix metallopro-

teinase 7 (MMP7, also named matrilysin) prior to

secretion, whereas human a-defensins are cleaved by the

endoprotease trypsin only after secretion within the intes-

tinal lumen. Paneth cells express a selection of PRRs and
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a-defensin secretion is induced by endogenous or microbial

stimuli. In addition to a-defensins, which account for

around 70% of the secreted bactericidal activity [90],

Paneth cells also secrete the antimicrobial proteins lyso-

zyme P, secretory phospholipase A2, and the recently

discovered C-type lectins, Reg3c and Reg3b [88, 91].

Defensins display broad spectrum antimicrobial activity

against Gram-positive and Gram-negative bacteria with

some additional activity against fungi, viruses and proto-

zoa. They are highly cationic and are believed to disrupt

the membrane integrity of their bacterial targets by inter-

action with negatively charged phospholipid groups on the

outer membrane. Displacement of lipids by integration

between phospholipid groups alters the membrane stability

and finally leads to membrane disintegration and poten-

tially pore formation [92]. The biological importance of

defensins has been demonstrated by the generation of

MMP7-deficient mice, which are more susceptible against

oral infection with Salmonella enterica ssp. enterica sv.

Typhimurium (S. Typhimurium) [93] and display signifi-

cant alterations of the enteric microbiota composition

[17]. Conversely, transgenic mice expressing the human

a-defensin 5 (HD5) display enhanced resistance against

S. Typhimurium infection [94].

Cathelicidins also represent cationic amphipathic pep-

tides but in contrast to a-defensins form a-helical or

b-hairpin structures. They are produced by proteolysis of

the C terminus of cathelin-domain-containing protein pre-

cursors. In humans and mice, only one cathelicidin

precursor, hCAP18 and CRAMP, respectively, is produced,

whereas in cattle and pigs this peptide family comprises a

large number of members and is highly diverse. Cathelic-

idins are expressed in the skin, lung and intestinal tract by a

variety of cell types including neutrophils, mast cells and

epithelial cells.

More recently, the C-type lectin Reg3c was described as

an antimicrobial protein expressed in the intestinal tract

both by absorptive enterocytes and Paneth cells. Reg3c is

particularly active against Gram-positive bacteria [95].

Expression of this protein is induced by the presence of the

microbiota [95], depends on the IL-1R and TLR adaptor

molecule MyD88 and is at least in part mediated by an

intrinsic regulatory loop mediated by IL-22 [96]. Activity

of Reg3c is further modulated by proteolystic cleavage of a

negatively charged N-terminal inhibitory prosegment from

the positively charged core protein by trypsin [97].

Although the processing of Reg3c resembles the processing

of a-defensins, the mechanism of action against bacteria is

different. While mature cationic a-defensins bind to neg-

atively charged bacterial phospholipids, Reg3c specifically

interacts with native peptidoglycan at the bacterial surfaces

[97, 98]. Reg3c expression was shown to also contribute to

the antimicrobial host defence using the model of oral

infection with Listeria monocytogenes [96]. In addition to

their direct antimicrobial function, antimicrobial peptides

have been shown to exert immunomodulatory functions.

They bind to LPS and neutralize its proinflammatory

activity, exhibit chemoattractive activity, promote wound

healing and modulate dendritic cell responses [99].

A number of studies have shown that expression of

antimicrobial peptides is also under developmental control.

As outlined before, morphogenesis of the mouse small

intestine is not completed until the the third week after

birth. Crypts form from epithelial cells at the intervillus

region after the first week and undergo proliferation by

crypt fission between the second and third weeks [100].

The emergence of Paneth cells coincides with crypt mor-

phogenesis and a dramatic increase in epithelial stem cell

proliferation and is independent of the presence of the

microbiota. The differentiation of Paneth cells includes the

sequential expression of a-defensins, phospholipases and

lysozyme [101]. The regulation a-defensin expression is

generally considered not to occur on the transcriptional

level, and total a-defensin mRNA levels were found to be

similar in the presence or absence of the intestinal micro-

biota [102, 103]. Yet, some a-defensins, especially

a-defensin 6, might be expressed by epithelial precursor

cells before the emergence of Paneth cells [104], although

at a much lower level [105]. Also, a significantly higher

gene expression of a small group of a-defensins was

reported in conventional as compared to germ-free mice

[106]. In particular, a-defensin 4 and 5 were found to be

significantly reduced in germ-free mice. Differences were

also noted in the course of mRNA expression during

postnatal development between individual a-defensin iso-

forms. One group, including a-defensin 1, 3 and 6, show a

more gradual increase during the postnatal period whereas

another group, including a-defensin 2 and 5, exhibit a rapid

increase in gene expression accompanying the onset of

Paneth cells. Differences in the experimental approaches

(e.g., m-RNA vs. protein level) and the use of oligonu-

cleotide probes that detect several members of this highly

conserved large group of peptides simultaneously might

account for some observed discrepancies [102, 106, 107].

Although generally coregulated, individual a-defensins

might be influenced by endogenous or exogenous factors

and play a distinct role in intestinal homeostasis and anti-

microbial host defense [106].

In contrast to the delayed appearance of a-defensin

expression in Paneth cells of the murine small intestine,

high expression of the cathelicidin CRAMP by the intes-

tinal epithelium is found at birth. Strikingly, CRAMP

expression is restricted to the first postnatal 2 weeks and

gradually disappeares with the appearance of crypts,

Paneth cells, and a-defensins [105]. Again, the downreg-

ulation of CRAMP during postnatal development is
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independent of the enteric microflora. CRAMP-deficient

neonates are more susceptible to oral infection with the

Gram-positive enteric pathogen L. monocytogenes. Whe-

ther CRAMP also contributes to the postnatal

establishment of the enteric microflora still needs further

investigation.

Postnatal development of the intestinal microbiota

The fetus develops in a sterile and environmentally pro-

tected environment within the amniotic membranes in the

uterus. Microbial exposure and bacterial colonization of

mucosal surfaces, however, start immediately at birth.

Already with passage through the birth canal and during

the immediate postnatal period, maternal and environ-

mental bacteria are transferred to the neonate’s body

surfaces. The intestinal tract provides a favorable envi-

ronment for commensal bacteria providing essential

nutriments for their metabolism [14, 108]. A number of

studies have investigated the postnatal development of the

intestinal flora in mice [109–112]. Although neonatal

rodents are exposed to greater numbers of environmental

microbes than human neonates and differences have been

observed on the species level, the principal scenario of the

succession of intestinal microbial colonization in rats and

mice resembles that in human neonates. Facultative

anaerobic or microaerophilic bacteria like Lactobacilli and

Streptococci dominate during the first week after birth,

followed a few days later by Enterococci and members of

the Enterobacteriaceae. These bacteria reduce the local

oxygen concentration by their metabolic activity and

thereby establish the milieu for the subsequent colonization

by strictly anaerobic bacteria like Bifidobacteria, Bacte-

roides spp. and Clostridium spp. [109–113].

Colonization of the newborn intestinal mucosa is influ-

enced by a variety of factors including the mode of

delivery, gestational age, environmental factors such as

hygiene and lifestyle and diet (i.e. formula vs. breast milk)

[30, 31, 33, 114, 115]. Caesarean section-born infants, for

example, undergo delayed colonization with an altered

flora compared to vaginally delivered infants [31]. Signif-

icant differences in the enteric microbial colonization have

also been found between breast-fed infants in which Bifi-

dobacteria represent the dominant group whereas formula-

fed infants harbor high numbers of Bacteroides spp.,

enterobacteria, Clostridium spp. and Lactobacilli [30]. The

diversity of the infant’s intestinal microbiota increases

gradually over time with major shifts at weaning or with

changes in their diet [33, 116]. In addition to alterations in

the environmental exposure, the increased diversification

might also be influenced by the decline in maternal SIgA

[117]. Most of the intestinal bacteria of adult mice establish

within 3–5 weeks after birth [112], and obligate anaerobes

of the phylum Bacteroides and Clostridiales represent the

most abundant species after weaning.

The mature microbiota of an adult individual consists of

1014 bacteria representing approximately 500 species. Its

composition stays relatively stable throughout the whole

life. It fulfils a variety of important biological functions.

Microbial enzymes help to process ingested nutrients and

thereby influence the metabolism and digestive efficiency

and regulate host fat storage. The dense population of

commensal bacteria at the mucosal surface prevents

adhesion and subsequent colonization by pathogenic spe-

cies, a mechanism termed colonization resistance. Finally,

the presence of the microbiota stimulates mucosal angio-

genesis and significantly contributes to the maturation of

the gut innate and adaptive immune system particularly

during the postnatal period [118–121].

Susceptibility of neonates to inflammatory

and infectious diseases

The most common inflammatory diseases of the gastroin-

testinal tract of preterm infants is NEC. Several contributing

factors have been identified including breaches in the intes-

tinal mucosal barrier leading to bacterial translocation,

transient mucosal ischemia, cytokine induction and enteral

feeding. The precise mechanism underlying the pathogene-

sis, however, is still unclear [122]. Increased adhesion of

disease-promoting bacterial species to the immature muco-

sal surface was identified as possible risk factor for

NEC [122]. Also, increased epithelial expression of the

lipopolysaccharide (LPS) receptor TLR4 and enhanced

TLR4-mediated signaling in response to hypoxia have been

associated with NEC in humans and mice [123, 124]. The

critical role of TLR4 has been illustrated by the finding that

gene-deficient mice are protected against disease in a murine

NEC model [124]. More recently, reciprocal expression

patterns of TLR4 and TLR9, the receptor for bacterial CpG

DNA, have been observed in the developing mouse intestine.

TLR9 signalling inhibits TLR4-mediated cell activation in

an IRAK-M-dependent manner. In accordance, activation of

TLR9 in a murine NEC model ameliorated the tissue damage

whereas TLR9-deficient mice exhibited enhanced disease

severity [125]. Furthermore, induction of proinflammatory

cytokines and reactive oxygen species (ROS), generated as a

result of ischemia/reperfusion injury in the gut, have been

linked to the development of NEC in premature infants. An

important role may be played by the proinflammatory cyto-

kine TNF-a. Whereas TNF-a via the TNF receptor (TNFR)2

induces Muc2 and Muc3 expression by goblet cells in the

mature intestinal mucosa, it causes loss of Muc2-containing

goblet cells in a TNFR1-dependent manner in immature
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pre-weaning mice. Of note, reduced goblet cell numbers

were also found in the intestinal mucosa of human infants

with NEC [126]. Additionally, TNF-a stimulation induces an

increase of intestinal permeability by the degradation of

occludin, a component of the tight junction [127].

In both mouse and human neonates, the immune

response towards microbial infection is generally reduced

as compared to mature adult individuals illustrated by an

enhanced susceptible to gastrointestinal infection. A num-

ber of enteropathogenic microorganisms including

rotavirus, Shigella, Listeria monocytogenes and Salmonella

enterica affect neonates and infants more severely.

Rotavirus infection represents one of the leading causes

of dehydrating diarrhea among children worldwide with,

according to the World Health Organization, approxi-

mately half a million deaths per year particularly in areas

with insufficient access to medical care [128]. It mainly

affects children under the age of 6 years. Similarly, the

susceptibility to rotavirus is highest between days 3 and 11

after birth in mice and decreases abruptly at weaning. The

age-dependent susceptibility to infection has been associ-

ated with postnatal maturation of the intestinal mucosa and

can be modulated by administration of glucocorticoids,

which induce premature intestinal maturation [129]. The

antiviral innate immune response of the neonate intestinal

mucosa largely relies on the production of type III inter-

feron and the inhibition of viral spread at the intestinal

epithelium [130]. An adaptive T cell-mediated antiviral

host response, however, is required to terminate viral rep-

lication and eliminate the virus.

The ubiquitous bacterium Listeria monocytogenes

represents an opportunistic human pathogen which

predominantely infects immunocompromised patients,

pregnant women, elderly people and neonates [131]. In a

murine infection model; increased levels of systemic IL-10

were detected in neonate animals compared to adult mice.

Anti-IL-10 treatment decreased the bacterial burden in

neonates at early and late time points after infection whereas

this treatment was only effective at early stages of infection

in adult mice [132]. More recently, lack of cytotoxic T cell

activation and poor IFN-c secretion was shown in neonatal

mice after intraperitoneal infection with L. monocytogenes.

Reduced immune activation was correlated with low

expression of the mannose-bind lectin (MBL) and PRRs such

as TLRs required to mount an efficient TH1 response [133].

Due to an amino acid exchange in the mouse gene encoding

epithelial E-cadherin, an important epithelial host receptor

for enteric L. monoctogenes invasion, oral infection of mice

requires high doses of infection [134]. Therefore, tudies

comparing neonate and adult animals in humanized trans-

genic mice expressing human E-cadherin still need to be

performed [135].

Adult mice are largely resistant to infection with Shi-

gella flexneri, the causative agent of human bacillary

dysentery characterized by an acute colonic inflammation.

In contrast, newborn mice are highly susceptible and

develop acute, lethal enteritis [136]. The enhanced sus-

ceptibility of neonatal mice during the first week after birth

was explained by the lack of intestinal Paneth cells during

early postnatal development and thus reduced production

of antimicrobial peptides. Accordingly, depletion of Paneth

cells in adult animals rendered adult animals susceptible to

Shigella infection [137]. Also, MMP7-deficient mice

unable to proteolytically process mature enteric a-defen-

sins displayed a higher bacterial load and increased

inflammation than wild-type animals after oral Shigella

challenge [138].

Age-dependent differences in susceptibility to infection

have also been reported for oral challenge of mice with

S. Typhimurium [50, 139]. Additionally, mutant bacteria

that exhibit an attenuated phenotype in adult mice are still

able to infect neonatal and suckling mice systemically

[139]. Neonatal mice show an attenuated inflammatory

response and a higher systemic bacterial burden. IFN-c in

adult mice is required for an efficient host defence against

Salmonella and the increased resistance of adult mice was

correlated with an age-dependent increase of IFN-c- and

IFN-c-regulated genes. The source of developmentally

regulated IFN-c most likely is not of epithelial nature. This

cytokine, however, targets a number of cell types including

epithelial cells and induces a variety of epithelial defence

mechanisms against intracellular pathogens [50].

Strikingly, neonatal mice were shown to be more

resistant than adult mice to an oral infection with Yersinia

enterocolitica, an enteric pathogen causing gastroenteritis

in humans [140]. These results differ from the situation in

humans, in which two-thirds of Y. enterocolitica infections

occur among infants. After oral infection, Y. enterocolitica

disseminated to spleen and liver in adult mice whereas the

spread to these organs was restricted in neonates. The

lower bacterial load in spleen and liver of neonate mice

correlated with an enhanced survival. The enhanced

resistance of neonates was only observed after oral infec-

tion. Since bacterial spread to spleen and liver was largely

controlled by neutrophils and the percentage of neutrophils

and macrophages was increased in neonatal mesenteric

lymph nodes compared to adult tissue. the authors of this

study speculated that neonates maybe more resistant due

their ability to rapidly mobilize innate phagocytes to the

site of infection [140]. Additionally, the strong innate

immune response in neonates orally infected with Y. en-

terocolitica promotes a robust protective CD4? T cell-

dependent immune responses [141]. It is unclear, however,

whether this rapid mobilization of neutrophils is restricted
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to Y. enterocolitica infection and why this mechanism is

not protective in other infection models.

Conclusions

Many aspects of the intestinal innate and adaptive immune

system as well as the intestinal epithelial barrier undergo

significant changes during the postnatal period. This

includes the rate of epithelial cell proliferation, cell differ-

entiation and gene expression, the spectrum of synthesized

antimicrobial peptides, and maturation of the mucosal

immune system, and also environmental factors such as

bacterial colonization, nutrient composition, and exposure to

immunomodulatory factors in breast milk. Whereas many

adaptive changes are induced by exogenous stimuli such as

the microbial colonization, developmental regulatory cir-

cuits are also involved. Together, the changes characterize a

unique adaptive process that governs the transition from a

sterile, environmentally protected site in utero to the situa-

tion of the adult intestine, densely populated by a highly

diverse microbiota and exposed to a large variety of nutri-

tional and environmental substrates (Fig. 1). Further

characterization of the mechanisms involved will illustrate

the enormous challenge of the mucosal surface to establish

the delicate host–microbial interaction and unravel new

factors critical to establish, but also to maintain and restore,

intestinal mucosal homeostasis. Thus, the analysis of the

processes that occur at the intestinal mucosa during the

postnatal period might ultimately also lead to a better

understanding of inflammatory diseases in the adult host and

help to develop strategies to restore a beneficial homeostatic

mucosal host–microbial interaction.
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